1
|
Perumal N, Yurugi H, Dahm K, Rajalingam K, Grus FH, Pfeiffer N, Manicam C. Proteome landscape and interactome of voltage-gated potassium channel 1.6 (Kv1.6) of the murine ophthalmic artery and neuroretina. Int J Biol Macromol 2024; 257:128464. [PMID: 38043654 DOI: 10.1016/j.ijbiomac.2023.128464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
The voltage-gated potassium channel 1.6 (Kv1.6) plays a vital role in ocular neurovascular beds and exerts its modulatory functions via interaction with other proteins. However, the interactome and their potential roles remain unknown. Here, the global proteome landscape of the ophthalmic artery (OA) and neuroretina was mapped, followed by the determination of Kv1.6 interactome and validation of its functionality and cellular localization. Microfluorimetric analysis of intracellular [K+] and Western blot validated the native functionality and cellular expression of the recombinant Kv1.6 channel protein. A total of 54, 9 and 28 Kv1.6-interacting proteins were identified in the mouse OA and, retina of mouse and rat, respectively. The Kv1.6-protein partners in the OA, namely actin cytoplasmic 2, alpha-2-macroglobulin and apolipoprotein A-I, were implicated in the maintenance of blood vessel integrity by regulating integrin-mediated adhesion to extracellular matrix and Ca2+ flux. Many retinal protein interactors, particularly the ADP/ATP translocase 2 and cytoskeleton protein tubulin, were involved in endoplasmic reticulum stress response and cell viability. Three common interactors were found in all samples comprising heat shock cognate 71 kDa protein, Ig heavy constant gamma 1 and Kv1.6 channel. This foremost in-depth investigation enriched and identified the elusive Kv1.6 channel and, elucidated its complex interactome.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hajime Yurugi
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Dahm
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Centre of the Johannes Gutenberg University Mainz, Germany
| | - Franz H Grus
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Caroline Manicam
- Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Casciano F, Zauli E, Busin M, Caruso L, AlMesfer S, Al-Swailem S, Zauli G, Yu AC. State of the Art of Pharmacological Activators of p53 in Ocular Malignancies. Cancers (Basel) 2023; 15:3593. [PMID: 37509256 PMCID: PMC10377487 DOI: 10.3390/cancers15143593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The pivotal role of p53 in the regulation of a vast array of cellular functions has been the subject of extensive research. The biological activity of p53 is not strictly limited to cell cycle arrest but also includes the regulation of homeostasis, DNA repair, apoptosis, and senescence. Thus, mutations in the p53 gene with loss of function represent one of the major mechanisms for cancer development. As expected, due to its key role, p53 is expressed throughout the human body including the eye. Specifically, altered p53 signaling pathways have been implicated in the development of conjunctival and corneal tumors, retinoblastoma, uveal melanoma, and intraocular melanoma. As non-selective cancer chemotherapies as well as ionizing radiation can be associated with either poor efficacy or dose-limiting toxicities in the eye, reconstitution of the p53 signaling pathway currently represents an attractive target for cancer therapy. The present review discusses the role of p53 in the pathogenesis of these ocular tumors and outlines the various pharmacological activators of p53 that are currently under investigation for the treatment of ocular malignancies.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Busin
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Saleh AlMesfer
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Samar Al-Swailem
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angeli Christy Yu
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Ophthalmology, Ospedali Privati Forlì "Villa Igea", 47122 Forlì, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), 47122 Forlì, Italy
| |
Collapse
|
3
|
Pinazo-Durán MD, Shoaie-Nia K, Sanz-González SM, Raga-Cervera J, García-Medina JJ, López-Gálvez MI, Galarreta-Mira D, Duarte L, Campos-Borges C, Zanón-Moreno V. Identification of new candidate genes for retinopathy in type 2 diabetics. Valencia Study on Diabetic Retinopathy (VSDR). Report number 3. ACTA ACUST UNITED AC 2018; 93:211-219. [PMID: 29398232 DOI: 10.1016/j.oftal.2017.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify genes involved in the pathogenic mechanisms of non-proliferative diabetic retinopathy (NPDR), among which include oxidative stress, extracellular matrix changes, and/or apoptosis, in order to evaluate the risk of developing this retinal disease in a type2 diabetic (DM2) population. MATERIAL AND METHODS A case-control study was carried out on 81 participants from the Valencia Study on Diabetic Retinopathy (VSDR) of both genders, with ages 25-85years. They were classified into: (i)DM2 group (n=49), with DR (+DR; n=14) and without DR (-DR; n=35), and (ii)control group (GC; n=32). The protocols included a personal interview, standardised ophthalmological examination, and blood collection (to analyse the DNA for determining the gene expression (TP53, MMP9, and SLC23A2) in the study groups. Statistical analyses were performed using the SPSS v22.0 program. RESULTS The TP53 and MMP9 genes showed a higher expression in the DM2 group compared to the GC, although the difference was only significant for the MMP9 gene (TP53: 10.40±1.20 vs. 8.23±1.36, P=.084; MMP9: 1.45±0.16 vs. 0.95±0.16, P=.036), and the SLC23A2 gene showed a significant lower expression in the DM2 vs CG (5.58±0.64 vs. 11.66±1.90, P=.026). When sub-dividing the DM2 group according to the presence of retinopathy, the expression of the TP53, MMP9 and SLC23A2 genes showed significant differences between the DM2-RD, DM2+RD and GC groups (TP53: 9.95±1.47 vs. 11.52±2.05 vs. 8.23±1.36, P=.038; MMP9: 1.47±0.20 vs. 1.41±0.27 vs. 0.95±0.16, P=.021; SLC23A2: 5.61±0.77 vs. 5.51±1.21 vs. 11.66±1.90, P=.018). CONCLUSIONS Genes involved in extracellular matrix integrity (MMP9) and/or apoptosis (TP53), could be considered potential markers of susceptibility to the development/progression of NPDR. Interestingly, the SLC232A2 gene (ascorbic acid transporter) can be considered a protector of the risk of the development/progression of the retinopathy.
