1
|
Zhang Y, Qian J, Jiang M, Yang S, Zhou L, Zhang Q, Lin L, Yang Y. LTe2 induces cell apoptosis in multiple myeloma by suppressing AKT phosphorylation at Thr308 and Ser473. Front Oncol 2023; 13:1269670. [PMID: 37781194 PMCID: PMC10539572 DOI: 10.3389/fonc.2023.1269670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous hematological malignancy originating from B lymphocytes, with a high recurrence rate primarily due to drug resistance. 2-((1H-indol-3-yl)methyl)-3-((3-((1H-indol-3-yl)methyl)-1H-indol-2-yl)methyl)-1H-indole (LTe2), a tetrameric indole oligomer, possesses a wide range of anticancer activities through various mechanisms. Here, we aim to explore the anti-tumor efficiency and potential downstream targets of LTe2 in MM. Its bioactivity was assessed by employing MTT assays, flow cytometry, and the 5TMM3VT mouse model. Additionally, transcriptomic RNA-seq analysis and molecular dynamics (MD) experiments were conducted to elucidate the mechanism underlying LTe2 induced MM cell apoptosis. The results demonstrated that LTe2 significantly inhibited MM cell proliferation both in vitro and in vivo, and revealed that LTe2 exerts its effect by inhibiting the phosphorylation of AKT at the Thr308 and Ser473 sites. In summary, our findings highlight the potential of LTe2 as a novel candidate drug for MM treatment and provided a solid foundation for future clinical trials involving LTe2.
Collapse
Affiliation(s)
- Yuanjiao Zhang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiacheng Qian
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingmei Jiang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Yang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianxin Zhou
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Zhang
- Department of Gynecology, Jiangsu Province Hospital Affiliated Hospital of Nanjing Unviersity of Chinese Medicina, Nanjing, China
| | - Liping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine and School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Robinson AE, Binek A, Ramani K, Sundararaman N, Barbier-Torres L, Murray B, Venkatraman V, Kreimer S, Ardle AM, Noureddin M, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Millet O, Mato JM, Lu SC, Van Eyk JE. Hyperphosphorylation of hepatic proteome characterizes nonalcoholic fatty liver disease in S-adenosylmethionine deficiency. iScience 2023; 26:105987. [PMID: 36756374 PMCID: PMC9900401 DOI: 10.1016/j.isci.2023.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. Mat1a -/- mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH Mat1a -/- mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD). Mitochondrial and peroxisomal lipid metabolism proteins were altered in pre-disease mice and persisted in NASH Mat1a -/- mice, which exhibited more progressive alterations in cytoplasmic ribosomes, ER, and nuclear proteins. A common mechanism found in both pre-disease and NASH livers was a hyperphosphorylation signature consistent with casein kinase 2α (CK2α) and AKT1 activation, which was normalized by SAMe administration. This was mimicked in human NAFLD with a metabolomic signature (M-subtype) resembling Mat1a -/- mice. In conclusion, we have identified a common proteome/phosphoproteome signature between Mat1a -/- mice and human NAFLD M-subtype that may have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Aaron E. Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Angela Mc Ardle
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez de Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
- Corresponding author
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
3
|
Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022; 14:5840. [PMID: 36497322 PMCID: PMC9737300 DOI: 10.3390/cancers14235840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sialylation is an enzymatic process that covalently attaches sialic acids to glycoproteins and glycolipids and terminates them by creating sialic acid-containing glycans (sialoglycans). Sialoglycans, usually located in the outmost layers of cells, play crucial biological roles, notably in tumor transformation, growth, metastasis, and immune evasion. Thus, a deeper comprehension of sialylation in cancer will help to facilitate the development of innovative cancer therapies. Cancer sialylation-related articles have consistently increased over the last four years. The primary subjects of these studies are sialylation, cancer, immunotherapy, and metastasis. Tumor cells activate endothelial cells and metastasize to distant organs in part by the interactions of abnormally sialylated integrins with selectins. Furthermore, cancer sialylation masks tumor antigenic epitopes and induces an immunosuppressive environment, allowing cancer cells to escape immune monitoring. Cytotoxic T lymphocytes develop different recognition epitopes for glycosylated and nonglycosylated peptides. Therefore, targeting tumor-derived sialoglycans is a promising approach to cancer treatments for limiting the dissemination of tumor cells, revealing immunogenic tumor antigens, and boosting anti-cancer immunity. Exploring the exact tumor sialoglycans may facilitate the identification of new glycan targets, paving the way for the development of customized cancer treatments.
