1
|
van Heuvelen MJG, van der Lei MB, Alferink PM, Roemers P, van der Zee EA. Cognitive deficits in human ApoE4 knock-in mice: A systematic review and meta-analysis. Behav Brain Res 2024; 471:115123. [PMID: 38972485 DOI: 10.1016/j.bbr.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 07/09/2024]
Abstract
Apolipoprotein-E4 (ApoE4) is an important genetic risk factor for Alzheimer's disease. The development of targeted-replacement human ApoE knock-in mice facilitates research into mechanisms by which ApoE4 affects the brain. We performed meta-analyses and meta-regression analyses to examine differences in cognitive performance between ApoE4 and ApoE3 mice. We included 61 studies in which at least one of the following tests was assessed: Morris Water Maze (MWM), novel object location (NL), novel object recognition (NO) and Fear Conditioning (FC) test. ApoE4 vs. ApoE3 mice performed significantly worse on the MWM (several outcomes, 0.17 ≤ g ≤ 0.60), NO (exploration, g=0.33; index, g=0.44) and FC (contextual, g=0.49). ApoE4 vs. ApoE3 differences were not systematically related to sex or age. We conclude that ApoE4 knock-in mice in a non-AD condition show some, but limited cognitive deficits, regardless of sex and age. These effects suggest an intrinsic vulnerability in ApoE4 mice that may become more pronounced under additional brain load, as seen in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marieke J G van Heuvelen
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Mathijs B van der Lei
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands; Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, Edegem 2650, Belgium.
| | - Pien M Alferink
- Department of Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, A. Deusinglaan 1, Groningen 9713AV, the Netherlands.
| | - Peter Roemers
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborg 7, Groningen 9747 AG, the Netherlands.
| |
Collapse
|
2
|
Handy NB, Xu Y, Moon D, Sowizral JJ, Moon E, Ho M, Wilson BA. Hierarchical determinants in cytotoxic necrotizing factor (CNF) toxins driving Rho G-protein deamidation versus transglutamination. mBio 2024; 15:e0122124. [PMID: 38920360 PMCID: PMC11253639 DOI: 10.1128/mbio.01221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The cytotoxic necrotizing factor (CNF) family of AB-type bacterial protein toxins catalyze two types of modification on their Rho GTPase substrates: deamidation and transglutamination. It has been established that E. coli CNF1 and its close homolog proteins catalyze primarily deamidation and Bordetella dermonecrotic toxin (DNT) catalyzes primarily transglutamination. The rapidly expanding microbial genome sequencing data have revealed that there are at least 13 full-length variants of CNF1 homologs. CNFx from E. coli strain GN02091 is the most distant from all other members of the CNF family with 50%-55% sequence identity at the protein level and 0.45-0.52 nucleotide substitutions per site at the DNA level. CNFx modifies RhoA, Rac1, and Cdc42, and like CNF1, activates downstream SRE-dependent mitogenic signaling pathways in human HEK293T cells, but at a 1,000-fold higher EC50 value. Unlike other previously characterized CNF toxins, CNFx modifies Rho proteins primarily through transglutamination, as evidenced by gel-shift assay and confirmed by MALDI mass spectral analysis, when coexpressed with Rho-protein substrates in E. coli BL21 cells or through direct treatment of HEK293T cells. A comparison of CNF1 and CNFx sequences identified two critical active-site residues corresponding to positions 832 and 862 in CNF1. Reciprocal site-specific mutations at these residues in each toxin revealed hierarchical rules that define the preference for deamidase versus a transglutaminase activity in CNFs. An additional unique Cys residue at the C-terminus of CNFx was also discovered to be critical for retarding cargo delivery.IMPORTANCECytotoxic necrotizing factor (CNF) toxins not only play important virulence roles in pathogenic E. coli and other bacterial pathogens, but CNF-like genes have also been found in an expanding number of genomes from clinical isolates. Harnessing the power of evolutionary relationships among the CNF toxins enabled the deciphering of the hierarchical active-site determinants that define whether they modify their Rho GTPase substrates through deamidation or transglutamination. With our finding that a distant CNF variant (CNFx) unlike other known CNFs predominantly transglutaminates its Rho GTPase substrates, the paradigm of "CNFs deamidate and DNTs transglutaminate" could finally be attributed to two critical amino acid residues within the active site other than the previously identified catalytic Cys-His dyad residues. The significance of our approach and research findings is that they can be applied to deciphering enzyme reaction determinants and substrate specificities for other bacterial proteins in the development of precision therapeutic strategies.
Collapse
Affiliation(s)
- Nicholas B. Handy
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yiting Xu
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Damee Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacob J. Sowizral
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eric Moon
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mengfei Ho
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brenda A. Wilson
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Chat H, Dalmasso G, Godfraind C, Bonnin V, Beyrouthy R, Bonnet M, Barnich N, Mettouchi A, Lemichez E, Bonnet R, Delmas J. Cytotoxic necrotizing factor 1 hinders colon tumorigenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice. Gut Microbes 2023; 15:2229569. [PMID: 37417545 PMCID: PMC10332217 DOI: 10.1080/19490976.2023.2229569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/21/2023] [Indexed: 07/08/2023] Open
Abstract
Colorectal cancer (CRC) patients are frequently colonized by colibactin-producing Escherichia coli (CoPEC) (>40%), which enhances tumorigenesis in mouse models of CRC. We observed that 50% of CoPEC also contains the cnf1 gene, which encodes cytotoxic necrotizing factor-1 (CNF1), an enhancer of the eukaryotic cell cycle. The impact of its co-occurrence with colibactin (Clb) has not yet been investigated. We evaluated the impact of CNF1 on colorectal tumorigenesis using human colonic epithelial HT-29 cells and CRC-susceptible ApcMin/+ mice inoculated with the CoPEC 21F8 clinical strain (Clb+Cnf+) or 21F8 isogenic mutants (Clb+Cnf-, Clb-Cnf+ and Clb-Cnf-). Infection with the Clb+Cnf- strain induced higher levels of inflammatory cytokines and senescence markers both in vitro and in vivo compared to those induced by infection with the Clb+Cnf+ strain. In contrast, the Clb+Cnf- and Clb+Cnf+ strains generated similar levels of DNA damage in HT-29 cells and in colonic murine tissues. Furthermore, the ApcMin/+ mice inoculated with the Clb+Cnf- strain developed significantly more tumors than the mice inoculated with the Clb+Cnf+ strain or the isogenic mutants, and the composition of their microbiota was changed. Finally, rectal administration of the CNF1 protein in ApcMin/+ mice inoculated with the Clb+Cnf- strain significantly decreased tumorigenesis and inflammation. Overall, this study provides evidence that CNF1 decreases the carcinogenic effects of CoPEC in ApcMin/+ mice by decreasing CoPEC-induced cellular senescence and inflammation.