Collapse
Affiliation(s)
- M D Pinazo-Durán
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España.
| | - K Shoaie-Nia
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - S M Sanz-González
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - J Raga-Cervera
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - J J García-Medina
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Oftalmología, Hospital Universitario Morales Meseguer, y Departamento de Oftalmología, Universidad de Murcia, Murcia, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - M I López-Gálvez
- Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Oftalmología, Hospital Clínico Universitario, Valladolid, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - D Galarreta-Mira
- Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Oftalmología, Hospital Clínico Universitario, Valladolid, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - L Duarte
- Departamento de Oftalmología, Hospital Entre Douro e Vouga, Porto, Portugal; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - C Campos-Borges
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Departamento de Oftalmología, Hospital Privado da Boa Nova, Porto, Portugal; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | - V Zanón-Moreno
- Unidad de Investigación Oftalmológica «Santiago Grisolía»/FISABIO y Unidad de Oftalmobiología Celular y Molecular, Departamento de Cirugía, Universidad de Valencia, Valencia, España; Red Temática de Investigación Cooperativa de Patología ocular OFTARED, Instituto de Salud Carlos III, Madrid, España; Departamento de Medicina Preventiva y Salud Pública, Universidad de Valencia, Valencia, España
| | | |
Collapse
|
4
|
Brumm AJ, Nunez S, Doroudchi MM, Kawaguchi R, Duan J, Pellegrini M, Lam L, Carmichael ST, Deb A, Hinman JD. Astrocytes Can Adopt Endothelial Cell Fates in a p53-Dependent Manner. Mol Neurobiol 2016; 54:4584-4596. [PMID: 27389775 DOI: 10.1007/s12035-016-9974-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/09/2016] [Indexed: 01/10/2023]
Abstract
Astrocytes respond to a variety of CNS injuries by cellular enlargement, process outgrowth, and upregulation of extracellular matrix proteins that function to prevent expansion of the injured region. This astrocytic response, though critical to the acute injury response, results in the formation of a glial scar that inhibits neural repair. Scar-forming cells (fibroblasts) in the heart can undergo mesenchymal-endothelial transition into endothelial cell fates following cardiac injury in a process dependent on p53 that can be modulated to augment cardiac repair. Here, we sought to determine whether astrocytes, as the primary scar-forming cell of the CNS, are able to undergo a similar cellular phenotypic transition and adopt endothelial cell fates. Serum deprivation of differentiated astrocytes resulted in a change in cellular morphology and upregulation of endothelial cell marker genes. In a tube formation assay, serum-deprived astrocytes showed a substantial increase in vessel-like morphology that was comparable to human umbilical vein endothelial cells and dependent on p53. RNA sequencing of serum-deprived astrocytes demonstrated an expression profile that mimicked an endothelial rather than astrocyte transcriptome and identified p53 and angiogenic pathways as specifically upregulated. Inhibition of p53 with genetic or pharmacologic strategies inhibited astrocyte-endothelial transition. Astrocyte-endothelial cell transition could also be modulated by miR-194, a microRNA downstream of p53 that affects expression of genes regulating angiogenesis. Together, these studies demonstrate that differentiated astrocytes retain a stimulus-dependent mechanism for cellular transition into an endothelial phenotype that may modulate formation of the glial scar and promote injury-induced angiogenesis.