Collapse
Affiliation(s)
- Jianmei Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu 610041, China
| | - Guonan Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
4
|
Minegishi Y, Kiyotani K, Nemoto K, Inoue Y, Haga Y, Fujii R, Saichi N, Nagayama S, Ueda K. Differential ion mobility mass spectrometry in immunopeptidomics identifies neoantigens carrying colorectal cancer driver mutations. Commun Biol 2022; 5:831. [PMID: 35982173 PMCID: PMC9388627 DOI: 10.1038/s42003-022-03807-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Understanding the properties of human leukocyte antigen (HLA) peptides (immunopeptides) is essential for precision cancer medicine, while the direct identification of immunopeptides from small biopsies of clinical tissues by mass spectrometry (MS) is still confronted with technical challenges. Here, to overcome these hindrances, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is introduced to conduct differential ion mobility (DIM)-MS by seamless gas-phase fractionation optimal for scarce samples. By established DIM-MS for immunopeptidomics analysis, on average, 42.9 mg of normal and tumor colorectal tissues from identical patients (n = 17) were analyzed, and on average 4921 immunopeptides were identified. Among these 44,815 unique immunopeptides, two neoantigens, KRAS-G12V and CPPED1-R228Q, were identified. These neoantigens were confirmed by synthetic peptides through targeted MS in parallel reaction monitoring (PRM) mode. Comparison of the tissue-based personal immunopeptidome revealed tumor-specific processing of immunopeptides. Since the direct identification of neoantigens from tumor tissues suggested that more potential neoantigens have yet to be identified, we screened cell lines with known oncogenic KRAS mutations and identified 2 more neoantigens that carry KRAS-G12V. These results indicated that the established FAIMS-assisted DIM-MS is effective in the identification of immunopeptides and potential recurrent neoantigens directly from scarce samples such as clinical tissues.
Collapse
Affiliation(s)
- Yuriko Minegishi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kensaku Nemoto
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naomi Saichi
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Development of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
5
|
Bateman NW, Tarney CM, Abulez TS, Hood BL, Conrads KA, Zhou M, Soltis AR, Teng PN, Jackson A, Tian C, Dalgard CL, Wilkerson MD, Kessler MD, Goecker Z, Loffredo J, Shriver CD, Hu H, Cote M, Parker GJ, Segars J, Al-Hendy A, Risinger JI, Phippen NT, Casablanca Y, Darcy KM, Maxwell GL, Conrads TP, O'Connor TD. Peptide ancestry informative markers in uterine neoplasms from women of European, African, and Asian ancestry. iScience 2021; 25:103665. [PMID: 35036865 PMCID: PMC8753123 DOI: 10.1016/j.isci.2021.103665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Characterization of ancestry-linked peptide variants in disease-relevant patient tissues represents a foundational step to connect patient ancestry with disease pathogenesis. Nonsynonymous single-nucleotide polymorphisms encoding missense substitutions within tryptic peptides exhibiting high allele frequencies in European, African, and East Asian populations, termed peptide ancestry informative markers (pAIMs), were prioritized from 1000 genomes. In silico analysis identified that as few as 20 pAIMs can determine ancestry proportions similarly to >260K SNPs (R2 = 0.99). Multiplexed proteomic analysis of >100 human endometrial cancer cell lines and uterine leiomyoma tissues combined resulted in the quantitation of 62 pAIMs that correlate with patient race and genotype-confirmed ancestry. Candidates include a D451E substitution in GC vitamin D-binding protein previously associated with altered vitamin D levels in African and European populations. pAIMs will support generalized proteoancestry assessment as well as efforts investigating the impact of ancestry on the human proteome and how this relates to the pathogenesis of uterine neoplasms.