Collapse
Affiliation(s)
- Héloïse Chat
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | - Catherine Godfraind
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
- Neuropathology Unit, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Virginie Bonnin
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | - Racha Beyrouthy
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | - Mathilde Bonnet
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
- Institut Universitaire de Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
- Institut Universitaire de Technologie, University Clermont Auvergne, Clermont-Ferrand, France
| | - Amel Mettouchi
- Institut Pasteur, University of Paris, CNRS UMR2001, Paris, France
| | | | - Richard Bonnet
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
- Department of Bacteriology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Julien Delmas
- Centre de Recherche en Nutrition Humaine Auvergne, University Clermont Auvergne, Inserm U1071, INRAE USC 1382, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
- Department of Bacteriology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
4
|
Fabbri A, Bracci L. Immunomodulatory properties of CNF1 toxin from E. coli: implications for colorectal carcinogenesis. Am J Cancer Res 2022; 12:651-660. [PMID: 35261793 PMCID: PMC8899975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. The risk of developing CRC is influenced by both environmental and genetic factors. Recently, chronic inflammation and gut microbiota modifications have been associated with increased CRC risk. Escherichia coli belongs to the commensal intestinal flora and can become highly pathogenic following the acquisition of genes coding for virulence factors, such as the cytotoxic necrotizing factor type 1 (CNF1). Numerous reports highlight that, besides exerting direct effects on epithelial cells, CNF1 can also act on immune cells, modulating their responses and possibly contributing to disease development. In the present review, we summarized the key studies addressing the immunomodulatory functions of CNF1 and discussed the contribution that CNF1 can bring about to CRC through the creation of a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| | - Laura Bracci
- Departement of Oncology and Molecular Medicine, Istituto Superiore di SanitàViale Regina Elena 299, Rome, Italy
| |
Collapse
|
5
|
The Cytotoxic Necrotizing Factors (CNFs)-A Family of Rho GTPase-Activating Bacterial Exotoxins. Toxins (Basel) 2021; 13:toxins13120901. [PMID: 34941738 PMCID: PMC8709095 DOI: 10.3390/toxins13120901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The cytotoxic necrotizing factors (CNFs) are a family of Rho GTPase-activating single-chain exotoxins that are produced by several Gram-negative pathogenic bacteria. Due to the pleiotropic activities of the targeted Rho GTPases, the CNFs trigger multiple signaling pathways and host cell processes with diverse functional consequences. They influence cytokinesis, tissue integrity, cell barriers, and cell death, as well as the induction of inflammatory and immune cell responses. This has an enormous influence on host-pathogen interactions and the severity of the infection. The present review provides a comprehensive insight into our current knowledge of the modular structure, cell entry mechanisms, and the mode of action of this class of toxins, and describes their influence on the cell, tissue/organ, and systems levels. In addition to their toxic functions, possibilities for their use as drug delivery tool and for therapeutic applications against important illnesses, including nervous system diseases and cancer, have also been identified and are discussed.
Collapse
|
6
|
Carlini F, Maroccia Z, Fiorentini C, Travaglione S, Fabbri A. Effects of the Escherichia coli Bacterial Toxin Cytotoxic Necrotizing Factor 1 on Different Human and Animal Cells: A Systematic Review. Int J Mol Sci 2021; 22:ijms222212610. [PMID: 34830494 PMCID: PMC8621085 DOI: 10.3390/ijms222212610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far.
Collapse
Affiliation(s)
- Francesca Carlini
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Zaira Maroccia
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Carla Fiorentini
- Associazione Ricerca Terapie Oncologiche Integrate, ARTOI, 00165 Rome, Italy;
| | - Sara Travaglione
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.C.); (Z.M.); (S.T.)
- Correspondence: ; Tel.: +39-06-4990-2939
| |
Collapse
|
7
|
Watson Y, Nelson B, Kluesner JH, Tanzy C, Ramesh S, Patel Z, Kluesner KH, Singh A, Murthy V, Mitchell CS. Aggregate Trends of Apolipoprotein E on Cognition in Transgenic Alzheimer's Disease Mice. J Alzheimers Dis 2021; 83:435-450. [PMID: 34334405 PMCID: PMC8461675 DOI: 10.3233/jad-210492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.
Collapse
Affiliation(s)
- Yassin Watson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Brenae Nelson
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Tanzy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shreya Ramesh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Zoey Patel
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kaci Hernandez Kluesner
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Anita Singh
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Vibha Murthy
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Cassie S Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.,Institute for Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Urbinati C, Cosentino L, Germinario EAP, Valenti D, Vigli D, Ricceri L, Laviola G, Fiorentini C, Vacca RA, Fabbri A, De Filippis B. Treatment with the Bacterial Toxin CNF1 Selectively Rescues Cognitive and Brain Mitochondrial Deficits in a Female Mouse Model of Rett Syndrome Carrying a MeCP2-Null Mutation. Int J Mol Sci 2021; 22:6739. [PMID: 34201747 PMCID: PMC8269120 DOI: 10.3390/ijms22136739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurological disorder caused by mutations in the X-linked MECP2 gene and a major cause of intellectual disability in females. No cure exists for RTT. We previously reported that the behavioural phenotype and brain mitochondria dysfunction are widely rescued by a single intracerebroventricular injection of the bacterial toxin CNF1 in a RTT mouse model carrying a truncating mutation of the MeCP2 gene (MeCP2-308 mice). Given the heterogeneity of MECP2 mutations in RTT patients, we tested the CNF1 therapeutic efficacy in a mouse model carrying a null mutation (MeCP2-Bird mice). CNF1 selectively rescued cognitive defects, without improving other RTT-related behavioural alterations, and restored brain mitochondrial respiratory chain complex activity in MeCP2-Bird mice. To shed light on the molecular mechanisms underlying the differential CNF1 effects on the behavioural phenotype, we compared treatment effects on relevant signalling cascades in the brain of the two RTT models. CNF1 provided a significant boost of the mTOR activation in MeCP2-308 hippocampus, which was not observed in the MeCP2-Bird model, possibly explaining the differential effects of CNF1. These results demonstrate that CNF1 efficacy depends on the mutation beared by MeCP2-mutated mice, stressing the need of testing potential therapeutic approaches across RTT models.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Daniela Valenti
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Laura Ricceri
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| | - Carla Fiorentini
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy;
| | - Rosa Anna Vacca
- Bioenergetics and Molecular Biotechnologies, Institute of Biomembranes, National Council of Research, 70126 Bari, Italy; (D.V.); (R.A.V.)
