1
|
Cai SL, Fan XG, Wu J, Wang Y, Hu XW, Pei SY, Zheng YX, Chen J, Huang Y, Li N, Huang ZB. CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF-1α-mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacol Sin 2023; 44:1391-1403. [PMID: 36697976 PMCID: PMC10310807 DOI: 10.1038/s41401-022-01037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2022] [Indexed: 01/26/2023] Open
Abstract
The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1β in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 μM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.
Collapse
Affiliation(s)
- Sheng-Lan Cai
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yang Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi-Xiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
2
|
Mihovilovic A, Dogas Z, Martinovic D, Tokic D, Puizina Mladinic E, Kumric M, Ivkovic N, Vilovic M, Bozic J. Serum Urotensin II Levels Are Elevated in Patients with Obstructive Sleep Apnea. Biomolecules 2023; 13:914. [PMID: 37371494 DOI: 10.3390/biom13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Obstructive sleep apnea (OSA) has become major public concern and is continuously investigated in new aspects of pathophysiology and management. Urotensin II (UII) is a powerful vasoconstrictor with a role in cardiovascular diseases. The main goal of this study was to evaluate serum UII levels in OSA patients and matched controls. A total of 89 OSA patients and 89 controls were consecutively enrolled. A medical history review and physical examination of the participants was conducted, with polysomnography performed in the investigated group. UII levels and other biochemical parameters were assessed according to the standard laboratory protocols. The median AHI in the OSA group was 39.0 (31.4-55.2) events/h, and they had higher levels of hsCRP when compared to control group (2.87 ± 0.71 vs. 1.52 ± 0.68 mg/L; p < 0.001). Additionally, serum UII levels were significantly higher in the OSA group (3.41 ± 1.72 vs. 2.18 ± 1.36 ng/mL; p < 0.001), while positive correlation was found between UII levels and hsCRP (r = 0.450; p < 0.001) and systolic blood pressure (SPB) (r = 0.317; p < 0.001). Finally, multiple regression analysis showed significant association of UII levels with AHI (0.017 ± 0.006, p = 0.013), SBP (0.052 ± 0.008, p < 0.001) and hsCRP (0.538 ± 0.164, p = 0.001). As UII levels were associated with blood pressure and markers of inflammation and OSA severity, it might play an important role in the complex pathophysiology of OSA and its cardiometabolic complications.
Collapse
Affiliation(s)
- Ante Mihovilovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Zoran Dogas
- Department of Neuroscience and Sleep Medicine Center, University of Split School of Medicine, 21000 Split, Croatia
| | - Dinko Martinovic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Daria Tokic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia
| | - Ema Puizina Mladinic
- Department of Maxillofacial Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Natalija Ivkovic
- Department of Neuroscience and Sleep Medicine Center, University of Split School of Medicine, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
3
|
Zhao J, Shi S, Zhang X, Liu Y, Yuan M, Cheng G, Wang Y. Confusoside, a dihydrochalcone glucoside, prevents acetaminophen-induced liver injury by modulating the Nrf2/NF-κB/caspase signaling pathway. Food Funct 2023; 14:2432-2443. [PMID: 36786681 DOI: 10.1039/d2fo03497b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dihydrochalcones are important bioactive ingredients in plants. Anneslea fragrans is an edible and medicinal plant, and its leaves are rich in dihydrochalcones. Confusoside (CF) is the most abundant dihydrochalcone in A. fragrans leaves, which is traditionally used in the treatment of liver diseases. The aim of this study was to investigate the hepatoprotective effect of CF on acetaminophen (APAP)-induced hepatic injury in mice. CF could reduce the levels of AST, ALT, and LDH in the serum and enhance the antioxidant activity by activating the Nrf2 signaling pathway to increase the activities of antioxidant enzymes (SOD and CAT), and the GSH content but decrease the MDA accumulation in liver tissues. Immunofluorescence assay and western blotting analysis showed that CF can regulate Nrf2 into the cell nucleus, thereby promoting the expression of downstream antioxidant-related proteins, including NQO1 and HO-1. In addition, CF could inhibit the liver inflammatory response by suppressing the activation of the NF-κB signaling pathway to reduce the expressions of TNF-α, IL-1β, IL-6, and NO. Molecular docking results showed that there was good binding between the CF and Keap1-Nrf2 protein. Western blotting and TUNEL analysis also revealed CF-inhibited cell apoptosis-related protein expression (Bcl2 and caspase-3/9 proteins). Thus, the CF from A. fragrans leaves could be served as an alternative hepaprotective agent for the treatment and prevention of APAP-induced liver injury.
Collapse
Affiliation(s)
- Jinghao Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Shang Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China.
| | - Xiaoyu Zhang
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaping Liu
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Minglong Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| | - Guiguang Cheng
- The faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yudan Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650500, Yunnan, China. .,School of Chemistry and Environment, National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, Yunnan, China
| |
Collapse
|
4
|
Feng Z, Bao S, Kong L, Chen X. MicroRNA-378 inhibits hepatocyte apoptosis during acute liver failure by targeting caspase-9 in mice. GASTROENTEROLOGIA Y HEPATOLOGIA 2023; 46:124-134. [PMID: 35964807 DOI: 10.1016/j.gastrohep.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/18/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. It has been demonstrated that micro ribonucleic acids (miRNAs) are crucial mediators of nearly all pathological processes, including liver disease. OBJECTIVE The present study investigates the role of miR-378 in ALF. An ALF mouse model was induced using intraperitoneal injections of d-galactosamine/lipopolysaccharide (d-GalN/LPS). A hepatocyte cell line and miR-378 analogue were used in vitro to investigate the possible roles of miR-378 in ALF. METHODS The expressions of miR-378 and predicted target genes were measured via reverse transcription-quantitative polymerase chain reaction and western blotting, and cell apoptosis was assayed using flow cytometry. RESULTS Compared with mice in the control group, the mice challenged with d-GalN/LPS showed higher levels of alanine aminotransferase, aspartate aminotransferase, tumour necrosis factor-alpha and interleukin-6, more severe liver damage and increased numbers of apoptotic hepatocytes. Hepatic miR-378 was distinctly downregulated, while messenger RNA and protein levels of cysteinyl aspartate specific proteinase 9 (caspase-9) were upregulated in the ALF model. Furthermore, miR-378 was downregulated in d-GalN/TNF-induced hepatocyte cells, and miR-378 was found to inhibit hepatocyte apoptosis by targeting caspase-9. CONCLUSION Together, the present results indicate that miR-378 is a previously unrecognised post-ALF hepatocyte apoptosis regulator and may be a potential therapeutic target in the context of ALF.
Collapse
Affiliation(s)
- Zhiwen Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Shenghua Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Lianbao Kong
- Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| |
Collapse
|
5
|
Sun J, Zhou J, Sun S, Lin H, Zhang H, Zhong Z, Chi J, Guo H. Protective effect of urotensin II receptor antagonist urantide and exercise training on doxorubicin-induced cardiotoxicity. Sci Rep 2023; 13:1279. [PMID: 36690700 PMCID: PMC9870887 DOI: 10.1038/s41598-023-28437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jing Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Shimin Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hanlin Zhang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zuoquan Zhong
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - HangYuan Guo
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| |
Collapse
|
6
|
Rex DAB, Suchitha GP, Palollathil A, Kanichery A, Prasad TSK, Dagamajalu S. The network map of urotensin-II mediated signaling pathway in physiological and pathological conditions. J Cell Commun Signal 2022; 16:601-608. [PMID: 35174439 PMCID: PMC9733756 DOI: 10.1007/s12079-022-00672-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5158 ). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.