Collapse
Affiliation(s)
- Nicholas W. Bateman
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,Corresponding author 3289 Woodburn Rd, Suite 375, Annandale, VA 22003;
| | - Christopher M. Tarney
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Tamara S. Abulez
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Brian L. Hood
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Kelly A. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Ming Zhou
- Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Anthony R. Soltis
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Pang-Ning Teng
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Amanda Jackson
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Chunqiao Tian
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - Clifton L. Dalgard
- The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA,Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Matthew D. Wilkerson
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA,The American Genome Center; Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA,Department of Anatomy Physiology and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Michael D. Kessler
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zachary Goecker
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jeremy Loffredo
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Craig D. Shriver
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Hai Hu
- The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA 15963, USA
| | | | - Glendon J. Parker
- University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - James Segars
- Johns Hopkins University Medical Center, Baltimore, MD 21218, USA
| | - Ayman Al-Hendy
- The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - John I. Risinger
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI 48824, USA
| | - Neil T. Phippen
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Yovanni Casablanca
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | - Kathleen M. Darcy
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Dr., Suite 100, Bethesda, MD 20817, USA
| | - G. Larry Maxwell
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Thomas P. Conrads
- Gynecologic Cancer Center of Excellence, Department of Gynecologic Surgery and Obstetrics, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,The John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA,Department of Obstetrics and Gynecology, Inova Fairfax Medical Campus, 3300 Gallows Road, Falls Church, VA 22042, USA
| | - Timothy D. O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Program in Personalize and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Marlene and Stewart Greenebaum Comprehensive Cancer, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Luo J, Jiang Y, Wu L, Zhuo D, Zhang S, Jiang X, Sun Y, Huang Y. Long non-coding RNA ABHD11-AS1 promotes colorectal cancer progression and invasion through targeting the integrin subunit alpha 5/focal adhesion kinase/phosphoinositide 3 kinase/Akt signaling pathway. Aging (Albany NY) 2021; 13:20179-20191. [PMID: 34375304 PMCID: PMC8436895 DOI: 10.18632/aging.203342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
Long non-coding (lnc)RNA ABHD11-AS1 participates in the development and progress of various cancers, but its role in colorectal cancer (CRC) remains poorly known. In the present study, public database analysis and quantitative reverse transcription PCR of CRC and normal tissues showed that ABHD11-AS1 was overexpressed in CRC and associated with poor prognosis in CRC patients. Both in vitro and in vivo experiments demonstrated that loss-of-function of ABHD11-AS1 attenuated the proliferation, migration, and invasion of CRC cells and induced their apoptosis. Transcriptome sequencing and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the phosphoinositide 3 kinase (PI3K)/Akt signaling pathway is a potential target of ABHD11-AS1. Additionally, we noted that ABHD11-AS1 deficiency reduced integrin subunit alpha (ITGA)5 expression, and impaired the phosphorylation of P85, focal adhesion kinase (FAK), and Akt1 in CRC cell lines and tumor tissues of nude mice. Furthermore, we observed that ITGA5 overexpression abrogated the effect of ABHD11-AS1 knockdown on the proliferation and invasion abilities of CRC cells. Taken together, our studies suggest that lncRNA ABHD11-AS1 promotes proliferation, migration, and invasion in CRC by activating the ITGA5/Fak/PI3K/Akt signaling pathway, and that the ITGA5/Fak/PI3K/Akt axis is a promising target for CRC therapy.
Collapse
Affiliation(s)
- Jia Luo
- Department of Gastroenterology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Yigui Jiang
- Department of Gastroenterology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Lianhui Wu
- Department of Endoscope Room, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Dexiang Zhuo
- Department of Clinical Laboratory, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Shengjun Zhang
- Department of Gastroenterology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Xiang Jiang
- Department of Gynecology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Yingming Sun
- Department of Medical and Radiation Oncology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| | - Yue Huang
- Department of Gastroenterology, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China.,Department of Endoscope Room, Affiliated Sanming First Hospital of Fujian Medical University, Sanming 365000, Fujian, China
| |
Collapse
|
7
|