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy; (E.A.P.G.); (A.F.)
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.U.); (L.C.); (D.V.); (L.R.); (G.L.)
| |
Collapse
|
9
|
Travaglione S, Loizzo S, Vona R, Ballan G, Rivabene R, Giordani D, Guidotti M, Dupuis ML, Maroccia Z, Baiula M, Rimondini R, Campana G, Fiorentini C. The Bacterial Toxin CNF1 Protects Human Neuroblastoma SH-SY5Y Cells against 6-Hydroxydopamine-Induced Cell Damage: The Hypothesis of CNF1-Promoted Autophagy as an Antioxidant Strategy. Int J Mol Sci 2020; 21:ijms21093390. [PMID: 32403292 PMCID: PMC7247702 DOI: 10.3390/ijms21093390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
Several chronic neuroinflammatory diseases, including Parkinson’s disease (PD), have the so-called ‘redox imbalance’ in common, a dynamic system modulated by various factors. Among them, alteration of the mitochondrial functionality can cause overproduction of reactive oxygen species (ROS) with the consequent induction of oxidative DNA damage and apoptosis. Considering the failure of clinical trials with drugs that eliminate ROS directly, research currently focuses on approaches that counteract redox imbalance, thus restoring normal physiology in a neuroinflammatory condition. Herein, we used SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA), a neurotoxin broadly employed to generate experimental models of PD. Cells were pre-treated with the Rho-modulating Escherichia coli cytotoxic necrotizing factor 1 (CNF1), before the addition of 6-OHDA. Then, cell viability, mitochondrial morphology and dynamics, redox profile as well as autophagic markers expression were assessed. We found that CNF1 preserves cell viability and counteracts oxidative stress induced by 6-OHDA. These effects are accompanied by modulation of the mitochondrial network and an increase in macroautophagic markers. Our results confirm the Rho GTPases as suitable pharmacological targets to counteract neuroinflammatory diseases and evidence the potentiality of CNF1, whose beneficial effects on pathological animal models have been already proven to act against oxidative stress through an autophagic strategy.
Collapse
Affiliation(s)
- Sara Travaglione
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
- Correspondence: ; Tel.: +39-06-49903692
| | - Stefano Loizzo
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Rosa Vona
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Giulia Ballan
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Roberto Rivabene
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Danila Giordani
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Marco Guidotti
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Maria Luisa Dupuis
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Zaira Maroccia
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
| | - Monica Baiula
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Roberto Rimondini
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Gabriele Campana
- University of Bologna, 40126 Bologna, Italy; (M.B.); (R.Rim); (G.C.)
| | - Carla Fiorentini
- Istituto Superiore di Sanità, 00161 Rome, Italy; (S.L.); (R.V.); (G.B.); (R.Riv); (D.G.); (M.G.); (M.L.D.); (Z.M.); or
- Association for Research on Integrative Oncology Therapies (ARTOI), 00165 Rome, Italy
| |
Collapse
|
10
|
Colarusso A, Maroccia Z, Parrilli E, Germinario EAP, Fortuna A, Loizzo S, Ricceri L, Tutino ML, Fiorentini C, Fabbri A. Cnf1 Variants Endowed with the Ability to Cross the Blood-Brain Barrier: A New Potential Therapeutic Strategy for Glioblastoma. Toxins (Basel) 2020; 12:toxins12050291. [PMID: 32375387 PMCID: PMC7290510 DOI: 10.3390/toxins12050291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood–brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Zaira Maroccia
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Elena Angela Pia Germinario
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Andrea Fortuna
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Stefano Loizzo
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Laura Ricceri
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario M. S. Angelo, Via Cintia, 80126 Napoli, Italy; (A.C.); (E.P.); (M.L.T.)
| | - Carla Fiorentini
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
- Association for Research on Integrative Oncological Therapies (ARTOI), 00165 Rome, Italy
| | - Alessia Fabbri
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (Z.M.); (E.A.P.G.); (A.F.); (S.L.); (L.R.); (C.F.)
- Correspondence: ; Tel.: +39-06-4990-2939
| |
Collapse
|
11
|
The bacterial protein CNF1 as a new strategy against Plasmodium falciparum cytoadherence. PLoS One 2019; 14:e0213529. [PMID: 30845261 PMCID: PMC6405130 DOI: 10.1371/journal.pone.0213529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum severe malaria causes more than 400,000 deaths every year. One feature of P. falciparum-parasitized erythrocytes (pRBC) leading to cerebral malaria (CM), the most dangerous form of severe malaria, is cytoadherence to endothelium and blockage of the brain microvasculature. Preventing ligand-receptor interactions involved in this process could inhibit pRBC sequestration and insurgence of severe disease whilst reversing existing cytoadherence could be a saving life adjunct therapy. Increasing evidence indicate the endothelial Rho signaling as a crucial player in malaria parasite cytoadherence. Therefore, we have used the cytotoxic necrotizing factor 1 (CNF1), an Escherichia coli protein able to modulate the activity of Cdc42, Rac, and Rho, three subfamilies of the Rho GTPases family, to study interactions between infected erythrocytes and cerebral endothelium in co-culture models. The main results are that CNF1 not only prevents cytoadherence but, more importantly, induces the detachment of pRBCs from endothelia monolayers. We first observed that CNF1 does affect neither parasite growth, nor the morphology and concentration of knobs that characterize the parasitized erythrocyte surface, as viewed by scanning electron microscopy. On the other hand, flow cytometry experiments show that cytoadherence reversion induced by CNF1 occurs in parallel with a decreased ICAM-1 receptor expression on the cell surface, suggesting the involvement of a toxin-promoted endocytic activity in such a response. Furthermore, since the endothelial barrier functionality is compromised by P. falciparum, we conducted a permeability assay on endothelial cells, revealing the CNF1 capacity to restore the brain endothelial barrier integrity. Then, using pull-down assays and inhibitory studies, we demonstrated, for the first time, that CNF1 is able not only to prevent but also to cause the parasite detachment by simultaneously activating Rho, Rac and Cdc42 in endothelial cells. All in all our findings indicate that CNF1 may represent a potential novel therapeutic strategy for preventing neurological complications of CM.