Collapse
Affiliation(s)
- D. A. B. Rex
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - G. P. Suchitha
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Akhina Palollathil
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Anagha Kanichery
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - T. S. Keshava Prasad
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| | - Shobha Dagamajalu
- grid.413027.30000 0004 1767 7704Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018 India
| |
Collapse
|
7
|
Zhang Y, Chen GX. Urotensin II level is elevated in inflammatory bowel disease patients. World J Gastroenterol 2022; 28:5230-5232. [PMID: 36188724 PMCID: PMC9516668 DOI: 10.3748/wjg.v28.i35.5230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 08/31/2022] [Indexed: 02/06/2023] Open
Abstract
It was reported that the urotensin II (U-II) level in inflammatory bowel disease (IBD) patients are significantly higher than in controls. To provide future guidance for the management of cardiovascular risk factors in IBD patients, the sample size of the current study appears to be limited, and more clinical samples to compare U-II levels in IBD patients and controls are needed. This will clarify the possible roles of inflammation factors and related signaling pathways (like EPK1/2, NF-κB and Rho/ROCK) in the pathophysiology of IBD. Therefore, large multicenter studies should be done to confirm the findings and underlying mechanisms in the future.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan 430081, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
8
|
Terzi MY, Okuyan HM, Karaboğa İ, Gökdemir CE, Tap D, Kalacı A. Urotensin-II Prevents Cartilage Degeneration in a Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Li Y, Guo Z, Cui H, Wang T, Xu Y, Zhao J. Urantide prevents CCl4‑induced acute liver injury in rats by regulating the MAPK signalling pathway. Mol Med Rep 2021; 24:688. [PMID: 34328202 PMCID: PMC8365596 DOI: 10.3892/mmr.2021.12329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
A number of drugs and other triggers can cause acute liver injury (ALI) in clinical practice. Therefore, identifying a safe drug for the prevention of liver injury is important. The aim of the present study was to investigate the potential preventive effect and regulatory mechanism of urantide on carbon tetrachloride (CCl4)‑induced ALI by investigating the expression of components of the MAPK signalling pathway and the urotensin II (UII)/urotensin receptor (UT) system. Liver oedema and severe fatty degeneration of the cytoplasm were observed in ALI model rats, and the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were found to be significantly increased. Compared with those in the ALI model group, ALT and AST levels and the liver index did not significantly increase in each group given the preventive administration of urantide, and the liver tissue morphology was correspondingly protected. Moreover, the gene and protein expression levels of UII, G protein‑coupled receptor (GPR14) and the oxidative stress‑sensitive cytokines, α‑smooth muscle actin and osteopontin were decreased, indicating that the protein translation process was effectively maintained. However, the expression levels of MAPK signalling pathway‑related proteins and genes were decreased. It was found that urantide could effectively block the MAPK signalling pathway by antagonizing the UII/UT system, thus protecting the livers of ALI model rats. Therefore, it was suggested that ALI may be associated with the MAPK signalling pathway, and effective inhibition of the MAPK signalling pathway may be critical in protecting the liver.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Zheming Guo
- Second Department of Trauma, Third Hospital of Shijiazhuang City, Shijiazhuang, Hebei 050000, P.R. China
| | - Haipeng Cui
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Tu Wang
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuhang Xu
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
10
|
Alicic D, Martinovic D, Rusic D, Zivkovic PM, Tadin Hadjina I, Vilovic M, Kumric M, Tokic D, Supe-Domic D, Lupi-Ferandin S, Bozic J. Urotensin II levels in patients with inflammatory bowel disease. World J Gastroenterol 2021; 27:6142-6153. [PMID: 34629825 PMCID: PMC8476337 DOI: 10.3748/wjg.v27.i36.6142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) are associated with increased cardiovascular risk and have increased overall cardiovascular burden. On the other hand, urotensin II (UII) is one of the most potent vascular constrictors with immunomodulatory effect that is connected with a number of different cardiometabolic disorders as well. Furthermore, patients with ulcerative colitis have shown increased expression of urotensin II receptor in comparison to healthy controls. Since the features of IBD includes chronic inflammation and endothelial dysfunction as well, it is plausible to assume that there is connection between increased cardiac risk in IBD and UII.
AIM To determine serum UII levels in patients with IBD and to compare them to control subjects, as well as investigate possible associations with relevant clinical and biochemical parameters.
METHODS This cross sectional study consecutively enrolled 50 adult IBD patients (26 with Crohn’s disease and 24 with ulcerative colitis) and 50 age and gender matched controls. Clinical assessment was performed by the same experienced gastroenterologist according to the latest guidelines. Ulcerative Colitis Endoscopic Index of Severity and Simple Endoscopic Score for Crohn’s Disease were used for endoscopic evaluation. Serum levels of UII were determined using the enzyme immunoassay kit for human UII, according to the manufacturer’s instructions.
RESULTS IBD patients have significantly higher concentrations of UII when compared to control subjects (7.57 ± 1.41 vs 1.98 ± 0.69 ng/mL, P < 0.001), while there were no significant differences between Crohn’s disease and ulcerative colitis patients (7.49 ± 1.42 vs 7.65 ± 1.41 ng/mL, P = 0.689). There was a significant positive correlation between serum UII levels and high sensitivity C reactive peptide levels (r = 0.491, P < 0.001) and a significant negative correlation between serum UII levels and total proteins (r = -0.306, P = 0.032). Additionally, there was a significant positive correlation between serum UII levels with both systolic (r = 0.387, P = 0.005) and diastolic (r = 0.352, P = 0.012) blood pressure. Moreover, serum UII levels had a significant positive correlation with Ulcerative Colitis Endoscopic Index of Severity (r = 0.425, P = 0.048) and Simple Endoscopic Score for Crohn’s Disease (r = 0.466, P = 0.028) scores. Multiple linear regression analysis showed that serum UII levels retained significant association with high sensitivity C reactive peptide (β ± standard error, 0.262 ± 0.076, P < 0.001) and systolic blood pressure (0.040 ± 0.017, P = 0.030).
CONCLUSION It is possible that UII is involved in the complex pathophysiology of cardiovascular complications in IBD patients, and its purpose should be investigated in further studies.