Haapalainen AM, Daddali R, Hallman M, Rämet M. Human CPPED1 belongs to calcineurin-like metallophosphoesterase superfamily and dephosphorylates PI3K-AKT pathway component PAK4. J Cell Mol Med 2021; 25:6304-6317. [PMID: 34009729 PMCID: PMC8366450 DOI: 10.1111/jcmm.16607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Protein kinases and phosphatases regulate cellular processes by reversible phosphorylation and dephosphorylation events. CPPED1 is a recently identified serine/threonine protein phosphatase that dephosphorylates AKT1 of the PI3K-AKT signalling pathway. We previously showed that CPPED1 levels are down-regulated in the human placenta during spontaneous term birth. In this study, based on sequence comparisons, we propose that CPPED1 is a member of the class III phosphodiesterase (PDE) subfamily within the calcineurin-like metallophosphoesterase (MPE) superfamily rather than a member of the phosphoprotein phosphatase (PPP) or metal-dependent protein phosphatase (PPM) protein families. We used a human proteome microarray to identify 36 proteins that putatively interact with CPPED1. Of these, GRB2, PAK4 and PIK3R2 are known to regulate the PI3K-AKT pathway. We further confirmed CPPED1 interactions with PAK4 and PIK3R2 by coimmunoprecipitation analyses. We characterized the effect of CPPED1 on phosphorylation of PAK4 and PIK3R2 in vitro by mass spectrometry. CPPED1 dephosphorylated specific serine residues in PAK4, while phosphorylation levels in PIK3R2 remained unchanged. Our findings indicate that CPPED1 may regulate PI3K-AKT pathway activity at multiple levels. Higher CPPED1 levels may inhibit PI3K-AKT pathway maintaining pregnancy. Consequences of decreased CPPED1 expression during labour remain to be elucidated.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
8
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Nishimura T, Végvári Á, Nakamura H, Kato H, Saji H. Mutant Proteomics of Lung Adenocarcinomas Harboring Different EGFR Mutations. Front Oncol 2020; 10:1494. [PMID: 32983988 PMCID: PMC7477350 DOI: 10.3389/fonc.2020.01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor EGFR major driver mutations may affect downstream molecular networks and pathways, which would influence treatment outcomes of non-small cell lung cancer (NSCLC). This study aimed to unveil profiles of mutant proteins expressed in lung adenocarcinomas of 36 patients harboring representative driver EGFR mutations (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Surprisingly, the orthogonal partial least squares discriminant analysis performed for identified mutant proteins demonstrated the profound differences in distance among the different EGFR mutation groups, suggesting that cancer cells harboring L858R or Ex19del emerge from cellular origins different from L858R/Ex19del-negative cells. Weighted gene coexpression network analysis, together with over-representative analysis, identified 18 coexpressed modules and their eigen proteins. Pathways enriched differentially for both the L858R and Ex19del mutations included carboxylic acid metabolic process, cell cycle, developmental biology, cellular responses to stress, mitotic prophase, cell proliferation, growth, epithelial to mesenchymal transition (EMT), and immune system. The IPA causal network analysis identified the highly activated networks of PARPBP, HOXA1, and APH1 under the L858R mutation, whereas those of ASGR1, APEX1, BUB1, and MAPK10 were highly activated under the Ex19del mutation. Interestingly, the downregulated causal network of osimertinib intervention showed the highest significance in overlap p-value among most causal networks predicted under the L858R mutation. We also identified the causal network of MAPK interacting serine/threonine kinase 1/2 (MNK1/2) highly activated differentially under the L858R mutation. Tumor-suppressor AMOT, a component of the Hippo pathways, was highly inhibited commonly under both L858R and Ex19del mutations. Our results could identify disease-related protein molecular networks from the landscape of single amino acid variants. Our findings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Toshihide Nishimura
- Department of Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Japan
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Haruhiko Nakamura
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Harubumi Kato
- Division of Thoracic and Thyroid Surgery, Tokyo Medical University, Tokyo, Japan
- Research Institute of Health and Welfare Sciences, Graduate School, International University of Health and Welfare, Tokyo, Japan
| | - Hisashi Saji
- Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
10
|
CPPED1-targeting microRNA-371a-5p expression in human placenta associates with spontaneous delivery. PLoS One 2020; 15:e0234403. [PMID: 32520951 PMCID: PMC7286509 DOI: 10.1371/journal.pone.0234403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression, and their expression is associated with many physiological conditions. Here, we investigated potential associations between expression levels of miRNAs in human placenta and the onset of spontaneous term birth. Using RNA sequencing, we identified 54 miRNAs differentially expressed during spontaneous term labor compared to elective term births. Expression levels of 23 miRNAs were upregulated, whereas 31 were downregulated at least 1.5-fold. The upregulated miRNA miR-371a-5p putatively targets CPPED1, expression of which decreases during spontaneous birth. We used a luciferase reporter–based assay to test whether a miR-371a-5p mimic affected translation when it bound to the 3′ untranslated region of CPPED1. In this setting, the miR-371a-5p mimic resulted in lower luciferase activity, which suggests that miR-371a-5p regulates levels of CPPED1. In conclusion, inversely correlated levels of miR-371a-5p and CPPED1 suggest a role for both in spontaneous delivery.