Collapse
|
12
|
Saghazadeh A, Rezaei N. The Physical Burden of Immunoperception. BIOPHYSICS AND NEUROPHYSIOLOGY OF THE SIXTH SENSE 2019. [PMCID: PMC7123546 DOI: 10.1007/978-3-030-10620-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The previous chapter introduced the ImmunoEmotional Regulatory System (IMMERS). Also, there was a brief discussion about psychological states/psychiatric disorders that so far have been linked to the IMMERS. The present chapter considers another aspect of the IMMERS in which physiological states/physical diseases can be fit to the IMMERS.
Collapse
|
13
|
Fabbri A, Travaglione S, Maroccia Z, Guidotti M, Pierri CL, Primiano G, Servidei S, Loizzo S, Fiorentini C. The Bacterial Protein CNF1 as a Potential Therapeutic Strategy against Mitochondrial Diseases: A Pilot Study. Int J Mol Sci 2018; 19:E1825. [PMID: 29933571 PMCID: PMC6073533 DOI: 10.3390/ijms19071825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1), which acts on the Rho GTPases that are key regulators of the actin cytoskeleton, is emerging as a potential therapeutic tool against certain neurological diseases characterized by cellular energy homeostasis impairment. In this brief communication, we show explorative results on the toxin’s effect on fibroblasts derived from a patient affected by myoclonic epilepsy with ragged-red fibers (MERRF) that carries a mutation in the m.8344A>G gene of mitochondrial DNA. We found that, in the patient’s cells, besides rescuing the wild-type-like mitochondrial morphology, CNF1 administration is able to trigger a significant increase in cellular content of ATP and of the mitochondrial outer membrane marker Tom20. These results were accompanied by a profound F-actin reorganization in MERRF fibroblasts, which is a typical CNF1-induced effect on cell cytoskeleton. These results point at a possible role of the actin organization in preventing or limiting the cell damage due to mitochondrial impairment and at CNF1 treatment as a possible novel strategy against mitochondrial diseases still without cure.
Collapse
Affiliation(s)
- Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Sara Travaglione
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Zaira Maroccia
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Marco Guidotti
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, via Orabona, 4, 70124 Bari, Italy.
| | - Guido Primiano
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Serenella Servidei
- Unità di Neurofisiopatologia, Area Neuroscienze, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo Agostino Gemelli, 8, 00168 Rome, Italy.
| | - Stefano Loizzo
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
14
|
Tantillo E, Colistra A, Vannini E, Cerri C, Pancrazi L, Baroncelli L, Costa M, Caleo M. Bacterial Toxins and Targeted Brain Therapy: New Insights from Cytotoxic Necrotizing Factor 1 (CNF1). Int J Mol Sci 2018; 19:ijms19061632. [PMID: 29857515 PMCID: PMC6032336 DOI: 10.3390/ijms19061632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Pathogenic bacteria produce toxins to promote host invasion and, therefore, their survival. The extreme potency and specificity of these toxins confer to this category of proteins an exceptionally strong potential for therapeutic exploitation. In this review, we deal with cytotoxic necrotizing factor (CNF1), a cytotoxin produced by Escherichia coli affecting fundamental cellular processes, including cytoskeletal dynamics, cell cycle progression, transcriptional regulation, cell survival and migration. First, we provide an overview of the mechanisms of action of CNF1 in target cells. Next, we focus on the potential use of CNF1 as a pharmacological treatment in central nervous system’s diseases. CNF1 appears to impact neuronal morphology, physiology, and plasticity and displays an antineoplastic activity on brain tumors. The ability to preserve neural functionality and, at the same time, to trigger senescence and death of proliferating glioma cells, makes CNF1 an encouraging new strategy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Elena Tantillo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Pisana per la Scienza Onlus (FPS), via Ferruccio Giovannini 13, San Giuliano Terme, 56017 Pisa, Italy.
| | - Antonella Colistra
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Departement of Biology, University of Pisa, via Luca Ghini 13, 56126 Pisa, Italy.
| | - Eleonora Vannini
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Chiara Cerri
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
- Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milano, Italy.
| | - Laura Pancrazi
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Laura Baroncelli
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Mario Costa
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Matteo Caleo
- CNR Neuroscience Institute, via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
15
|
Maroccia Z, Loizzo S, Travaglione S, Frank C, Fabbri A, Fiorentini C. New therapeutics from Nature: The odd case of the bacterial cytotoxic necrotizing factor 1. Biomed Pharmacother 2018; 101:929-937. [PMID: 29635902 DOI: 10.1016/j.biopha.2018.02.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Natural products may represent a rich source of new drugs. The enthusiasm toward this topic has recently been fueled by the 2015 Nobel Prize in Physiology or Medicine, awarded for the discovery of avermectin and artemisinin, natural products from Bacteria and Plantae, respectively, which have targeted one of the major global health issues, the parasitic diseases. Specifically, bacteria either living in the environment or colonizing our body may produce compounds of unexpected biomedical value with the potentiality to be employed as therapeutic drugs. In this review, the fascinating history of CNF1, a protein toxin produced by pathogenic strains of Escherichia coli, is divulged. Even if produced by bacteria responsible for a variety of diseases, CNF1 can behave as a promising benefactor to mankind. By modulating the Rho GTPases, this bacterial product plays a key role in organizing the actin cytoskeleton, enhancing synaptic plasticity and brain energy level, rescuing cognitive deficits, reducing glioma growth in experimental animals. These abilities strongly suggest the need to proceed with the studies on this odd drug in order to pave the way toward clinical trials.