Collapse
Affiliation(s)
- Damir Alicic
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Split 21000, Croatia
| | - Piero Marin Zivkovic
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
| | - Ivana Tadin Hadjina
- Department of Gastroenterology, University Hospital of Split, Split 21000, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Daria Tokic
- Department of Anesthesiology and Intensive care, University Hospital of Split, Split 21000, Croatia
| | | | - Slaven Lupi-Ferandin
- Department of Maxillofacial Surgery, University Hospital of Split, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
11
|
Zhong H, He Y, Yang X, Si QQ, Xie P, Gao DY, Liu LM. Liver injury mediated by the UII and its receptor (UT) system is possibly associated with the activation of autophagy-related and apoptosis-resisted pathways of Kupffer cells in acute liver failure. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211027401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The system of urotensin II (UII) and its receptor (UT) (or: UII/UT system) mediates hepatic immune inflamed injury in acute liver failure (ALF) with autophagy inhibition. However, it is unknown whether the system has an effect on liver autophagy in ALF. In this study, we attempted to explore hepatic autophagy response in ALF through blocking the UII/UT signal. Autophagy-related genes were examined in the liver tissues of lipopolysaccharide (LPS)/d-galactosamine (D-GalN)-induced ALF after pretreatment of UT receptor specific antagonist urantide. And then, the levels of autophagy- and apoptosis-related genes were assayed in LPS-stimulated KCs via urantide pretreatment. We found that the expressions of hepatic autophagy related genes, including Beclin-1, Atg5, Atg7, LC3 and p62 mRNA, and LC3 II and p62 protein, were significantly downregulated in LPS/D-GalN-induced ALF mice; but they were not affected by pretreatment of urantide, a special UT receptor antagonist. To probe inflammatory mechanisms of the UII/UT system, we further investigated the effect of the system on Kupffer cells (KCs), the innate immune cells in liver. We found that urantide pretreatment significantly inhibited production of inflammatory injury molecules including TRAF6 and ROS in LPS-stimulated KCs. LPS stimulation induced LC3 and p62 mRNA and LC3 II and p62 protein expression in KCs. After urantide pretreatment, LC3 and p62 mRNA and LC3 II protein were downregulated, while p62 protein was upregulated in LPS-stimulated KCs. In addition, antiapoptotic protein Bcl-2 inhibition and proapoptotic protein cleaved caspase-3 increase were observed in LPS-stimulated KCs, and the effects were enhanced after urantide pretreatment in the study. We conclude that liver injury mediated by the UII/UT system is possibly associated with the activation of autophagy-related and apoptosis-resisted pathways of KCs in ALF.
Collapse
Affiliation(s)
- Huan Zhong
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu He
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Yang
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin-Qin Si
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pin Xie
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - De-Yong Gao
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang-Ming Liu
- Department of Infection, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Cui H, Lin Y, Xie L, Zhao J. Urantide decreases hepatic steatosis in rats with experimental atherosclerosis via the MAPK/Erk/JNK pathway. Mol Med Rep 2021; 23:284. [PMID: 33604686 PMCID: PMC7905324 DOI: 10.3892/mmr.2021.11923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatic steatosis, an indicator of atherosclerosis (AS), is always accompanied by inflammatory responses and disturbances in lipid metabolism. The present study investigated the protective effect of urantide, a urotensin II (UII) receptor antagonist, on the liver of rats with AS with hepatic steatosis by regulating the MAPK pathway. AS was induced in rats via an intraperitoneal injection of vitamin D3 and the administration of a high‑fat diet. Urantide treatment was then administered to the rats. Pathology, liver index, lipid levels and liver function were measured to determine liver injury. The expression levels of UII and G protein‑coupled receptor 14 (GPR14) were determined using immunohistochemistry, reverse transcription‑quantitative PCR and western blotting. The expression levels of MAPK‑related proteins in hepatocytes from each group were quantified using western blotting and immunofluorescence staining. Rats with AS had typical pathological changes associated with AS and hepatic steatosis, which were significantly improved by urantide treatment. Blood lipid levels, body weight, liver index and liver function were recovered in rats with AS after urantide treatment. Urantide downregulated the expression levels of UII and GPR14 in the livers of rats with AS; concurrently, the phosphorylation of Erk1/2 and JNK was significantly decreased. Moreover, no significant changes were observed in the phosphorylation of p38 MAPK in AS rat livers. In conclusion, urantide inhibits the activation of Erk1/2 and JNK by blocking the binding of UII and GPR14, thereby alleviating hepatic steatosis in rats with AS, ultimately restoring lipid metabolism in the liver and alleviating AS lesions.
Collapse
Affiliation(s)
- Haipeng Cui
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yingxue Lin
- Department of Medicine, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lide Xie
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Juan Zhao
- Department of Pathophysiology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
13
|
Yang JY, Zhong YT, Hao WN, Liu XX, Shen Q, Li YF, Ren S, Wang Z, Li W, Zhao LC. The PI3K/Akt and NF-κB signaling pathways are involved in the protective effects of Lithocarpus polystachyus (sweet tea) on APAP-induced oxidative stress injury in mice. RSC Adv 2020; 10:18044-18053. [PMID: 35517205 PMCID: PMC9053632 DOI: 10.1039/d0ra00020e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/25/2020] [Indexed: 12/17/2022] Open
Abstract
Acetaminophen (APAP)-induced acute liver injury (ALI) is a health issue that has gradually attracted attention, and is often regarded as a model of drug-induced hepatotoxicity. The leaves of Lithocarpus polystachyus Rehd. (named as “sweet tea”, ST) usually serve as tea drink and folk medicine for healthcare in the southwest part of China. In previous reports, it has been proven to protect various animal models, except for APAP-induced liver injury model. Therefore, this study initially explored the protective effect of ST leaf extract (STL-E) on hepatotoxicity induced by APAP in ICR mice. STL-E of 50 and 100 mg kg−1 were given to each group for 7 days. ALI was intraperitoneally induced by APAP treatment (i.p. 250 mg per kg body weight). Biochemical markers, levels of inflammatory factors, histopathological staining and western blotting were used to analyze the inflammation and apoptosis of liver tissues. Interestingly, the treatment with STL-E significantly attenuated APAP-induced liver injury (p < 0.05). Moreover, STL-E partially mitigated APAP-induced liver injury by effectively activating the PI3K/Akt pathway and inhibiting the NF-κB pathway. In a word, STL-E protected liver against APAP-induced hepatotoxicity by inhibiting the PI3K/Akt-mediated apoptosis signal pathway and inhibiting the NF-κB-mediated signaling pathway. Acetaminophen (APAP)-induced acute liver injury (ALI) is a health issue that has gradually attracted attention, and is often regarded as a model of drug-induced hepatotoxicity.![]()
Collapse
Affiliation(s)
- Jia-Yu Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Yu-Te Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine Nanning 530200 China
| | - Wei-Nan Hao
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Xiang-Xiang Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Qiong Shen
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Yan-Fei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University Changchun 130118 China +86-431-84533304 +86-431-84533304
| | - Li-Chun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
14
|
Wang H, Wei X, Wei X, Sun X, Huang X, Liang Y, Xu W, Zhu X, Lin X, Lin J. 4-hydroxybenzo[d]oxazol-2(3H)-one ameliorates LPS/D-GalN-induced acute liver injury by inhibiting TLR4/NF-κB and MAPK signaling pathways in mice. Int Immunopharmacol 2020; 83:106445. [PMID: 32272395 DOI: 10.1016/j.intimp.2020.106445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
The purpose of this study was to synthesize 4-hydroxybenzo[d]oxazol-2(3H)-one (HBO) and to investigate its protective effects on lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced acute liver injury. HBO (C7H5O3N) was synthesized based on 2-nitro-resorcinol and identified by physicochemical analysis. In the animal experiment, mice were pretreated with HBO (50, 100, 200 mg/kg) for 10 days. At the end of pretreatment, the animals were injected with LPS (10 µg/kg)/D-GalN (700 mg/kg). The results showed that HBO significantly alleviated liver injury induced by LPS/D-GalN in mice. It remarkably decreased inflammatory response by reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Moreover, HBO notably attenuated hepatocyte apoptosis by inhibiting the release of Cytochrome C (Cyt C) from mitochondria into the cytoplasm and regulating the expression of B-cell lymphoma-2 (Bcl-2) family. Furthermore, the result showed that HBO inhibited the expressions of nuclear factor kappa-B p50 (NF-κBp50), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88), as well as the phosphorylation of inhibitor of nuclear factor kappa-B (IκB), inhibitor of nuclear factor kappa-B kinase-α/β (IKK-α/β), nuclear factor kappa-B p65 (NF-κBp65), suggesting that HBO had a certain influence on the TLR4/NF-κB pathway. In addition, the mitogen-activated protein kinase (MAPK) signaling pathway was also affected by HBO, as evidenced by the decrease in the phosphorylation levels of extracellular regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38). In conclusion, our study suggested that HBO could protect against LPS/D-GalN-induced liver injury, moreover, treatment with HBO appeared to be capable of further regulating the TLR4/NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Hongyuan Wang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xiugui Wei
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xian Wei
- Youjiang Medical University for Nationalities, Youjiang, Guangxi, China
| | - Xuemei Sun
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xiukun Huang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Yingqin Liang
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Wanpeng Xu
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xunshuai Zhu
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China
| | - Xing Lin
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China.