Collapse
|
11
|
Liu Y, Lin F, Chen Y, Wang R, Liu J, Jin Y, An R. Cryptotanshinone Inhibites Bladder Cancer Cell Proliferation and Promotes Apoptosis via the PTEN/PI3K/AKT Pathway. J Cancer 2020; 11:488-499. [PMID: 31897244 PMCID: PMC6930428 DOI: 10.7150/jca.31422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptotanshinone (CTT), extracted from the root of Salvia miltiorrhiza Bunge (Danshen), exhibits activities against a variety of human cancers in vitro and in vivo. The purpose of this study was to investigate the potential inhibitory effect of CTT on bladder cancer. In this study, we found that CTT inhibited bladder cancer cell proliferation, migration, and invasion and promoted apoptosis. In addition, CTT modulated the expression of proteins via the PI3K/AKT pathway, and the inhibition of PI3K/AKT signalling was due to induction of PTEN expression. Taken together, the results of the present study demonstrated the anticancer effect of CTT on bladder cancer cells, which might be associated with the downregulation of PI3K/AKT/mTOR and NF-κB signalling pathway proteins, and this inhibition was mediated by the induction of PTEN.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fanlu Lin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,Department of Urology. Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China
| | - Yaodong Chen
- Department of ultrasonic imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Rui Wang
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jiannan Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Yinshan Jin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Ruihua An
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|
12
|
Caiola E, Iezzi A, Tomanelli M, Bonaldi E, Scagliotti A, Colombo M, Guffanti F, Micotti E, Garassino MC, Minoli L, Scanziani E, Broggini M, Marabese M. LKB1 Deficiency Renders NSCLC Cells Sensitive to ERK Inhibitors. J Thorac Oncol 2019; 15:360-370. [PMID: 31634668 DOI: 10.1016/j.jtho.2019.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Serine/threonine kinase 11 (LKB1/STK11) is one of the most mutated genes in NSCLC accounting for approximately one-third of cases and its activity is impaired in approximately half of KRAS-mutated NSCLC. At present, these patients cannot benefit from any specific therapy. METHODS Through CRISPR/Cas9 technology, we systematically deleted LKB1 in both wild-type (WT) and KRAS-mutated human NSCLC cells. By using these isogenic systems together with genetically engineered mouse models we investigated the cell response to ERK inhibitors both in vitro and in vivo. RESULTS In all the systems used here, the loss of LKB1 creates vulnerability and renders these cells particularly sensitive to ERK inhibitors both in vitro and in vivo. The same cells expressing a WT LKB1 poorly respond to these drugs. At the molecular level, in the absence of LKB1, ERK inhibitors induced a marked inhibition of p90 ribosomal S6 kinase activation, which in turn abolished S6 protein activation, promoting the cytotoxic effect. CONCLUSIONS This work shows that ERK inhibitors are effective in LKB1 and LKB1/KRAS-mutated tumors, thus offering a therapeutic strategy for this prognostically unfavorable subgroup of patients. Because ERK inhibitors are already in clinical development, our findings could be easily translatable to the clinic. Importantly, the lack of effect in cells expressing WT LKB1, predicts that treatment of LKB1-mutated tumors with ERK inhibitors should have a favorable toxicity profile.