Collapse
Affiliation(s)
- Zaira Maroccia
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Loizzo
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Travaglione
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Claudio Frank
- Italian Centre for Rare Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Fabbri
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Fiorentini
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
16
|
Gu L, Wu D, Tang X, Qi X, Li X, Bai F, Chen X, Ren Q, Zhang Z. Myelin changes at the early stage of 5XFAD mice. Brain Res Bull 2017; 137:285-293. [PMID: 29288735 DOI: 10.1016/j.brainresbull.2017.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 02/08/2023]
Abstract
Previous studies have demonstrated myelin deficits in Alzheimer's disease (AD). However, it is still unclear whether myelin deficits occur at early stage of AD. Our study aimed to investigate myelin deficits in 5XFAD mice dynamically in different cognition-associated brain regions at early stage of AD. Transmission electron microscopy (TEM) was applied to detect myelin changes in late-myelinating regions such as prelimbic area (PrL), retrosplenial granular cortex (Rsg), field CA1 of hippocampus (CA1) and entorhinal cortex (ERC) respectively at different stages (1, 2, 3 and 5 months of age) in 5XFAD mouse model. In addition, we assessed spatial learning and memory with Morris water maze (MWM) in 5XFAD mice. Myelin deficits in 5XFAD mice started from 1 month of age and this deterioration continued during ageing, whereas the same myelin abnormality could only be observed in 5-month-old wild-type mice. Additionally, the g-ratio (an index associated with myelin thickness) was increased in 1-month-old 5XFAD mice in the regions including PrL, CA1 and ERC, compared to wild-type mice. As animals aged, the increased g-ratio in 5XFAD appeared in more regions of the brain. Moreover, 5XFAD mice showed spatial memory deficits from 1 month of age and spatial learning deficits from 2 months of age. In conclusion, myelin deficits occurred at an early stage and progressed with ageing in 5XFAD mouse model. Notably, a sequential myelin change was detected in cognition-associated brain regions. Combined with cognitive examinations, this study suggests that myelin changes might contribute to cognitive dysfunction.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Di Wu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiang Tang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyang Qi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaoli Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Institute of Geriatrics, the Affiliated Union Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Aguilar BJ, Zhu Y, Lu Q. Rho GTPases as therapeutic targets in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2017; 9:97. [PMID: 29246246 PMCID: PMC5732365 DOI: 10.1186/s13195-017-0320-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
The progress we have made in understanding Alzheimer’s disease (AD) pathogenesis has led to the identification of several novel pathways and potential therapeutic targets. Rho GTPases have been implicated as critical components in AD pathogenesis, but their various functions and interactions make understanding their complex signaling challenging to study. Recent advancements in both the field of AD and Rho GTPase drug development provide novel tools for the elucidation of Rho GTPases as a viable target for AD. Herein, we summarize the fluctuating activity of Rho GTPases in various stages of AD pathogenesis and in several in vitro and in vivo AD models. We also review the current pharmacological tools such as NSAIDs, RhoA/ROCK, Rac1, and Cdc42 inhibitors used to target Rho GTPases and their use in AD-related studies. Finally, we summarize the behavioral modifications following Rho GTPase modulation in several AD mouse models. As key regulators of several AD-related signals, Rho GTPases have been studied as targets in AD. However, a consensus has yet to be reached regarding the stage at which targeting Rho GTPases would be the most beneficial. The studies discussed herein emphasize the critical role of Rho GTPases and the benefits of their modulation in AD.
Collapse
Affiliation(s)
- Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| | - Yi Zhu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA. .,The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Diseases Research, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
18
|
Colarusso A, Caterino M, Fabbri A, Fiorentini C, Vergara A, Sica F, Parrilli E, Tutino ML. High yield purification and first structural characterization of the full-length bacterial toxin CNF1. Biotechnol Prog 2017; 34:150-159. [PMID: 29063721 DOI: 10.1002/btpr.2574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/12/2017] [Indexed: 11/10/2022]
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1) is a bacterial toxin secreted by certain Escherichia coli strains causing severe pathologies, making it a protein of pivotal interest in toxicology. In parallel, the CNF1 capability to influence important neuronal processes, like neuronal arborization, astrocytic support, and efficient ATP production, has been efficiently used in the treatment of neurological diseases, making it a promising candidate for therapy. Nonetheless, there are still some unsolved issues about the CNF1 mechanism of action and structuration probably caused by the difficulty to achieve sufficient amounts of the full-length protein for further studies. Here, we propose an efficient strategy for the production and purification of this toxin as a his-tagged recombinant protein from E. coli extracts (CNF1-H8). CNF1-H8 was expressed at the low temperature of 15°C to diminish its characteristic degradation. Then, its purification was achieved using an immobilized metal affinity chromatography (IMAC) and a size exclusion chromatography so as to collect up to 8 mg of protein per liter of culture in a highly pure form. Routine dynamic light scattering (DLS) experiments showed that the recombinant protein preparations were homogeneous and preserved this state for a long time. Furthermore, CNF1-H8 functionality was confirmed by testing its activity on purified RhoA and on HEp-2 cultured cells. Finally, a first structural characterization of the full-length toxin in terms of secondary structure and thermal stability was performed by circular dichroism (CD). These studies demonstrate that our system can be used to produce high quantities of pure recombinant protein for a detailed structural analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:150-159, 2018.
