1
|
Koltun B, Ironi S, Gershoni-Emek N, Barrera I, Hleihil M, Nanguneri S, Sasmal R, Agasti SS, Nair D, Rosenblum K. Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Res 2020; 48:e32. [PMID: 31974573 PMCID: PMC7102941 DOI: 10.1093/nar/gkaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.
Collapse
Affiliation(s)
- Bella Koltun
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Sivan Ironi
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Iliana Barrera
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Mohammad Hleihil
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | | | - Ranjan Sasmal
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Sarit S Agasti
- New Chemistry Unit and Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Single-molecule analysis of endogenous β-actin mRNA trafficking reveals a mechanism for compartmentalized mRNA localization in axons. Proc Natl Acad Sci U S A 2018; 115:E9697-E9706. [PMID: 30254174 PMCID: PMC6187124 DOI: 10.1073/pnas.1806189115] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
De novo protein synthesis in neuronal axons plays important roles in neural circuit formation, maintenance, and disease. Key to the selectivity of axonal protein synthesis is whether an mRNA is present at the right place to be translated, but the mechanisms behind axonal mRNA localization remain poorly understood. In this work, we quantitatively analyze the link between axonal β-actin mRNA trafficking and its localization patterns. By developing a single-molecule approach to live-image β-actin mRNAs in axons, we explore the biophysical drivers behind β-actin mRNA motion and uncover a mechanism for generating increased density at the axon tip by differences in motor protein-driven transport speeds. These results provide mechanistic insight into the control of local translation through mRNA trafficking. During embryonic nervous system assembly, mRNA localization is precisely regulated in growing axons, affording subcellular autonomy by allowing controlled protein expression in space and time. Different sets of mRNAs exhibit different localization patterns across the axon. However, little is known about how mRNAs move in axons or how these patterns are generated. Here, we couple molecular beacon technology with highly inclined and laminated optical sheet microscopy to image single molecules of identified endogenous mRNA in growing axons. By combining quantitative single-molecule imaging with biophysical motion models, we show that β-actin mRNA travels mainly as single copies and exhibits different motion-type frequencies in different axonal subcompartments. We find that β-actin mRNA density is fourfold enriched in the growth cone central domain compared with the axon shaft and that a modicum of directed transport is vital for delivery of mRNA to the axon tip. Through mathematical modeling we further demonstrate that directional differences in motor-driven mRNA transport speeds are sufficient to generate β-actin mRNA enrichment at the growth cone. Our results provide insight into how mRNAs are trafficked in axons and a mechanism for generating different mRNA densities across axonal subcompartments.
Collapse
|
3
|
Increases in Retrograde Injury Signaling Complex-Related Transcripts in Central Axons following Injury. Neural Plast 2016; 2016:3572506. [PMID: 27847648 PMCID: PMC5099454 DOI: 10.1155/2016/3572506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/01/2016] [Accepted: 09/20/2016] [Indexed: 12/11/2022] Open
Abstract
Axons in the peripheral nervous system respond to injury by activating retrograde injury signaling (RIS) pathways, which promote local axonal protein synthesis (LPS) and neuronal regeneration. RIS is also initiated following injury of neurons in the central nervous system (CNS). However, regulation of the localization of axonal mRNA required for LPS is not well understood. We used a hippocampal explant system to probe the regulation of axonal levels of RIS-associated transcripts following axonal injury. Axonal levels of importin β1 and RanBP1 were elevated biphasically at 1 and 24 hrs after axotomy. Transcript levels for β-actin, a prototypic axonally synthesized protein, were similarly elevated. Our data suggest differential regulation of axonal transcripts. At 1 hr after injury, deployment of actinomycin revealed that RanBP1, but not importin β1, requires de novo mRNA synthesis. At 24 hrs after injury, use of importazole revealed that the second wave of increased axonal mRNA levels required importin β-mediated nuclear import. We also observed increased importin β1 axonal protein levels at 1 and 6 hrs after injury. RanBP1 levels and vimentin levels fluctuated but were unchanged at 3 and 6 hrs after injury. This study revealed temporally complex regulation of axonal transcript levels, and it has implications for understanding neuronal response to injury in the CNS.
Collapse
|
4
|
Chetta J, Love JM, Bober BG, Shah SB. Bidirectional actin transport is influenced by microtubule and actin stability. Cell Mol Life Sci 2015; 72:4205-20. [PMID: 26043972 PMCID: PMC11113749 DOI: 10.1007/s00018-015-1933-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 05/14/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022]
Abstract
Local and long-distance transport of cytoskeletal proteins is vital to neuronal maintenance and growth. Though recent progress has provided insight into the movement of microtubules and neurofilaments, mechanisms underlying the movement of actin remain elusive, in large part due to rapid transitions between its filament states and its diverse cellular localization and function. In this work, we integrated live imaging of rat sensory neurons, image processing, multiple regression analysis, and mathematical modeling to perform the first quantitative, high-resolution investigation of GFP-actin identity and movement in individual axons. Our data revealed that filamentous actin densities arise along the length of the axon and move short but significant distances bidirectionally, with a net anterograde bias. We directly tested the role of actin and microtubules in this movement. We also confirmed a role for actin densities in extension of axonal filopodia, and demonstrated intermittent correlation of actin and mitochondrial movement. Our results support a novel mechanism underlying slow component axonal transport, in which the stability of both microtubule and actin cytoskeletal components influence the mobility of filamentous actin.
Collapse
Affiliation(s)
- Joshua Chetta
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - James M Love
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Brian G Bober
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Love JM, Shah SB. Ribosomal trafficking is reduced in Schwann cells following induction of myelination. Front Cell Neurosci 2015; 9:306. [PMID: 26347606 PMCID: PMC4541260 DOI: 10.3389/fncel.2015.00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/27/2015] [Indexed: 01/11/2023] Open
Abstract
Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body), but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following initiation of myelination.
Collapse
Affiliation(s)
- James M Love
- Fischell Department of Bioengineering, University of Maryland College Park, MD, USA
| | - Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland College Park, MD, USA ; Departments of Orthopaedic Surgery and Bioengineering, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
6
|
Anderson EN, White JA, Gunawardena S. Axonal transport and neurodegenerative disease: vesicle-motor complex formation and their regulation. Degener Neurol Neuromuscul Dis 2014; 4:29-47. [PMID: 32669899 PMCID: PMC7337264 DOI: 10.2147/dnnd.s57502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022] Open
Abstract
The process of axonal transport serves to move components over very long distances on microtubule tracks in order to maintain neuronal viability. Molecular motors - kinesin and dynein - are essential for the movement of neuronal cargoes along these tracks; defects in this pathway have been implicated in the initiation or progression of some neurodegenerative diseases, suggesting that this process may be a key contributor in neuronal dysfunction. Recent work has led to the identification of some of the motor-cargo complexes, adaptor proteins, and their regulatory elements in the context of disease proteins. In this review, we focus on the assembly of the amyloid precursor protein, huntingtin, mitochondria, and the RNA-motor complexes and discuss how these may be regulated during long-distance transport in the context of neurodegenerative disease. As knowledge of these motor-cargo complexes and their involvement in axonal transport expands, insight into how defects in this pathway contribute to the development of neurodegenerative diseases becomes evident. Therefore, a better understanding of how this pathway normally functions has important implications for early diagnosis and treatment of diseases before the onset of disease pathology or behavior.
Collapse
Affiliation(s)
- Eric N Anderson
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Joseph A White
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|