| | - Jun Lin
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
15
|
Guo F, Zhuang X, Han M, Lin W. Polysaccharides from Enteromorpha prolifera protect against carbon tetrachloride-induced acute liver injury in mice via activation of Nrf2/HO-1 signaling, and suppression of oxidative stress, inflammation and apoptosis. Food Funct 2020; 11:4485-4498. [DOI: 10.1039/d0fo00575d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
EPP protected against hepatic injury induced by CCl4-derived reactive intermediates through the suppression of hepatic oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Fuchuan Guo
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Xinyun Zhuang
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Mengyuan Han
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| | - Wenting Lin
- Department of Nutrition and Food Safety
- School of Public Health
- Fujian Medical University
- FuZhou 350122
- P.R. China
| |
Collapse
|
16
|
Fu Z, Fan Q, Zhou Y, Zhao Y, He Z. Elimination of Intracellular Calcium Overload by BAPTA-AM-Loaded Liposomes: A Promising Therapeutic Agent for Acute Liver Failure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39574-39585. [PMID: 31589019 DOI: 10.1021/acsami.9b13690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the past few decades, intracellular calcium overload has been shown to induce cell death through multiple signaling pathways. In this study, we used BAPTA-AM, a well-known membrane-permeable Ca2+ chelator, to prevent cell injury by allaying the intracellular calcium overload. We explored the clinical potentials of BAPTA-AM-loaded liposome (BAL) in the treatment of the acute liver failure (ALF) mouse model, which is characterized by severe hepatic necrosis and apoptosis. We discovered that BAL can significantly inhibit D-GalN-induced LO2 cell damage as it increased cell viability by 60% and downregulated the LPS-stimulated inflammatory response in RAW 264.7 macrophages by reversing the morphological change and modulating TNF-α and NF-κB expressions. Through systemic administration, BAL can rapidly accumulate in damaged liver tissue and exhibit excellent treatment effects on the D-GalN/LPS-induced ALF mouse model, including elevation of the survival rate (from 10 to 80%), recovery of normal liver indexes and liver health indicators, improvement of liver blood microcirculation (increased the blood flow volume by 80% and flow rate by 60%), and blood coagulation. The underlying hepatoprotective effect of BAL is presumably based on the antinecrosis and antiapoptosis abilities attributed to its inhibition on oxidative stress, restriction on TNF-α receptor, and mitochondria-mediated apoptotic pathway by effectively clearing the overloaded intercellular calcium. BAL holds great potential as a new therapeutic strategy for ALF treatment, and its prominent cell rescue ability provides ample opportunities for the treatment of many other diseases that are characterized by rapid and massive cell damage.
Collapse
Affiliation(s)
- Zailin Fu
- Department of Pharmacy , The First People's Hospital of Yuhang District , Hangzhou 310000 , P. R. China
- Department of Pharmacy , Zhejiang University of Technology , Hangzhou 310000 , P. R. China
| | - Qiaomei Fan
- Department of Pharmacy , The First Affiliated Hospital of Zhejiang Chinese Medical University , Hangzhou 310000 , P. R. China
- Department of Pharmacy , Zhejiang University of Technology , Hangzhou 310000 , P. R. China
| | - Yang Zhou
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yi Zhao
- Wisconsin Institute for Discovery and Department of Biomedical Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53715 , United States
| | - Zhiyu He
- Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
17
|
Li J, Zhao YR, Tian Z. Roles of hepatic stellate cells in acute liver failure: From the perspective of inflammation and fibrosis. World J Hepatol 2019; 11:412-420. [PMID: 31183002 PMCID: PMC6547291 DOI: 10.4254/wjh.v11.i5.412] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023] Open
Abstract
Acute liver failure (ALF) usually results in hepatocellular dysfunction and coagulopathy and carries a high mortality rate. Hepatic stellate cells (HSCs) are famous for their role in liver fibrosis. Although some recent studies revealed that HSCs might participate in the pathogenesis of ALF, the accurate mechanism is still not fully understood. This review focuses on the recent advances in understanding the functions of HSCs in ALF and revealed both protective and promotive roles during the pathogenesis of ALF: HSC activation participates in the maintenance of cell attachment and the architecture of liver tissue via extracellular matrix production and assists liver regeneration by producing growth factors; and HSC inflammation plays a role in relaying inflammation signaling from sinusoids to parenchyma via secretion of inflammatory cytokines. A better understanding of roles of HSCs in the pathogenesis of ALF may lead to improvements and novel strategies for treating ALF patients.
Collapse
Affiliation(s)
- Juan Li
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Ren Zhao
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhen Tian
- Department of Infectious Diseases, Institute of Hepatology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
18
|
Sun SL, Liu LM. Urotensin II: an inflammatory cytokine. J Endocrinol 2019; 240:JOE-18-0505.R2. [PMID: 30601760 DOI: 10.1530/joe-18-0505] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Urotensin II (UII) is a polypeptide molecule with neurohormone-like activity. It has been confirmed that UII is widely distributed in numerous organs of different animal species from fish to mammals, including humans. The UII receptor is orphan G-protein coupled receptor 14, also known as UT. The tissue distribution of UII and UT is highly consistent, and their expression may be regulated by autocrine and paracrine mechanisms. In the body, UII has many physiological and pathophysiological activities, such as vasoconstrictor and vasodilatory actions, cell proliferation, pro-fibrosis, neuroendocrine activity, insulin resistance, and carcinogenic and inflammatory effects, which have been recognized only in recent years. In fact, UII is involved in the process of inflammatory injury and plays a key role in the onset and development of inflammatory diseases. In this paper, we will review the roles UII plays in inflammatory diseases.
Collapse
Affiliation(s)
- Sui-Lin Sun
- S Sun, Department of Infection, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China, Nanchang, China
| | - Liang-Ming Liu
- L Liu, Department of Infection, Songjiang Hospital Affiliated to First People's Hospital, Shanghai Jiaotong University, Shanghai, 201600, China
| |
Collapse
|
19
|
Urotensin receptors as a new target for CLP induced septic lung injury in mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:135-145. [DOI: 10.1007/s00210-018-1571-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
|
20
|
Zhong H, He Y, Tan ZL, Liu LM. Effect of urotensin II/urotensin II receptor system on autophagy in acute liver failure in mice. Shijie Huaren Xiaohua Zazhi 2018; 26:228-235. [DOI: 10.11569/wcjd.v26.i4.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of urotensin II/urotensin II receptor (UII/UT) system on the levels of hepatic autophagy in mice with acute liver failure (ALF).