Collapse
Affiliation(s)
- Andrea Colarusso
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
| | - Marco Caterino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
| | - Alessia Fabbri
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma, 00161, Italy
| | - Carla Fiorentini
- Italian Center for Global Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, Roma, 00161, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy.,CEINGE Biotecnologie Avanzate scarl, Via G. Salvatore, Napoli, 80100, Italy.,Institute of Biostructures and Biomaging, CNR, Napoli, Italia Via Mezzocannone 16, Napoli, 80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy.,Institute of Biostructures and Biomaging, CNR, Napoli, Italia Via Mezzocannone 16, Napoli, 80134, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Via Cinthia, Napoli, 80126, Italy
| |
Collapse
|
19
|
Valenti D, de Bari L, Vigli D, Lacivita E, Leopoldo M, Laviola G, Vacca RA, De Filippis B. Stimulation of the brain serotonin receptor 7 rescues mitochondrial dysfunction in female mice from two models of Rett syndrome. Neuropharmacology 2017; 121:79-88. [PMID: 28419872 DOI: 10.1016/j.neuropharm.2017.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 02/07/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that neurobehavioral and brain molecular alterations can be rescued in a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family, crucially involved in the regulation of brain structural plasticity and cognitive processes, can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective agonist. The present study extends previous findings by demonstrating that LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues mitochondrial respiratory chain impairment, oxidative phosphorylation deficiency and the reduced energy status in the brain of heterozygous female mice from two highly validated mouse models of RTT (MeCP2-308 and MeCP2-Bird mice). Moreover, LP-211 treatment completely restored the radical species overproduction by brain mitochondria in the MeCP2-308 model and partially recovered the oxidative imbalance in the more severely affected MeCP2-Bird model. These results provide the first evidence that RTT brain mitochondrial dysfunction can be rescued targeting the brain 5-HT7R and add compelling preclinical evidence of the potential therapeutic value of LP-211 as a pharmacological approach for this devastating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Daniele Vigli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dept. Pharmacy, University of Bari "A. Moro", via Orabona 4, 70125 Bari, Italy
| | - Giovanni Laviola
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
20
|
Therapeutic effects of the Rho GTPase modulator CNF1 in a model of Parkinson’s disease. Neuropharmacology 2016; 109:357-365. [DOI: 10.1016/j.neuropharm.2016.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/25/2016] [Accepted: 06/17/2016] [Indexed: 11/23/2022]
|
21
|
Vannini E, Olimpico F, Middei S, Ammassari-Teule M, de Graaf EL, McDonnell L, Schmidt G, Fabbri A, Fiorentini C, Baroncelli L, Costa M, Caleo M. Electrophysiology of glioma: a Rho GTPase-activating protein reduces tumor growth and spares neuron structure and function. Neuro Oncol 2016; 18:1634-1643. [PMID: 27298309 DOI: 10.1093/neuonc/now114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/22/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. METHODS We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. RESULTS Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. CONCLUSIONS Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies.
Collapse
Affiliation(s)
- Eleonora Vannini
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Francesco Olimpico
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Silvia Middei
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Martine Ammassari-Teule
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Erik L de Graaf
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Liam McDonnell
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Gudula Schmidt
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Alessia Fabbri
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Carla Fiorentini
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Laura Baroncelli
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Mario Costa
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| | - Matteo Caleo
- CNR Neuroscience Institute, Pisa, Italy (E.V., F.O., L.B., M.C., Mat.C.); CNR Cellular Biology and Neurobiology Institute, Rome, Italy (S.M., M.A.-T.); Fondazione Pisana per la Scienza, Mass Spectrometry and Proteomics, Pisa, Italy (E.L.d.G., L.M.); Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Freiburg, Germany (G.S.); Istituto Superiore di Sanità, Rome, Italy (A.F., C.F.); Scuola Normale Superiore, Pisa, Italy (M.C., Mat.C.)
| |
Collapse
|
22
|
Cell-to-cell propagation of the bacterial toxin CNF1 via extracellular vesicles: potential impact on the therapeutic use of the toxin. Toxins (Basel) 2015; 7:4610-21. [PMID: 26556375 PMCID: PMC4663523 DOI: 10.3390/toxins7114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/21/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
Eukaryotic cells secrete extracellular vesicles (EVs), either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We have herein demonstrated that eukaryotic EVs represent an additional route of cell-to-cell propagation for the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1). Our results prove that EVs from CNF1 pre-infected epithelial cells can induce cytoskeleton changes, Rac1 and NF-κB activation comparable to that triggered by CNF1. The observation that the toxin is detectable inside EVs derived from CNF1-intoxicated cells strongly supports the hypothesis that extracellular vesicles can offer to the toxin a novel route to travel from cell to cell. Since anthrax and tetanus toxins have also been reported to engage in the same process, we can hypothesize that EVs represent a common mechanism exploited by bacterial toxins to enhance their pathogenicity.