Collapse
Affiliation(s)
- Elisa Caiola
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alice Iezzi
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Michele Tomanelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa Bonaldi
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Arianna Scagliotti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marika Colombo
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Federica Guffanti
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Lucia Minoli
- Mouse & Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Eugenio Scanziani
- Mouse & Animal Pathology Lab, Fondazione Filarete, Milan, Italy; Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
13
|
Ji Y, Shen J, Li M, Zhu X, Wang Y, Ding J, Jiang S, Chen L, Wei W. RMP/URI inhibits both intrinsic and extrinsic apoptosis through different signaling pathways. Int J Biol Sci 2019; 15:2692-2706. [PMID: 31754340 PMCID: PMC6854365 DOI: 10.7150/ijbs.36829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
The evading apoptosis of tumor cells may result in chemotherapy resistance. Therefore, investigating what molecular events contribute to drug-induced apoptosis, and how tumors evade apoptotic death, provides a paradigm to explain the relationship between cancer genetics and treatment sensitivity. In this study, we focused on the role of RMP/URI both in cisplatin-induced endogenous apoptosis and in TRAIL-induced exogenous apoptosis in HCC cells. Although flow cytometric analysis indicated that RMP overexpression reduced the apoptosis rate of HCC cells treated with both cisplatin and TRAIL, there was a difference in mechanism between the two treatments. Western blot showed that in intrinsic apoptosis induced by cisplatin, the overexpression of RMP promoted the Bcl-xl expression both in vitro and in vivo. Besides, RMP activated NF-κB/p65(rel) through the phosphorylation of ATM. However, in TRAIL-induced extrinsic apoptosis, RMP significantly suppressed the transcription and expression of P53. Moreover, the forced expression of P53 could offset this inhibitory effect. In conclusion, we presumed that RMP inhibited both intrinsic and extrinsic apoptosis through different signaling pathways. NF-κB was distinctively involved in the RMP circumvention of intrinsic apoptosis, but not in the extrinsic apoptosis of HCC cells. RMP might play an important role in defects of apoptosis, hence the chemotherapeutic resistance in hepatocellular carcinoma. These studies are promising to shed light on a more rational approach to clinical anticancer drug design and therapy.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jian Shen
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Li
- Department of Tumor, People Hospital of Maanshan, Maanshan, 243000, China
| | - Xiaoxiao Zhu
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yanyan Wang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiazheng Ding
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Shunyao Jiang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Linqi Chen
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - Wenxiang Wei
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Zhuo D, Wu Y, Luo J, Deng L, Niu X. CSTP1 inhibits IL-6 expression through targeting Akt/FoxO3a signaling pathway in bladder cancer cells. Exp Cell Res 2019; 380:80-89. [PMID: 31002815 DOI: 10.1016/j.yexcr.2019.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
Abstract
CSTP1, a recently identified protein phosphotase, is frequently repressed in bladder cancers. Previous results showed that CSTP1 over-expression inhibited cell cycle progression and promoted apoptosis through dephosphorylating Akt kinase at Ser473 site in bladder cancer cells, but the mechanisms how CSTP1 exerted tumor suppressive activity remains unclear. In this study, we analyzed the gene expression profile changes that affected by CSTP1 overexpression by microarray, and reported that CSTP1 decreased IL-6 expression/secretion in bladder cancer cells and re-expression of IL-6 abrogated CSTP1's tumor suppressive activity. We also found that FoxO3a occupy IL-6 gene promoter and repressed IL mRNA transcription. Further results showed that decreased expression of IL-6 in CSTP1-overexpressing cells inactivated Stat3 transcriptional factor, which resulted in the down-regulation of cyclin D1, Bcl-xl expression. Spearman correlation analysis revealed that the mRNA level of CSTP1 correlated inversely with that of IL-6 in bladder cancer tissues. In conclusion, our studies revealed that protein phosphotase CSTP1 inhibited IL-6 expression through targeting Akt/FoxO3a signaling pathway and IL-6 inactivated Stat3 was necessary for CSTP1's tumor suppressive function.
Collapse
Affiliation(s)
- Dexiang Zhuo
- The Central Laboratory of Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, 365000, China
| | - Yongyang Wu
- The Central Laboratory of Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, 365000, China
| | - Jia Luo
- The Central Laboratory of Sanming First Hospital Affiliated to Fujian Medical University, Sanming City, 365000, China
| | - Ling Deng
- Department of Clinical Medical Oncology, Qingyuan People's Hospital, The Six Affiliated Hosptial of Guangzhou Medical University, Qingyuan City, 511518, China
| | - Xiaohua Niu
- Department of Gastrointestinal Surgery, Qingyuan People's Hospital, The Six Affiliated Hosptial of Guangzhou Medical University, Qingyuan City, 511518, China.