Collapse
Affiliation(s)
- Andrew J Brumm
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Rm 415, Los Angeles, CA, 90095, USA
| | - Stefanie Nunez
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Rm 415, Los Angeles, CA, 90095, USA
| | - Mehdi M Doroudchi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Rm 415, Los Angeles, CA, 90095, USA
| | - Riki Kawaguchi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Jinhzu Duan
- Division of Cardiology, Department of Medicine, Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Larry Lam
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Rm 415, Los Angeles, CA, 90095, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Dr. South, Rm 415, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
6
|
Pinazo-Durán MD, Zanón-Moreno V, Gallego-Pinazo R, García-Medina JJ. Oxidative stress and mitochondrial failure in the pathogenesis of glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2015; 220:127-53. [PMID: 26497788 DOI: 10.1016/bs.pbr.2015.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on oxidative stress and mitochondrial failure for understanding mechanisms of optic nerve damage in primary open-angle glaucoma. The chapter shows scientific evidence for the role of mitochondrial disbalance and reactive oxygen species in glaucoma neurodegeneration. Mitochondria regulate important cellular functions including reactive oxygen species generation and apoptosis. Mitochondrial alterations result from a wide variety of damaging sources. Reactive oxygen species formed by the mitochondria can act as signaling molecules, inducing lipid peroxidation and/or excitotoxicity with the result of cell lesion and death. Antioxidants may help to counteract oxidative stress and to promote neuroprotection. We provide information that may lead to a new way for diagnosing and treating glaucoma patients.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.
| | - Vicente Zanón-Moreno
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Surgery/Ophthalmology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Roberto Gallego-Pinazo
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University and Polytechnic Hospital la Fe, Valencia, Spain
| | - José J García-Medina
- Ophthalmic Research Unit "Santiago Grisolía", University Hospital Dr. Peset, Valencia, Spain; Department of Ophthalmology, University Hospital Reina Sofia, Murcia, Spain; Department of Ophthalmology and Optometry, University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 538] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
8
|
Huang W, Lv B, Zeng H, Shi D, Liu Y, Chen F, Li F, Liu X, Zhu R, Yu L, Jiang X. Paracrine Factors Secreted by MSCs Promote Astrocyte Survival Associated With GFAP Downregulation After Ischemic Stroke via p38 MAPK and JNK. J Cell Physiol 2015; 230:2461-75. [DOI: 10.1002/jcp.24981] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Weiyi Huang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Bingke Lv
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Huijun Zeng
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Dandan Shi
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Yi Liu
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Fanfan Chen
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Feng Li
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| | - Xinghui Liu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Rong Zhu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Lei Yu
- Department of Anatomy; Key Laboratory of Construction and Detection of Guangdong Province; Southern Medical University; Guangzhou China
| | - Xiaodan Jiang
- The National Key Clinic Specialty; The Neurosurgery Institute of Guangdong Province; Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration; Department of Neurosurgery, Zhujiang Hospital; Southern Medical University; Guangzhou China
| |
Collapse
|
9
|
Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. Emerging issues in radiogenic cataracts and cardiovascular disease. JOURNAL OF RADIATION RESEARCH 2014; 55:831-46. [PMID: 24824673 PMCID: PMC4202294 DOI: 10.1093/jrr/rru036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 05/26/2023]
Abstract
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Noriko Fujii
- Kyoto University Research Reactor Institute (KURRI), 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-754 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki 300-0394, Japan
| |
Collapse
|
10
|
Gupta A, Mohanty P, Bhatnagar S. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res 2014; 35:149-64. [PMID: 25055025 DOI: 10.3109/10799893.2014.942462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a life-threatening disease and a major cause of mortalities worldwide. While many of the atherosclerotic sequelae are reflected as microvascular effects in the eye, the molecular mechanisms of their development is not yet known. In this study, we employed a systems biology approach to unveil the most significant events and key molecular mediators of ophthalmic sequelae caused by atherosclerosis. Literature mining was used to identify the proteins involved in both atherosclerosis and ophthalmic diseases. A protein-protein interaction (PPI) network was prepared using the literature-mined seed nodes. Network topological analysis was carried out using Cytoscape, while network nodes were annotated using database for annotation, visualization and integrated discovery in order to identify the most enriched pathways and processes. Network analysis revealed that mitogen-activated protein kinase 1 (MAPK1) and protein kinase C occur with highest betweenness centrality, degree and closeness centrality, thus reflecting their functional importance to the network. Our analysis shows that atherosclerosis-associated ophthalmic complications are caused by the convergence of neurotrophin signaling pathways, multiple immune response pathways and focal adhesion pathway on the MAPK signaling pathway. The PPI network shares features with vasoregression, a process underlying multiple vascular eye diseases. Our study presents a first clear and composite picture of the components and crosstalk of the main pathways of atherosclerosis-induced ocular diseases. The hub bottleneck nodes highlight the presence of molecules important for mediating the ophthalmic complications of atherosclerosis and contain five established drug targets for future therapeutic modulation efforts.
Collapse
Affiliation(s)
- Akanksha Gupta
- Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi , India
| | | | | |
Collapse
|