METHODS Male Balb/c mice were randomly divided into four groups (n = 6 each): normal controls (group A), pre-treated controls (group B), model mice (group C), and pre-treated model mice (group D). Groups B and D received urantide (0.6 mg/kg body weight) via caudal vein injection. At 30 min post-injection, groups C and D were intraperitoneally injected with LPS/D-GalN to induce acute liver injury. Serum and liver tissue samples were collected 6 h later. Serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels were determined to assess liver injury. The expression of autophagy related genes such as Beclin-1, autophagy related 5 (Atg5), Atg7, sequestosome 1 (Sqstm1/p62), and microtubule-associated protein 1 light chain 3 (LC3) was detected by quantitative PCR. The expression of autophagic proteins LC3 and p62 was tested by Western blot.
RESULTS Serum ALT and AST levels in group C were significantly higher than those in groups A and B (P < 0.01), while they were significantly lower in group D than in group C (P < 0.01). RT-PCR analysis showed that the expression of autophagy related genes such as Beclin-1, Atg5, Atg7, p62, LC3 was downregulated in groups C and D compared to groups A and B (P < 0.05), although there was no difference between groups C and D as well as between groups A and B (P > 0.05). LC3II and p62 protein levels tested by Western blot were significantly lower in groups C and D than in groups A and B (P < 0.05), but there was no difference between groups C and D as well as between groups A and B (P > 0.05).
CONCLUSION UII/UT system has no influence on the suppressed hepatic autophagy in ALF mice.
Collapse
|
21
|
Li J, Zhao PP, Hao T, Wang D, Wang Y, Zhu YZ, Wu YQ, Zhou CH. Urotensin II inhibitor eases neuropathic pain by suppressing the JNK/NF-κB pathway. J Endocrinol 2017; 232:165-174. [PMID: 27895138 DOI: 10.1530/joe-16-0255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
Urotensin II (U-II), a cyclic peptide originally isolated from the caudal neurosecretory system of fishes, can produce proinflammatory effects through its specific G protein-coupled receptor, GPR14. Neuropathic pain, a devastating disease, is related to excessive inflammation in the spinal dorsal horn. However, the relationship between U-II and neuropathic pain has not been reported. This study was designed to investigate the effect of U-II antagonist on neuropathic pain and to understand the associated mechanisms. We reported that U-II and its receptor GPR14 were persistently upregulated and activated in the dorsal horn of L4-6 spinal cord segments after chronic constriction injury (CCI) in rats. Intrathecal injection of SB657510, a specific antagonist against U-II, reversed CCI-induced thermal hyperalgesia and mechanical allodynia. Furthermore, we found that SB657510 reduced the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and nuclear factor-κB (NF-κB) p65 as well as subsequent secretion of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). It was also showed that both the JNK inhibitor SP600125 and the NF-κB inhibitor PDTC significantly attenuated thermal hyperalgesia and mechanical allodynia in CCI rats. Our present research showed that U-II receptor antagonist alleviated neuropathic pain possibly through the suppression of the JNK/NF-κB pathway in CCI rats, which will contribute to the better understanding of function of U-II and pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Jing Li
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Pan-Pan Zhao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Ting Hao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Dan Wang
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Yang-Zi Zhu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
- Department of Anesthetic PharmacologyXuzhou Medical University, Xuzhou, China
| | - Cheng-Hua Zhou
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Sun H, Zhang L, Shen D. Urantide protects CCl 4-induced liver injury via inhibiting GPR14 signal in mice. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1253436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Haiying Sun
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| | - Lin Zhang
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| | - Dan Shen
- Department of Infectious Disease, Qingdao Hospital, Qingdao, China
| |
Collapse
|
23
|
Castel H, Desrues L, Joubert JE, Tonon MC, Prézeau L, Chabbert M, Morin F, Gandolfo P. The G Protein-Coupled Receptor UT of the Neuropeptide Urotensin II Displays Structural and Functional Chemokine Features. Front Endocrinol (Lausanne) 2017; 8:76. [PMID: 28487672 PMCID: PMC5403833 DOI: 10.3389/fendo.2017.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/28/2017] [Indexed: 12/16/2022] Open
Abstract
The urotensinergic system was previously considered as being linked to numerous physiopathological states, including atherosclerosis, heart failure, hypertension, pre-eclampsia, diabetes, renal disease, as well as brain vascular lesions. Thus, it turns out that the actions of the urotensin II (UII)/G protein-coupled receptor UT system in animal models are currently not predictive enough in regard to their effects in human clinical trials and that UII analogs, established to target UT, were not as beneficial as expected in pathological situations. Thus, many questions remain regarding the overall signaling profiles of UT leading to complex involvement in cardiovascular and inflammatory responses as well as cancer. We address the potential UT chemotactic structural and functional definition under an evolutionary angle, by the existence of a common conserved structural feature among chemokine receptorsopioïdergic receptors and UT, i.e., a specific proline position in the transmembrane domain-2 TM2 (P2.58) likely responsible for a kink helical structure that would play a key role in chemokine functions. Even if the last decade was devoted to the elucidation of the cardiovascular control by the urotensinergic system, we also attempt here to discuss the role of UII on inflammation and migration, likely providing a peptide chemokine status for UII. Indeed, our recent work established that activation of UT by a gradient concentration of UII recruits Gαi/o and Gα13 couplings in a spatiotemporal way, controlling key signaling events leading to chemotaxis. We think that this new vision of the urotensinergic system should help considering UT as a chemotactic therapeutic target in pathological situations involving cell chemoattraction.
Collapse
Affiliation(s)
- Hélène Castel
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
- *Correspondence: Hélène Castel,
| | - Laurence Desrues
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jane-Eileen Joubert
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Marie-Christine Tonon
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Laurent Prézeau
- CNRS UMR 5203, INSERM U661, Institute of Functional Genomic (IGF), University of Montpellier 1 and 2, Montpellier, France
| | - Marie Chabbert
- UMR CNRS 6214, INSERM 1083, Faculté de Médecine 3, Angers, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, INSERM, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
24
|
He Z, Li X, Chen H, He K, Liu Y, Gong J, Gong J. Nobiletin attenuates lipopolysaccharide/D-galactosamine-induced liver injury in mice by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF-κB-mediated cytokine production. Mol Med Rep 2016; 14:5595-5600. [DOI: 10.3892/mmr.2016.5943] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/30/2016] [Indexed: 11/06/2022] Open
|
25
|
Yang Y, Zhang J, Chen X, Wu T, Xu X, Cao G, Li H, Li Y. UII/GPR14 is involved in NF-κB-mediated colonic inflammation in vivo and in vitro. Oncol Rep 2016; 36:2800-2806. [PMID: 27600191 DOI: 10.3892/or.2016.5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
The present study was conducted to investigate the molecular mechanism of urotensin II (UII) and its receptor, G protein‑coupled receptor 14 (GPR14), in colonic inflammation. Urantide, a special antagonist of GPR14, and GPR14-siRNA were used to inhibit GPR14 signaling in dextran sulfate sodium (DSS)‑induced inflammation in mice and Caco-2 cells. The results showed that urantide alleviated rectal bleeding, histological injury and production of interleukin (IL)-17 and tumor necrosis factor‑α (TNF‑α) caused by DSS in mice. GPR14-siRNA transfection subsequent with GPR14 inhibition reduced DSS-induced interferon-γ (IFN)-γ production in Caco-2 cells. Meanwhile, both in vivo and in vitro data demonstrated that inhibition of UII/GPR14 alleviated nuclear factor-κB (NF-κB) activation caused by DSS. In conclusion, UII/GPR14 signaling was involved in the DSS-induced colonic inflammation and its inhibition may serve as a potential therapeutic target, which may be associated with the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi Yang
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jinpei Zhang
- Department of Encephalopathy, Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xi Chen
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tao Wu
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xin Xu
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Gang Cao
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Li
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yiming Li
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
26
|
Liu LM, Tu WJ, Zhu T, Wang XT, Tan ZL, Zhong H, Gao DY, Liang DY. IRF3 is an important molecule in the UII/UT system and mediates immune inflammatory injury in acute liver failure. Oncotarget 2016; 7:49027-49041. [PMID: 27448985 PMCID: PMC5226488 DOI: 10.18632/oncotarget.10717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
The urotensin II/urotensin receptor (UII/UT) system can mediate inflammatory liver injury in acute liver failure (ALF); however; the related mechanism is not clear. In this study, we confirmed that lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced up-regulation of liver interferon regulatory factor 3 (IRF3) in ALF mice, whereas the UT antagonist urantide inhibited the up-regulated liver IRF3. LPS stimulation induced IRF3 transcription and nuclear translocation and promoted the secretion of interleukin-6 (IL-6), interferon (IFN)-β, and IFN-γ in Kupffer cells (KCs); these effects in LPS-stimulated KCs were inhibited by urantide. Knockdown of IRF3 using an adenovirus expressing an IRF3 shRNA inhibited IFN-β transcription and secretion as well as tumor necrosis factor (TNF)-α and IL-1β secretion from LPS-stimulated KCs; additionally, IL-10 transcription and secretion were promoted in response to LPS. However, LPS-stimulated TNF-α and IL-1β mRNA was not affected in the KCs. The IRF3 shRNA also did not have a significant effect on the NF-κB p65 subunit and p38MAPK protein phosphorylation levels in the nuclei of LPS-stimulated KCs. Therefore, IRF3 expression and activation depended on the signal transduction of the UII/UT system, and played important roles in UII/UT-mediated immune inflammatory injury in the liver but did not affect NF-κB and p38 MAPK activity.