| |
Collapse
|
15
|
Combined Transcriptome and Proteome Analysis of Immortalized Human Keratinocytes Expressing Human Papillomavirus 16 (HPV16) Oncogenes Reveals Novel Key Factors and Networks in HPV-Induced Carcinogenesis. mSphere 2019; 4:4/2/e00129-19. [PMID: 30918060 PMCID: PMC6437273 DOI: 10.1128/msphere.00129-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets. Although the role of high-risk human papillomaviruses (hrHPVs) as etiological agents in cancer development has been intensively studied during the last decades, there is still the necessity of understanding the impact of the HPV E6 and E7 oncogenes on host cells, ultimately leading to malignant transformation. Here, we used newly established immortalized human keratinocytes with a well-defined HPV16 E6E7 expression cassette to get a more complete and less biased overview of global changes induced by HPV16 by employing transcriptome sequencing (RNA-Seq) and stable isotope labeling by amino acids in cell culture (SILAC). This is the first study combining transcriptome and proteome data to characterize the impact of HPV oncogenes in human keratinocytes in comparison with their virus-negative counterparts. To enhance the informative value and accuracy of the RNA-Seq data, four different bioinformatic workflows were used. We identified potential novel upstream regulators (e.g., CNOT7, SPDEF, MITF, and PAX5) controlling distinct clusters of genes within the HPV-host cell network as well as distinct factors (e.g., CPPED1, LCP1, and TAGLN) with essential functions in cancer. Validated results in this study were compared to data sets from The Cancer Genome Atlas (TCGA), demonstrating that several identified factors were also differentially expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and HPV-positive head and neck squamous cell carcinomas (HNSCs). This highly integrative approach allows the identification of novel HPV-induced cellular changes that are also reflected in cancer patients, providing a promising omics data set for future studies in both basic and translational research. IMPORTANCE Human papillomavirus (HPV)-associated cancers still remain a big health problem, especially in developing countries, despite the availability of prophylactic vaccines. Although HPV oncogenes have been intensively investigated for decades, a study applying recent advances in RNA-Seq and quantitative proteomic approaches to a precancerous model system with well-defined HPV oncogene expression alongside HPV-negative parental cells has been missing until now. Here, combined omics analyses reveal global changes caused by the viral oncogenes in a less biased way and allow the identification of novel factors and key cellular networks potentially promoting malignant transformation. In addition, this system also provides a basis for mechanistic research on novel key factors regulated by HPV oncogenes, especially those that are confirmed in vivo in cervical cancer as well as in head and neck cancer patient samples from TCGA data sets.
Collapse
|
16
|
Hallman M, Haapalainen A, Huusko JM, Karjalainen MK, Zhang G, Muglia LJ, Rämet M. Spontaneous premature birth as a target of genomic research. Pediatr Res 2019; 85:422-431. [PMID: 30353040 DOI: 10.1038/s41390-018-0180-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 01/23/2023]
Abstract
Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25-40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.
| | - Antti Haapalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Johanna M Huusko
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Ge Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
17
|
Balasuriya N, Kunkel MT, Liu X, Biggar KK, Li SSC, Newton AC, O'Donoghue P. Genetic code expansion and live cell imaging reveal that Thr-308 phosphorylation is irreplaceable and sufficient for Akt1 activity. J Biol Chem 2018; 293:10744-10756. [PMID: 29773654 DOI: 10.1074/jbc.ra118.002357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.
