1
|
Lappe RR, Elmore MG, Lozier ZR, Jander G, Miller WA, Whitham SA. Metagenomic identification of novel viruses of maize and teosinte in North America. BMC Genomics 2022; 23:767. [DOI: 10.1186/s12864-022-09001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Maize-infecting viruses are known to inflict significant agronomic yield loss throughout the world annually. Identification of known or novel causal agents of disease prior to outbreak is imperative to preserve food security via future crop protection efforts. Toward this goal, a large-scale metagenomic approach utilizing high throughput sequencing (HTS) was employed to identify novel viruses with the potential to contribute to yield loss of graminaceous species, particularly maize, in North America.
Results
Here we present four novel viruses discovered by HTS and individually validated by Sanger sequencing. Three of these viruses are RNA viruses belonging to either the Betaflexiviridae or Tombusviridae families. Additionally, a novel DNA virus belonging to the Geminiviridae family was discovered, the first Mastrevirus identified in North American maize.
Conclusions
Metagenomic studies of crop and crop-related species such as this may be useful for the identification and surveillance of known and novel viral pathogens of crops. Monitoring related species may prove useful in identifying viruses capable of infecting crops due to overlapping insect vectors and viral host-range to protect food security.
Collapse
|
2
|
A Review of Next Generation Sequencing Methods and its Applications in Laboratory Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) is a new technology used to detect the sequence of DNA and RNA and to detect mutations or variations of significance. NGS generates large quantities of sequence data within a short time duration. The various types of sequencing includes Sanger Sequencing, Pyrosequencing, Sequencing by Synthesis (Illumina), Ligation (SoLID), Single molecule Fluorescent Sequencing (Helicos), Single molecule Real time Sequencing (Pacbio), Semiconductor sequencing (Ion torrent technology), Nanopore sequencing and fourth generation sequencing. These methods of sequencing have been modified and improved over the years such that it has become cost effective and accessible to diagnostic laboratories. Management of Outbreaks, rapid identification of bacteria, molecular case finding, taxonomy, detection of the zoonotic agents and guiding prevention strategies in HIV outbreaks are just a few of the many applications of Next Generation sequencing in clinical microbiology.
Collapse
|
3
|
Huang SW, Hung SJ, Wang JR. Application of deep sequencing methods for inferring viral population diversity. J Virol Methods 2019; 266:95-102. [PMID: 30690049 DOI: 10.1016/j.jviromet.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/11/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
The first deep sequencing method was announced in 2005. Due to an increasing number of sequencing data and a reduction in the costs of each sequencing dataset, this innovative technique was soon applied to genetic investigations of viral genome diversity in various viruses, particularly RNA viruses. These deep sequencing findings documented viral epidemiology and evolution and provided high-resolution data on the genetic changes in viral populations. Here, we review deep sequencing platforms that have been applied in viral quasispecies studies. Further, we discuss recent deep sequencing studies on viral inter- and intrahost evolution, drug resistance, and humoral immune selection, especially in emerging and re-emerging viruses. Deep sequencing methods are becoming the standard for providing comprehensive results of viral population diversity, and their applications are discussed.
Collapse
Affiliation(s)
- Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Su-Jhen Hung
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
4
|
Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, Shomron N, Vignuzzi M, van der Werf S. Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Front Microbiol 2018; 9:2596. [PMID: 30429836 PMCID: PMC6220372 DOI: 10.3389/fmicb.2018.02596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo.
Collapse
Affiliation(s)
- Cyril Barbezange
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Louis Jones
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, The Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Toledo-Rueda W, Rosas-Murrieta NH, Muñoz-Medina JE, González-Bonilla CR, Reyes-Leyva J, Santos-López G. Antiviral resistance markers in influenza virus sequences in Mexico, 2000-2017. Infect Drug Resist 2018; 11:1751-1756. [PMID: 30349332 PMCID: PMC6188218 DOI: 10.2147/idr.s153154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Influenza causes high rates of morbidity and mortality. Genetic variability of influenza viruses generates resistance to antivirals, which are of two types, since they act on two different viral targets: adamantanes, which block the M2 ion channel, and the neuraminidase (NA) inhibitors. Methods In Mexico, the available studies on the antiviral resistance of circulating influenza strains are scarce, so this work undertook an analysis of the Mexican sequences reported in public gene banks to perform a systematic analysis of the antiviral resistance markers on both M2 and NA. In all, 284 M2 sequences and 423 NA sequences were retrieved from three genetic databases (sequences from 2000 to 2017 were considered). Results The resistance markers to M2 blockers were present in 100% of H1N1 pdm2009, 83.6% of H3N2, and 5.8% of seasonal H1N1 sequences. Two resistance markers conferring resistance to NA inhibitors were present in seasonal H1N1 sequences, H275Y (50.0%) and N70S (33.3%). None of these viruses had both resistance markers, which are associated with oseltamivir resistance. The more frequent resistance marker in H1N1 pdm2009 NA sequences was H275Y, present in 3.6%, while S247N was present in 0.30%. Only one of the resistance-associated markers (Q136K) in NA (1.5%) was present in the analyzed H3N2 sequences, while sequences of influenza B virus did not present resistance markers to NA inhibitors. Some influenza A H1N1 pdm2009 sequences (1.8%) presented resistance markers to both M2 and NA. Conclusion Based on the present analysis, 7.1% of the all serotypes of influenza virus A sequences analyzed in Mexico from 2000 to 2017 have mutations conferring resistance to NA inhibitors. Because of this, and the limited availability of influenza drugs, it is necessary to increase the epidemiological surveillance, including molecular analysis, which will provide data such as the presence of changes associated with antiviral resistance.