Collapse
Affiliation(s)
- Liang-ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Wen-juan Tu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Tong Zhu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Xiao-ting Wang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Zhi-li Tan
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Huan Zhong
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - De-yong Gao
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| | - Dong-yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People's Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
27
|
Cadirci E, Halici Z, Yayla M, Toktay E, Bayir Y, Karakus E, Topcu A, Buyuk B, Albayrak A. Blocking of urotensin receptors as new target for treatment of carrageenan induced inflammation in rats. Peptides 2016; 82:35-43. [PMID: 27208703 DOI: 10.1016/j.peptides.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/17/2022]
Abstract
This study investigated possible role of U-II and its receptor expression in inflammation by using UTR agonist and antagonist in carrageenan induced acute inflammation. Rats were divided into 5 groups as (1) Healthy control, (2) Carrageenan control, (3) Carrageenan +Indomethacin 20mg/kg, orally, (4) Carrageenan +AC7954 (U-II receptor agonist, intraperitoneally) 30mg/kg and (5) Carrageenan +SB657510 (UTR antagonist, intraperitoneally) 30mg/kg. 1h after drug administration, carrageenan was injected. At the 3rd hour after carrageenan injection, agonist produced no effect while antagonist 63% anti-inflammatory effect respectively. UTR and UT-II expression increased in carrageenan induced paw tissue. Antagonist administration prevented the decrease in an antioxidant system and also capable to decrease TNF-α and IL-6 mRNA expressions. This study showed the role of urotensin II receptors in the physiopathogenesis of acute inflammatory response that underlying many diseases accompanied by inflammation.
Collapse
Affiliation(s)
- Elif Cadirci
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Zekai Halici
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey.
| | - Muhammed Yayla
- Department of Pharmacology, Kafkas University Faculty of Medicine, 36240 Kars, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| | - Yasin Bayir
- Department of Biochemistry, Ataturk University Faculty of Pharmacy, 25240 Erzurum, Turkey
| | - Emre Karakus
- Department of Pharmacology and Toxicology, Ataturk University Faculty of Veterinary Medicine, 25240 Erzurum, Turkey
| | - Atilla Topcu
- Department of Pharmacology, RTE University Faculty of Medicine, 53240 Rize, Turkey
| | - Basak Buyuk
- Department of Histology and Embryology, 19 Mart University, Faculty of Medicine, 25240 Çanakkale, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, 25240 Erzurum, Turkey
| |
Collapse
|
28
|
Albanese I, Daskalopoulou SS, Yu B, You Z, Genest J, Alsheikh-Ali A, Schwertani AG. The Urotensin II System and Carotid Atherosclerosis: A Role in Vascular Calcification. Front Pharmacol 2016; 7:149. [PMID: 27375483 PMCID: PMC4894881 DOI: 10.3389/fphar.2016.00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS The aims of the present study were to determine the expression of urotensin II (UII), urotensin-II related peptide (URP), and their receptor (UT) in stable and unstable carotid atherosclerosis, and determine the effects of UII on human aortic smooth muscle cell (SMCs) calcification. METHODS AND RESULTS We examined UII, URP, and UT protein expression in 88 carotid endarterectomy specimens using immunohistochemistry. Expression of UII, URP, and UT was more evident in unstable compared to stable plaques (P < 0.05). Multivariate Spearman correlation analyses revealed significant positive correlations between UII, URP and UT overall staining and presence of calcification, severity of stenosis and inflammation (P < 0.05). Subjects undergoing carotid endarterectomy had significantly higher plasma UII levels, as assessed by ELISA, when compared with normolipidemic healthy control subjects (P < 0.05). Incubation of human aortic SMCs cultured in phosphate media with varying concentrations of UII resulted in a significant increase in calcium deposition and alkaline phosphatase activity. UII also significantly increased β-catenin translocation and expression of ALPL, BMP2, ON, and SOX9 (P < 0.05). Incubation of cells with phosphate medium alone increased the expression of the pre-UT and mature UT (P < 0.01), and addition of UII had a synergistic effect on pre-UT protein expression (P < 0.001) compared to phosphate medium alone. CONCLUSIONS Upregulation of UII, URP, and UT in unstable carotid endarterectomy plaques and plasma, and the stimulatory effect of UII on vascular smooth muscle cell calcification suggest that the UII system may play a role in the pathogenesis of vascular calcification and stability of atherosclerosis.