Collapse
Affiliation(s)
| | - Maya T Kunkel
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | | | | | | | - Alexandra C Newton
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and
| |
Collapse
|
18
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
19
|
Haapalainen AM, Karjalainen MK, Daddali R, Ohlmeier S, Anttonen J, Määttä TA, Salminen A, Mahlman M, Bergmann U, Mäkikallio K, Ojaniemi M, Hallman M, Rämet M. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J Cell Mol Med 2018; 22:968-981. [PMID: 29193784 PMCID: PMC5783879 DOI: 10.1111/jcmm.13402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding of timing of human parturition is incomplete. Therefore, we carried out proteomic analyses of full-term placentas from uncomplicated pregnancies to identify protein signatures associated with the onset of spontaneous delivery. We found quantitative associations of 10 proteins with spontaneous term birth, evident either in the basal or in the chorionic plates or in both. Additional 18 proteins were associated according to the location within placenta indicating local variations in protein amounts. Calcineurin-like phosphoesterase domain-containing 1 (CPPED1), a phosphatase previously suggested dephosphorylating AKT1/PKB, was one of the identified proteins. qRT-PCR revealed the mRNA level of CPPED1 was higher in elective caesarean deliveries than in spontaneous births, while immunohistochemistry showed CPPED1 in cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts. Noteworthy, phosphorylation status of AKT1 did not differ between placentas from elective caesarean and spontaneous deliveries. Additionally, analyses of samples from infants indicated that single-nucleotide polymorphisms rs11643593 and rs8048866 of CPPED1 were associated with duration of term pregnancy. Finally, post-transcriptional silencing of CPPED1 in cultured HTR8/SVneo cells by siRNAs affected gene expression in pathways associated with inflammation and blood vessel development. We postulate that functions regulated by CPPED1 in trophoblasts at choriodecidual interphase have a role in the induction of term labour, but it may be independent of AKT1.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Minna K. Karjalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Steffen Ohlmeier
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Julia Anttonen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Tomi A. Määttä
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Annamari Salminen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mari Mahlman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ulrich Bergmann
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Kaarin Mäkikallio
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Obstetrics and GynecologyOulu University HospitalOuluFinland
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- BioMediTech Institute and Faculty of Medical and Life SciencesUniversity of TampereTampereFinland
| |
Collapse
|
20
|
Friedman Ohana R, Kirkland TA, Woodroofe CC, Levin S, Uyeda HT, Otto P, Hurst R, Robers MB, Zimmerman K, Encell LP, Wood KV. Deciphering the Cellular Targets of Bioactive Compounds Using a Chloroalkane Capture Tag. ACS Chem Biol 2015; 10:2316-24. [PMID: 26162280 DOI: 10.1021/acschembio.5b00351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets. In addition, these methods are often not compatible with living cells and therefore cannot be used to verify the pharmacological activity of the tethered compounds. We have developed a novel chloroalkane capture tag that minimally affects compound potency in cultured cells, allowing binding interactions with the targets to occur under conditions relevant to the desired cellular phenotype. Subsequent isolation of the interacting targets is achieved through rapid lysis and capture onto immobilized HaloTag protein. Exchanging the chloroalkane tag for a fluorophore, the putative targets identified by mass spectrometry can be verified for direct binding to the compound through resonance energy transfer. Using the interaction between histone deacetylases (HDACs) and the inhibitor, Vorinostat (SAHA), as a model system, we were able to identify and verify all the known HDAC targets of SAHA as well as two previously undescribed targets, ADO and CPPED1. The discovery of ADO as a target may provide mechanistic insight into a reported connection between SAHA and Huntington's disease.
Collapse
Affiliation(s)
| | | | | | - Sergiy Levin
- Promega Biosciences LLC, San Luis Obispo, California, United States
| | - H. Tetsuo Uyeda
- Promega Biosciences LLC, San Luis Obispo, California, United States
| | - Paul Otto
- Promega Corporation, Madison, Wisconsin, United States
| | - Robin Hurst
- Promega Corporation, Madison, Wisconsin, United States
| | | | | | | | - Keith V. Wood
- Promega Corporation, Madison, Wisconsin, United States
| |
Collapse
|
21
|
Nawa M, Matsuoka M. KCTD20, a relative of BTBD10, is a positive regulator of Akt. BMC BIOCHEMISTRY 2013; 14:27. [PMID: 24156551 PMCID: PMC3827329 DOI: 10.1186/1471-2091-14-27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Background BTBD10 binds to Akt and protein phosphatase 2A (PP2A) and inhibits the PP2A-mediated dephosphorylation of Akt, thereby keeping Akt activated. Previous studies have suggested that BTBD10 plays an important role in preventing motor neuronal death and accelerating the growth of pancreatic beta cells. Because levels of BTBD10 expression are much lower in many non-nervous tissues than nervous tissues, there may be a relative of BTBD10 that has BTBD10-like function in non-neuronal cells. Results A 419-amino-acid BTBD10-like protein, named KCTD20 (potassium channel tetramerization protein domain containing 20), was to found to bind to all Akt isoforms and PP2A. Overexpression of KCTD20 increased Akt phosphorylation at Thr308, as BTBD10 did, which suggests that KCTD20 as well as BTBD10 positively regulates the function of Akt. KCTD20 was ubiquitously expressed in non-nervous as well as nervous tissues. Conclusions KCTD20 is a positive regulator of Akt and may play an important role in regulating the death and growth of some non-nervous and nervous cells.
Collapse
Affiliation(s)
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8042, Japan.
| |
Collapse
|