1
|
Chang S, Wang P, Han Y, Ma Q, Liu Z, Zhong S, Lu Y, Chen R, Sun L, Wu Q, Gao G, Wang X, Chang YZ. Ferrodifferentiation regulates neurodevelopment via ROS generation. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1841-1857. [PMID: 36929272 DOI: 10.1007/s11427-022-2297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
Iron is important for life, and iron deficiency impairs development, but whether the iron level regulates neural differentiation remains elusive. In this study, with iron-regulatory proteins (IRPs) knockout embryonic stem cells (ESCs) that showed severe iron deficiency, we found that the Pax6- and Sox2-positive neuronal precursor cells and Tuj1 fibers in IRP1-/-IRP2-/- ESCs were significantly decreased after inducing neural differentiation. Consistently, in vivo study showed that the knockdown of IRP1 in IRP2-/- fetal mice remarkably affected the differentiation of neuronal precursors and the migration of neurons. These findings suggest that low intracellular iron status significantly inhibits neurodifferentiation. When supplementing IRP1-/-IRP2-/- ESCs with iron, these ESCs could differentiate normally. Further investigations revealed that the underlying mechanism was associated with an increase in reactive oxygen species (ROS) production caused by the substantially low level of iron and the down-regulation of iron-sulfur cluster protein ISCU, which, in turn, affected the proliferation and differentiation of stem cells. Thus, the appropriate amount of iron is crucial for maintaining normal neural differentiation that is termed ferrodifferentiation.
Collapse
Affiliation(s)
- Shiyang Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Peina Wang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yingying Han
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Suijuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yufeng Lu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Ruiguo Chen
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China
| | - Le Sun
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences (CAS), BNU IDG/McGovern Institute for Brain Research, Beijing, 100101, China.
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
2
|
Lumsangkul C, Tso KH, Fan YK, Chiang HI, Ju JC. Mycotoxin Fumonisin B 1 Interferes Sphingolipid Metabolisms and Neural Tube Closure during Early Embryogenesis in Brown Tsaiya Ducks. Toxins (Basel) 2021; 13:toxins13110743. [PMID: 34822527 PMCID: PMC8619080 DOI: 10.3390/toxins13110743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/26/2022] Open
Abstract
Fumonisin B1 (FB1) is among the most common contaminants produced by Fusarium spp. fungus from corns and animal feeds. Although FB1 has been known to cause physical or functional defects of embryos in humans and several animal species such as Syrian hamsters, rabbits, and rodents, little is known about the precise toxicity to the embryos and the underlying mechanisms have not been fully addressed. The present study aimed to investigate its developmental toxicity and potential mechanisms of action on sphingolipid metabolism in Brown Tsaiya Ducks (BTDs) embryos. We examined the effect of various FB1 dosages (0, 10, 20 and 40 µg/embryo) on BTD embryogenesis 72 h post-incubation. The sphingomyelin content of duck embryos decreased (p < 0.05) in the highest FB1-treated group (40 µg). Failure of neural tube closure was observed in treated embryos and the expression levels of a neurulation-related gene, sonic hedgehog (Shh) was abnormally decreased. The sphingolipid metabolism-related genes including N-acylsphingosine amidohydrolase 1 (ASAH1), and ceramide synthase 6 (CERS6) expressions were altered in the treated embryos compared to those in the control embryos. Apparently, FB1 have interfered sphingolipid metabolisms by inhibiting the functions of ceramide synthase and folate transporters. In conclusion, FB1-caused developmental retardation and abnormalities, such as neural tube defects in Brown Tsaiya Duck embryos, as well as are partly mediated by the disruption of sphingolipid metabolisms.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Ko-Hua Tso
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Yang-Kwang Fan
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
| | - Hsin-I Chiang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
- Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (H.-I.C.); (J.-C.J.); Tel.: +886-4-2287-0613 (H.-I.C. & J.-C.J.); Fax: +886-4-2286-0265 (H.-I.C. & J.-C.J.)
| | - Jyh-Cherng Ju
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; (K.-H.T.); (Y.-K.F.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Bioinformatics and Medical Engineering, College of Information and Electrical Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (H.-I.C.); (J.-C.J.); Tel.: +886-4-2287-0613 (H.-I.C. & J.-C.J.); Fax: +886-4-2286-0265 (H.-I.C. & J.-C.J.)
| |
Collapse
|
3
|
Gao LR, Wang G, Zhang J, Li S, Chuai M, Bao Y, Hocher B, Yang X. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation. J Cell Physiol 2018; 233:7120-7133. [PMID: 29574800 DOI: 10.1002/jcp.26528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 01/31/2018] [Indexed: 12/30/2022]
Abstract
An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI+ cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Guang Wang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Jing Zhang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Shuai Li
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee, UK
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Berthold Hocher
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Institute of Nutritional Science, University of Potsdam, Potsdam-Nuthetal, Germany
| | - Xuesong Yang
- Division of Histology and Embryology, Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Sandeep MS, Nandini CD. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia. Metab Brain Dis 2017; 32:1185-1194. [PMID: 28462474 DOI: 10.1007/s11011-017-0019-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
Abstract
In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.