Collapse
Affiliation(s)
| | | | - Bin Yu
- Cardiology, McGill University Health Center Montreal, QC, Canada
| | - Zhipeng You
- Cardiology, McGill University Health Center Montreal, QC, Canada
| | - Jacques Genest
- Cardiology, McGill University Health Center Montreal, QC, Canada
| | - Alawi Alsheikh-Ali
- Cardiology, College of Medicine, Mohammed Bin Rashid University Dubai, UAE
| | | |
Collapse
|
29
|
Palabiyik SS, Karakus E, Akpinar E, Halici Z, Bayir Y, Yayla M, Kose D. The Role of Urotensin Receptors in the Paracetamol-Induced Hepatotoxicity Model in Mice: Ameliorative Potential of Urotensin II Antagonist. Basic Clin Pharmacol Toxicol 2015; 118:150-9. [PMID: 26176337 DOI: 10.1111/bcpt.12447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Saziye S. Palabiyik
- Department of Pharmaceutical Toxicology; Faculty of Pharmacy; Ataturk University; Erzurum Turkey
| | - Emre Karakus
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Ataturk University; Erzurum Turkey
| | - Erol Akpinar
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Zekai Halici
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Yasin Bayir
- Department of Biochemistry; Faculty of Pharmacy; Ataturk University; Erzurum Turkey
| | - Muhammed Yayla
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| | - Duygu Kose
- Department of Pharmacology; Faculty of Medicine; Ataturk University; Erzurum Turkey
| |
Collapse
|
30
|
Gong X, Duan R, Ao JE, Ai Q, Ge P, Lin L, Zhang L. Metformin suppresses intrahepatic coagulation activation in mice with lipopolysaccharide/D‑galactosamine‑induced fulminant hepatitis. Mol Med Rep 2015; 12:6384-90. [PMID: 26260849 DOI: 10.3892/mmr.2015.4206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
Metformin is a widely‑used antidiabetic drug with hypoglycemic activity and previously described anti‑inflammatory properties. Previous studies have demonstrated that metformin attenuates endotoxic hepatitis, however the mechanisms remain unclear. Inflammation and coagulation are closely associated pathological processes, therefore the potential effects of metformin on key steps in activation of the coagulation system were further investigated in endotoxic hepatitis induced by lipopolysaccharide/D‑galactosamine (LPS/D‑Gal). The current study demonstrated that treatment with metformin significantly suppressed the upregulation of tissue factor and plasminogen activator inhibitor‑1 in LPS/D‑Gal‑exposed mice. In addition, a reduction in the expression of interleukin 6 and inhibition of nuclear translocation of nuclear factor‑κB were observed. These data indicate that the LPS/D‑Gal‑induced elevation of the stable protein level of hypoxia inducible factor 1α, the mRNA level of erythropoietin, vascular endothelial growth factor and matrix metalloproteinase‑3, and the hepatic level of lactic acid were also suppressed by metformin. The current study indicates that the suppressive effects of metformin on inflammation‑induced coagulation may be an additional mechanism underlying the hepatoprotective effects of metformin in mice with LPS/D‑Gal‑induced fulminant hepatitis.
Collapse
Affiliation(s)
- Xianqiong Gong
- Department of Liver Diseases, Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian 361000, P.R. China
| | - Rui Duan
- Department of General Surgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Jin-E Ao
- Department of Pathology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
31
|
Tomiyama S, Nakamachi T, Uchiyama M, Matsuda K, Konno N. Urotensin II upregulates migration and cytokine gene expression in leukocytes of the African clawed frog, Xenopus laevis. Gen Comp Endocrinol 2015; 216:54-63. [PMID: 25907658 DOI: 10.1016/j.ygcen.2015.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/24/2015] [Accepted: 04/12/2015] [Indexed: 01/05/2023]
Abstract
Urotensin II (UII) exhibits diverse physiological actions including vasoconstriction, locomotor activity, osmoregulation, and immune response via the UII receptor (UTR) in mammals. However, in amphibians the function of the UII-UTR system remains unknown. In the present study, we investigated the potential immune function of UII using leukocytes isolated from the African clawed frog, Xenopus laevis. Stimulation of male frogs with lipopolysaccharide increased mRNA expression of UII and UTR in leukocytes, suggesting that inflammatory stimuli induce activation of the UII-UTR system. Migration assays showed that both UII and UII-related peptide enhanced migration of leukocytes in a dose-dependent manner, and that UII effect was inhibited by the UTR antagonist urantide. Inhibition of Rho kinase with Y-27632 abolished UII-induced migration, suggesting that it depends on the activation of RhoA/Rho kinase. Treatment of isolated leukocytes with UII increased the expression of several cytokine genes including tumor necrosis factor-α, interleukin-1β, and macrophage migration inhibitory factor, and the effects were abolished by urantide. These results suggest that in amphibian leukocytes the UII-UTR system is involved in the activation of leukocyte migration and cytokine gene expression in response to inflammatory stimuli.
Collapse
Affiliation(s)
- Shiori Tomiyama
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Tomoya Nakamachi
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Minoru Uchiyama
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan.
| |
Collapse
|
32
|
Liu LM, Liang DY, Ye CG, Tu WJ, Zhu T. The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-κB pathways in LPS-stimulated Kupffer cells. PLoS One 2015; 10:e0121383. [PMID: 25803040 PMCID: PMC4372515 DOI: 10.1371/journal.pone.0121383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/31/2015] [Indexed: 01/27/2023] Open
Abstract
The urotensin II (UII)/UII receptor (UT) system is closely related to immune inflammation. In acute liver failure (ALF), the UII/UT system can promote the production and release of proinflammatory cytokines, inducing an inflammatory injury response in liver tissue. However, the mechanism by which the hepatic UII/UT system promotes proinflammatory cytokine production and release is not clear. To solve this problem, we used primary Kupffer cells (KCs) as the model system in the current study. The results showed that after lipopolysaccharide (LPS) stimulation, KCs showed significantly increased expression and release of UII/UT and proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β). Pretreatment with urantide, which is a UT receptor antagonist, significantly inhibited the LPS-stimulated expression and release of UII/UT, TNF-α, and IL-1β by KCs. In addition, LPS stimulation induced nuclear p38 mitogen-activated protein kinase (MAPK) protein phosphorylation and expression of the nuclear nuclear factor κB (NF-κB) p65 subunit in KCs and enhanced the binding activity of NF-κB to DNA molecules, whereas urantide pretreatment significantly inhibited the LPS-stimulated nuclear expression and activity of these molecules in KCs. Therefore, our conclusion is that the UII/UT system mediates LPS-stimulated production and release of proinflammatory cytokine by KCs, and this mediating effect at least partially relies on the inflammatory signaling pathway molecules p38 MAPK and NF-κB.
Collapse
Affiliation(s)
- Liang Ming Liu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
- * E-mail:
| | - Dong Yu Liang
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Chang Gen Ye
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Wen Juan Tu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| | - Tong Zhu
- Department of Hepatology, Songjiang Hospital Affiliated to the First People’s Hospital Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
33
|
Liu LM, Zhao L, Liang DY, Yu FP, Ye CG, Tu WJ, Zhu T. Effects of urotensin-II on cytokines in early acute liver failure in mice. World J Gastroenterol 2015; 21:3239-3244. [PMID: 25805930 PMCID: PMC4363753 DOI: 10.3748/wjg.v21.i11.3239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/23/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate urotensin-II (UII) and its effects on tumor necrosis factor (TNF)-α and interleukin (IL)-1β in early acute liver failure (ALF).
METHODS: We investigated the time-dependent alteration in UII levels and its effects on TNF-α and IL-1β in liver and blood in the early stage of lipopolysaccharide/D-galactosamine-induced ALF.
RESULTS: After lipopolysaccharide/D-galactosamine challenge, UII rose very rapidly and reached a maximal level 0.5 h, and the level remained significantly elevated after 2 h (P < 0.05). Six hours after challenge, UII began to degrade, but remained higher than at 0 h (P < 0.05). Pretreatment with urantide, an inhibitor of the UII receptor, suppressed the degree of UII increase in liver and blood at 6 h after challenge (P < 0.05 vs paired controls). In addition, liver and blood TNF-α increased from 1 to 6 h, and reached a peak at 1 and 2 h, respectively; however, IL-1β did not rise until 6 h after challenge. Urantide pretreatment inhibited the degree of TNF-α and IL-1β increase following downregulation of UII post-challenge (all P < 0.05).
CONCLUSION: UII plays a role in the pathogenesis and priming of ALF by triggering an inflammatory cascade and driving the early release of cytokines in mice.