Collapse
|
23
|
Travaglione S, Ballan G, Fortuna A, Ferri A, Guidotti M, Campana G, Fiorentini C, Loizzo S. CNF1 Enhances Brain Energy Content and Counteracts Spontaneous Epileptiform Phenomena in Aged DBA/2J Mice. PLoS One 2015; 10:e0140495. [PMID: 26457896 PMCID: PMC4601759 DOI: 10.1371/journal.pone.0140495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022] Open
Abstract
Epilepsy, one of the most common conditions affecting the brain, is characterized by neuroplasticity and brain cell energy defects. In this work, we demonstrate the ability of the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) to counteract epileptiform phenomena in inbred DBA/2J mice, an animal model displaying genetic background with an high susceptibility to induced- and spontaneous seizures. Via modulation of the Rho GTPases, CNF1 regulates actin dynamics with a consequent increase in spine density and length in pyramidal neurons of rat visual cortex, and influences the mitochondrial homeostasis with remarkable changes in the mitochondrial network architecture. In addition, CNF1 improves cognitive performances and increases ATP brain content in mouse models of Rett syndrome and Alzheimer's disease. The results herein reported show that a single dose of CNF1 induces a remarkable amelioration of the seizure phenotype, with a significant augmentation in neuroplasticity markers and in cortex mitochondrial ATP content. This latter effect is accompanied by a decrease in the expression of mitochondrial fission proteins, suggesting a role of mitochondrial dynamics in the CNF1-induced beneficial effects on this epileptiform phenotype. Our results strongly support the crucial role of brain energy homeostasis in the pathogenesis of certain neurological diseases, and suggest that CNF1 could represent a putative new therapeutic tool for epilepsy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Andrea Fortuna
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Alberto Ferri
- Institute of Cellular Biology and Neurobiology, CNR, Via del Fosso di Fiorano 64/65, 00143, Roma, Italy
| | - Marco Guidotti
- Department of Veterinary Public Health and Food Safety, Viale Regina Elena 299, 00161, Roma, Italy
| | - Gabriele Campana
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Roma, Italy
- * E-mail:
| |
Collapse
|
24
|
De Filippis B, Valenti D, de Bari L, De Rasmo D, Musto M, Fabbri A, Ricceri L, Fiorentini C, Laviola G, Vacca RA. Mitochondrial free radical overproduction due to respiratory chain impairment in the brain of a mouse model of Rett syndrome: protective effect of CNF1. Free Radic Biol Med 2015; 83:167-77. [PMID: 25708779 DOI: 10.1016/j.freeradbiomed.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/19/2022]
Abstract
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly caused by mutations in the X-linked MECP2 gene associated with severe intellectual disability, movement disorders, and autistic-like behaviors. Its pathogenesis remains mostly not understood and no effective therapy is available. High circulating levels of oxidative stress markers in patients and the occurrence of oxidative brain damage in MeCP2-deficient mouse models suggest the involvement of oxidative stress in RTT pathogenesis. However, the molecular mechanism and the origin of the oxidative stress have not been elucidated. Here we demonstrate that a redox imbalance arises from aberrant mitochondrial functionality in the brain of MeCP2-308 heterozygous female mice, a condition that more closely recapitulates that of RTT patients. The marked increase in the rate of hydrogen peroxide generation in the brain of RTT mice seems mainly produced by the dysfunctional complex II of the mitochondrial respiratory chain. In addition, both membrane potential generation and mitochondrial ATP synthesis are decreased in RTT mouse brains when succinate, the complex II respiratory substrate, is used as an energy source. Respiratory chain impairment is brain area specific, owing to a decrease in either cAMP-dependent phosphorylation or protein levels of specific complex subunits. Further, we investigated whether the treatment of RTT mice with the bacterial protein CNF1, previously reported to ameliorate the neurobehavioral phenotype and brain bioenergetic markers in an RTT mouse model, exerts specific effects on brain mitochondrial function and consequently on hydrogen peroxide production. In RTT brains treated with CNF1, we observed the reactivation of respiratory chain complexes, the rescue of mitochondrial functionality, and the prevention of brain hydrogen peroxide overproduction. These results provide definitive evidence of mitochondrial reactive oxygen species overproduction in RTT mouse brain and highlight CNF1 efficacy in counteracting RTT-related mitochondrial defects.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy.
| | - Daniela Valenti
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Domenico De Rasmo
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy
| | - Mattia Musto
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes and Bioenergetics, National Council of Research, Bari, Italy.
| |
Collapse
|
25
|
Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. Eur Neuropsychopharmacol 2015; 25:889-901. [PMID: 25890884 DOI: 10.1016/j.euroneuro.2015.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/03/2015] [Accepted: 03/22/2015] [Indexed: 11/20/2022]
Abstract
Rho GTPases are molecules critically involved in neuronal plasticity and cognition. We have previously reported that modulation of brain Rho GTPases by the bacterial toxin CNF1 rescues the neurobehavioral phenotype in MeCP2-308 male mice, a model of Rett syndrome (RTT). RTT is a rare X-linked neurodevelopmental disorder and a genetic cause of intellectual disability, for which no effective therapy is available. Mitochondrial dysfunction has been proposed to be involved in the mechanism of the disease pathogenesis. Here we demonstrate that modulation of Rho GTPases by CNF1 rescues the reduced mitochondrial ATP production via oxidative phosphorylation in the brain of MeCP2-308 heterozygous female mice, the condition which more closely recapitulates that of RTT patients. In RTT mouse brain, CNF1 also restores the alterations in the activity of the mitochondrial respiratory chain (MRC) complexes and of ATP synthase, the molecular machinery responsible for the majority of cell energy production. Such effects were achieved through the upregulation of the protein content of those MRC complexes subunits, which were defective in RTT mouse brain. Restored mitochondrial functionality was accompanied by the rescue of deficits in cognitive function (spatial reference memory in the Barnes maze), synaptic plasticity (long-term potentiation) and Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of RTT mice. Present findings bring into light previously unknown functional mitochondrial alterations in the brain of female mice modeling RTT and provide the first evidence that RTT brain mitochondrial dysfunction can be rescued by modulation of Rho GTPases.