Collapse
Affiliation(s)
- M S Sandeep
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India
| | - C D Nandini
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India.
| |
Collapse
|
5
|
Dorsemans AC, Soulé S, Weger M, Bourdon E, Lefebvre d'Hellencourt C, Meilhac O, Diotel N. Impaired constitutive and regenerative neurogenesis in adult hyperglycemic zebrafish. J Comp Neurol 2016; 525:442-458. [DOI: 10.1002/cne.24065] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Anne-Claire Dorsemans
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
| | - Stéphanie Soulé
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
| | - Meltem Weger
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences; University of Birmingham; Birmingham B15 2TT UK
| | - Emmanuel Bourdon
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
| | - Christian Lefebvre d'Hellencourt
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
| | - Olivier Meilhac
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
- CHU de La Réunion; F-97400 Saint-Denis France
| | - Nicolas Diotel
- Inserm; UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI); plateforme CYROI Sainte-Clotilde F-97490 France
- Université de La Réunion, UMR 1188; Sainte-Clotilde F-97490 France
| |
Collapse
|
6
|
High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo. Sci Rep 2015; 5:18321. [PMID: 26671447 PMCID: PMC4680872 DOI: 10.1038/srep18321] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/16/2015] [Indexed: 12/13/2022] Open
Abstract
High glucose levels induced by maternal diabetes could lead to defects in neural crest development during embryogenesis, but the cellular mechanism is still not understood. In this study, we observed a defect in chick cranial skeleton, especially parietal bone development in the presence of high glucose levels, which is derived from cranial neural crest cells (CNCC). In early chick embryo, we found that inducing high glucose levels could inhibit the development of CNCC, however, cell proliferation was not significantly involved. Nevertheless, apoptotic CNCC increased in the presence of high levels of glucose. In addition, the expression of apoptosis and autophagy relevant genes were elevated by high glucose treatment. Next, the application of beads soaked in either an autophagy stimulator (Tunicamycin) or inhibitor (Hydroxychloroquine) functionally proved that autophagy was involved in regulating the production of CNCC in the presence of high glucose levels. Our observations suggest that the ERK pathway, rather than the mTOR pathway, most likely participates in mediating the autophagy induced by high glucose. Taken together, our observations indicated that exposure to high levels of glucose could inhibit the survival of CNCC by affecting cell apoptosis, which might result from the dysregulation of the autophagic process.
Collapse
|
7
|
Lee W, Wang YC. Assessing developmental toxicity of caffeine and sweeteners in medaka (Oryzias latipes). SPRINGERPLUS 2015; 4:486. [PMID: 26380162 PMCID: PMC4562911 DOI: 10.1186/s40064-015-1284-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
The use of artificial sweeteners (ASWs) has increased and become more widespread, and consequently ASWs have appeared in aquatic environments around the world. However, their safety to the health of humans and wildlife remains inconclusive. In this study, using medaka embryos (Oryzias latipes), we investigated developmental toxicity of aspartame (ASP) and saccharin (SAC). Since ASWs are often consumed with caffeine (CAF) and CAF with sucrose (SUC), we tested biological activities of these four substances and the mixtures of CAF with each sweetener. The embryos were exposed to ASP at 0.2 and 1.0 mM, SAC at 0.005 and 0.050 mM, CAF at 0.05 and 0.5 mM, or SUC at 29 and 146 mM, starting from less than 5 h post fertilization until hatch. Control embryos were treated with embryo solution only. Several endpoints were used to evaluate embryonic development. Some of the hatchlings were also tested for anxiety-like behavior with the white preference test. The results showed that all four substances and the mixtures of CAF with the sweeteners affected development. The most sensitive endpoints were the heart rate, eye density, and hatchling body length. The hatchlings of several treatment groups also exhibited anxiety-like behavior. We then used the Integrated Biological Response (IBR) as an index to evaluate the overall developmental toxicity of the substances. We found that the ranking of developmental toxicity was SAC > CAF > ASP > SUC, and there was a cumulative effect when CAF was combined with the sweeteners.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan, Taiwan
| | - Yun-Chi Wang
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan, Taiwan
| |
Collapse
|
8
|
Chen Y, Wang G, Ma ZL, Li Y, Wang XY, Cheng X, Chuai M, Tang SZ, Lee KKH, Yang X. Adverse effects of high glucose levels on somite and limb development in avian embryos. Food Chem Toxicol 2014; 71:1-9. [PMID: 24882757 DOI: 10.1016/j.fct.2014.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/18/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022]
Abstract
Gestational diabetes has an adverse impact on fetal musculoskeletal development, but the mechanism involved is still not completely understood. In this study, we investigated the effects of high glucose on the developing somites and their derivate using the chick embryo as a model. We demonstrated that under high glucose, the number of generated somites was reduced and their morphology altered in 2-day old chick embryos. In addition, high glucose repressed the development of the limb buds in 5.5-day old chick embryos. We also demonstrated that high glucose abridged the development of the sclerotome and the cartilage in the developing limb bud. The sonic hedgehog (Shh) gene has been reported to play a crucial role in the development and differentiation of sclerotome. Hence, we examined how Shh expression in the sclerotome was affected under high glucose. We found that high glucose treatment significantly inhibited Shh expression. The high glucose also impaired myotome formation at trunk level - as revealed by immunofluorescent staining with MF20 antibodies. In the neural tube, we established that Wnt3a expression was also significantly repressed. In summary, our study demonstrates that high glucose concentrations impair somite and limb bud development in chick embryos, and suggests that Shh and Wnt genes may play a role in the underlying mechanism.
Collapse
Affiliation(s)
- Yao Chen
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Guang Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zheng-lai Ma
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Yan Li
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-yu Wang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xin Cheng
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee, Dundee DD1 5EH, UK
| | - Shu-ze Tang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632, China; Institute of Fetal-Preterm Labor Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|