Collapse
|
34
|
Tomar S, Nagarkatti M, Nagarkatti PS. 3,3'-Diindolylmethane attenuates LPS-mediated acute liver failure by regulating miRNAs to target IRAK4 and suppress Toll-like receptor signalling. Br J Pharmacol 2015; 172:2133-47. [PMID: 25521277 DOI: 10.1111/bph.13036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/13/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3'-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF. EXPERIMENTAL APPROACH We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa. KEY RESULTS DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation. CONCLUSIONS AND IMPLICATIONS DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent.
Collapse
Affiliation(s)
- S Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
35
|
Tomar S, Zumbrun EE, Nagarkatti M, Nagarkatti PS. Protective role of cannabinoid receptor 2 activation in galactosamine/lipopolysaccharide-induced acute liver failure through regulation of macrophage polarization and microRNAs. J Pharmacol Exp Ther 2015; 353:369-79. [PMID: 25749929 DOI: 10.1124/jpet.114.220368] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Acute liver failure (ALF) is a potentially life-threatening disorder without any effective treatment strategies. d-Galactosamine (GalN)/lipopolysaccharide (LPS)-induced ALF is a widely used animal model to identify novel hepato-protective agents. In the present study, we investigated the potential of a cannabinoid receptor 2 (CB2) agonist, JWH-133 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran], in the amelioration of GalN/LPS-induced ALF. JWH-133 treatment protected the mice from ALF-associated mortality, mitigated alanine transaminase and proinflammatory cytokines, suppressed histopathological and apoptotic liver damage, and reduced liver infiltration of mononuclear cells (MNCs). Furthermore, JWH-133 pretreatment of M1/M2-polarized macrophages significantly increased the secretion of anti-inflammatory cytokine interleukin-10 (IL-10) in M1 macrophages and potentiated the expression of M2 markers in M2-polarized macrophages. In vivo, JWH-133 treatment also suppressed ALF-triggered expression of M1 markers in liver MNCs, while increasing the expression of M2 markers such as Arg1 and IL-10. microRNA (miR) microarray analysis revealed that JWH-133 treatment altered the expression of only a few miRs in the liver MNCs. Gene ontology analysis of the targets of miRs suggested that Toll-like receptor (TLR) signaling was among the most significantly targeted cellular pathways. Among the altered miRs, miR-145 was found to be the most significantly decreased. This finding correlated with concurrent upregulated expression of its predicted target gene, interleukin-1 receptor-associated kinase 3, a negative regulator of TLR4 signaling. Together, these data are the first to demonstrate that CB2 activation attenuates GalN/LPS-induced ALF by inducing an M1 to M2 shift in macrophages and by regulating the expression of unique miRs that target key molecules involved in the TLR4 pathway.
Collapse
Affiliation(s)
- Sunil Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Elizabeth E Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina (S.T., E.E.Z., M.N., P.S.N.); and Wm. Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, South Carolina (M.N.)
| |
Collapse
|
36
|
Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. Lead Optimization of P5U and Urantide: Discovery of Novel Potent Ligands at the Urotensin-II Receptor. J Med Chem 2014; 57:5965-74. [DOI: 10.1021/jm500218x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Luigia Auriemma
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Ali Munaim Yousif
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| | - Antonio Limatola
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Pietro Campiglia
- Department
of Pharmacy, University of Salerno, I-84084 Fisciano, Salerno Italy
| | | | - Paolo Santicioli
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Stefania Meini
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Carlo A. Maggi
- Department
of Pharmacology, Menarini Ricerche, Via Rismondo 12/A, I-50131, Florence, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico II”, I-80131 Naples, Italy
- CIRPEB:
Centro Interuniversitario di Ricerca sui Peptidi Bioattivi , University of Naples “Federico II”, DFM-Scarl, Institute of Biostructures and Bioimaging-CNR, 80134, Naples, Italy
| |
Collapse
|
37
|
Wang XT, Tu WJ, Liu LM, Liang DY, Yu FP, Zhao L, Ye CG, Yang ZW, Gao DY. Urantide inhibits hepatic IRF3 expression in acute liver failure mice. Shijie Huaren Xiaohua Zazhi 2014; 22:2559-2564. [DOI: 10.11569/wcjd.v22.i18.2559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of urantide, a urotensin Ⅱ (UⅡ) receptor inhibitor, on interferon regulatory factor 3 (IRF3) expression in the liver tissue of mice with acute liver failure (ALF).
METHODS: Male Balb/c mice were randomly divided into four groups (n = 6 for each group): normal control, pre-treatment control, model and pre-treatment model. The pre-treatment mice received urantide (0.6 mg/kg body weight) via a caudal vein injection. At 30 min post-injection, the model (including pre-treatment model) mice were treated with lipopolysaccharide (LPS)/D-galactosamine (D-GalN) to induce ALF via an intraperitoneal injection. Liver tissues were sampled 12 h after LPS/D-GalN injection. IRF3 mRNA expression was detected by RT-PCR and real-time polymerase chain reaction (PCR), and protein expression was detected by Western blot assay.
RESULTS: The relative levels of IRF3 mRNA were significantly higher in model mice than in control and pretreatment control mice (P < 0.001 for all). Compared with the model group, pretreatment model mice had significant lower levels of IRF3 mRNA (P < 0.001). IRF3 protein levels were also significantly higher in model mice than in control and pretreatment control mice (P < 0.001 for all), while the protein levels were significantly lower in pretreatment model mice than in model mice (P < 0.05).
CONCLUSION: Urantide can inhibit the up-regulation of IRF3 mRNA and protein expression in the liver tissue of mice with LPS/D-GalN-induced ALF.
Collapse
|
38
|
Jing Y, Ai Q, Lin L, Dai J, Jia M, Zhou D, Che Q, Wan J, Jiang R, Zhang L. Protective effects of garcinol in mice with lipopolysaccharide/D-galactosamine-induced apoptotic liver injury. Int Immunopharmacol 2014; 19:373-80. [PMID: 24560905 DOI: 10.1016/j.intimp.2014.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/25/2014] [Accepted: 02/09/2014] [Indexed: 12/19/2022]
Abstract
Garcinol is a polyisoprenylated benzophenone derivative of Garcinia indica. Recent researches have revealed the antioxidant, anticancer and anti-inflammatory properties of garcinol. In the present study, the pharmacological effects of garcinol in lipopolysaccharide (LPS)-induced hepatic injury in D-galactosamine (D-Gal)-sensitized mice were investigated. We found that treatment with garcinol significantly decreased serum ALT and AST levels in LPS/D-Gal-exposed mice. These were accomplished with improved histological alterations in liver sections and reduced malondialdehyde (MDA) content in liver homogenates. Garcinol significantly reduced the acetylation level of NF-κB, but it had no obvious effects on the elevation of TNF-α or IL-6 in plasma or liver tissue. Garcinol significantly attenuated LPS/D-Gal-induced hepatic apoptosis as evidenced by reduced number of TUNEL-positive cells in liver sections. Our experiments also showed that garcinol markedly suppressed the cleavage of caspase-3 and significantly decreased the activities of caspase-3, -8, and -9 in liver tissues. In addition, garcinol obviously reduced the induction of Bax but did not alter the level of Bcl-2. These results indicated that garcinol might provide protective benefits in LPS/D-Gal-induced liver injury through suppressing apoptosis.
Collapse
Affiliation(s)
- Yuping Jing
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qing Ai
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengying Jia
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dan Zhou
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Qian Che
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Rong Jiang
- Laboratory of Stem cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|