Collapse
|
26
|
De Filippis B, Chiodi V, Adriani W, Lacivita E, Mallozzi C, Leopoldo M, Domenici MR, Fuso A, Laviola G. Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Front Behav Neurosci 2015; 9:86. [PMID: 25926782 PMCID: PMC4396444 DOI: 10.3389/fnbeh.2015.00086] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/21/2015] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family—crucially involved in the regulation of brain structural plasticity and cognitive processes—can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes mazetest) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Valentina Chiodi
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari "A. Moro" Bari, Italy
| | - Cinzia Mallozzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | | | - Maria Rosaria Domenici
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità Rome, Italy
| | - Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome Rome, Italy ; European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
27
|
Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiol Dis 2015; 74:204-18. [DOI: 10.1016/j.nbd.2014.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
|
28
|
De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, Leopoldo M, Passarelli F, Fuso A, Laviola G. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology 2014; 39:2506-18. [PMID: 24809912 PMCID: PMC4207333 DOI: 10.1038/npp.2014.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Nativio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari ‘A Moro', Bari, Italy
| | | | | | - Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Travaglione S, Loizzo S, Rizza T, Del Brocco A, Ballan G, Guidotti M, Vona R, Di Nottia M, Torraco A, Carrozzo R, Fiorentini C, Fabbri A. Enhancement of mitochondrial ATP production by the Escherichia coli cytotoxic necrotizing factor 1. FEBS J 2014; 281:3473-88. [PMID: 24925215 DOI: 10.1111/febs.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023]
Abstract
Mitochondria are dynamic organelles that constantly change shape and structure in response to different stimuli and metabolic demands of the cell. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) has recently been reported to influence mitochondrial activity in a mouse model of Rett syndrome and to increase ATP content in the brain tissue of an Alzheimer's disease mouse model. In the present work, the ability of CNF1 to influence mitochondrial activity was investigated in IEC-6 normal intestinal crypt cells. In these cells, the toxin was able to induce an increase in cellular ATP content, probably due to an increment of the mitochondrial electron transport chain. In addition, the CNF1-induced Rho GTPase activity also caused changes in the mitochondrial architecture that mainly consisted in the formation of a complex network of elongated mitochondria. The involvement of the cAMP-dependent protein kinase A signaling pathway was postulated. Our results demonstrate that CNF1 positively affects mitochondria by bursting their energetic function and modifying their morphology.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
De Filippis B, Romano E, Laviola G. Aberrant Rho GTPases signaling and cognitive dysfunction: in vivo evidence for a compelling molecular relationship. Neurosci Biobehav Rev 2014; 46 Pt 2:285-301. [PMID: 24971827 DOI: 10.1016/j.neubiorev.2014.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/11/2023]
Abstract
Rho GTPases are key intracellular signaling molecules that coordinate dynamic changes in the actin cytoskeleton, thereby stimulating a variety of processes, including morphogenesis, migration, neuronal development, cell division and adhesion. Deviations from normal Rho GTPases activation state have been proposed to disrupt cognition and synaptic plasticity. This review focuses on the functional consequences of genetic ablation of upstream and downstream Rho GTPases molecules on cognitive function and neuronal morphology and connectivity. Available information on this issue is described and compared to that gained from mice carrying mutations in the most studied Rho GTPases and from pharmacological in vivo studies in which brain Rho GTPases signaling was modulated. Results from reviewed literature provide definitive evidence of a compelling link between Rho GTPases signaling and cognitive function, thus supporting the notion that Rho GTPases and their downstream effectors may represent important therapeutic targets for disorders associated with cognitive dysfunction.
Collapse
Affiliation(s)
- Bianca De Filippis
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy.
| | - Emilia Romano
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy; Bambino Gesù, Children Hospital, IRCCS, Roma, Italy
| | - Giovanni Laviola
- Sect. Behavioural Neuroscience, Department of Cell Biology & Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
31
|
Bolognin S, Lorenzetto E, Diana G, Buffelli M. The potential role of rho GTPases in Alzheimer's disease pathogenesis. Mol Neurobiol 2014; 50:406-22. [PMID: 24452387 DOI: 10.1007/s12035-014-8637-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurological and Movement Sciences, Section of Physiology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
32
|
Maurin T, Zongaro S, Bardoni B. Fragile X Syndrome: from molecular pathology to therapy. Neurosci Biobehav Rev 2014; 46 Pt 2:242-55. [PMID: 24462888 DOI: 10.1016/j.neubiorev.2014.01.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/12/2014] [Accepted: 01/14/2014] [Indexed: 02/09/2023]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability due to the silencing of the FMR1 gene encoding FMRP (Fragile X Mental Retardation Protein), an RNA-binding protein involved in different steps of RNA metabolism. Of particular interest is the key role of FMRP in translational regulation. Since the first functional characterizations of FMRP, its role has been underlined by its association with actively translating polyribosomes. Furthermore, a plethora of mRNA targets of FMRP have been identified. In the absence of FMRP the deregulation of translation/transport/stability of these mRNAs has a cascade effect on many pathways, resulting into the final phenotype. We review here a set of targets of FMRP (mRNAs and proteins) that may have an impact on the FXS phenotype by deregulating some key cellular processes, such as translation, cytoskeleton remodeling and oxidative stress. The manipulation of these abnormal pathways by specific drugs may represent new therapeutic opportunities for FXS patients.
Collapse
Affiliation(s)
- Thomas Maurin
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Samantha Zongaro
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France
| | - Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS UMR7275, University of Nice Sophia Antipolis, Route des Lucioles, 06560 Valbonne, France.
| |
Collapse
|
33
|
Travaglione S, Loizzo S, Ballan G, Fiorentini C, Fabbri A. The E. coli CNF1 as a pioneering therapy for the central nervous system diseases. Toxins (Basel) 2014; 6:270-82. [PMID: 24402235 PMCID: PMC3920261 DOI: 10.3390/toxins6010270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 12/31/2013] [Indexed: 01/24/2023] Open
Abstract
The Cytotoxic Necrotizing Factor 1 (CNF1), a protein toxin from pathogenic E. coli, modulates the Rho GTPases, thus, directing the organization of the actin cytoskeleton. In the nervous system, the Rho GTPases play a key role in several processes, controlling the morphogenesis of dendritic spines and synaptic plasticity in brain tissues. This review is focused on the peculiar property of CNF1 to enhance brain plasticity in in vivo animal models of central nervous system (CNS) diseases, and on its possible application in therapy.
Collapse
Affiliation(s)
- Sara Travaglione
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Stefano Loizzo
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Giulia Ballan
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Carla Fiorentini
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Superior Health Institute, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
34
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
35
|
The cytotoxic necrotizing factor 1 from E. coli: a janus toxin playing with cancer regulators. Toxins (Basel) 2013; 5:1462-74. [PMID: 23949007 PMCID: PMC3760046 DOI: 10.3390/toxins5081462] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/24/2013] [Accepted: 08/06/2013] [Indexed: 01/23/2023] Open
Abstract
Certain strains of Escherichia coli have been indicated as a risk factor for colon cancer. E. coli is a normal inhabitant of the human intestine that becomes pathogenic, especially in extraintestinal sites, following the acquisition of virulence factors, including the protein toxin CNF1. This Rho GTPases-activating toxin induces dysfunctions in transformed epithelial cells, such as apoptosis counteraction, pro-inflammatory cytokines’ release, COX2 expression, NF-kB activation and boosted cellular motility. As cancer may arise when the same regulatory pathways are affected, it is conceivable to hypothesize that CNF1-producing E. coli infections can contribute to cancer development. This review focuses on those aspects of CNF1 related to transformation, with the aim of contributing to the identification of a new possible carcinogenic agent from the microbial world.
Collapse
|