Collapse
Affiliation(s)
- William Toledo-Rueda
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico, .,Postgraduate in Chemical Sciences, Autonomous University of Puebla, Puebla, Mexico
| | - Nora H Rosas-Murrieta
- Laboratory of Biochemistry and Molecular Biology, Chemistry Center, Institute of Science, Autonomous University of Puebla, Puebla, Mexico
| | - José E Muñoz-Medina
- Division of Laboratories for Surveillance and Epidemiological Research, Coordination of Epidemiological Surveillance, Mexican Institute of Social Security, Mexico City, Mexico
| | - César R González-Bonilla
- Division of Laboratories for Surveillance and Epidemiological Research, Coordination of Epidemiological Surveillance, Mexican Institute of Social Security, Mexico City, Mexico
| | - Julio Reyes-Leyva
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico,
| | - Gerardo Santos-López
- Laboratory of Molecular Biology and Virology, Eastern Biomedical Research Center, Mexican Institute of Social Security, Metepec, Puebla, Mexico,
| |
Collapse
|
6
|
Epaulard O, Signori-Schmuck A, Larrat S, Kulkarni O, Blum MG, Fusillier K, Blanc M, Leclercq P, François O, Morand P. Ultradeep sequencing of B and non-B HIV-1 subtypes: Viral diversity and drug resistance mutations before and after one month of antiretroviral therapy in naive patients. J Clin Virol 2017; 95:13-19. [PMID: 28830014 DOI: 10.1016/j.jcv.2017.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 04/06/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ultradeep pyrosequencing technologies permit an assessment of the genetic diversity and the presence and frequency of minority variants in a viral population. The effect of these parameters on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected patients is poorly understood. OBJECTIVES The present study used the pyrosequencing Roche 454 prototype assay to determine whether antiretroviral efficacy is correlated with viral diversity and minority drug resistance mutations in HIV-infected treatment-naive patients and to compare assay performance in B and non-B subtypes. STUDY DESIGN The study included 30 HIV-1 infected naive patients (20 with subtype non-B and 10 with subtype B). Ultradeep pyrosequencing of protease and reverse transcriptase genes was performed at baseline and 1 month after HAART initiation. Plasma HIV VL was measured at 0 and after 1, 3, and 6 months of HAART. RESULTS Pre-HAART minority drug resistance mutations were observed to NRTI in 4 patients, to NNRTI in 6 patients, and to PI in 1 patient; there was no difference in HAART-induced VL decay between patients. Pre-HAART diversity was significantly correlated with the time elapsed since HIV-1 infection diagnosis, but not with the subtype, VL, or CD4 count. Patients with an undetectable VL after 3 months of HAART had a higher pre-HAART diversity. Pre- and post-HAART diversities were not statistically different. There was no difference in assay performance between subtype B and non-B. CONCLUSIONS A high pre-HAART viral diversity might have a positive effect on the outcome of HAART. Pre-therapeutic minority drug resistance mutations are uncommon in naive patients.
Collapse
Affiliation(s)
- Olivier Epaulard
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France.
| | - Anne Signori-Schmuck
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Sylvie Larrat
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Om Kulkarni
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Michael G Blum
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Katia Fusillier
- Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| | - Myriam Blanc
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Pascale Leclercq
- Infectious Disease Unit, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France
| | - Olivier François
- Computational and Mathematical Biology, TIMC-IMAG UMR 5525 UJF-INPG-CNRS, Domaine de la Merci, 38706 La Tronche Cedex, France
| | - Patrice Morand
- Team "HIV and human persistent viruses", Institut de Biologie Structurale, UMR5075 CNRS-CEA-UGA, Grenoble, France; Fédération d'Infectiologie Multidisciplinaire de l'Arc Alpin, Université Grenoble Alpes, France; Virology Laboratory, Infectious Agents Department, Centre Hospitalier Universitaire Grenoble Alpes, CS10217, 38043 Grenoble Cedex 9, France
| |
Collapse
|
7
|
Abstract
It was widely believed in the late 1960s that infectious diseases had been conquered by vaccines and antibiotics and humans were no longer under threat by microbial pathogens. Yet, since that time more than 60 pathogens have been discovered that can cause serious emerging infectious diseases. Molecular methods have played critical roles in the discovery, monitoring, and clinical diagnostics of emerging pathogens. In this chapter, we present well-recognized emerging pathogens. We provide examples of the utility of molecular assays in research and clinical care of emerging infectious diseases. We also discuss some theoretical and practical limitations of molecular tests and the future prospects of expanding molecular diagnostics for emerging pathogens based on new advances of knowledge and technologies.
Collapse
|
8
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
9
|
Mei K, Liu G, Chen Z, Gao Z, Zhao L, Jin T, Yu X, Chen Q. Deep sequencing reveals the viral adaptation process of environment-derived H10N8 in mice. INFECTION GENETICS AND EVOLUTION 2015; 37:8-13. [PMID: 26477933 DOI: 10.1016/j.meegid.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/28/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
The H10N8 virus was isolated from the water of Dongting Lake, China. Mice were infected while showing no obvious symptoms and replication was restricted to the lungs. When the wild-type virus was serially passaged in the lungs of mice, the resulting viruses became lethal and capable of replication in many other organs. This offered an applicable model for the exploration of viral genome gradual mutation during adaptation in mice. The different passage viruses from mice lung lavage were named P1, P3, P5, and P7, respectively. We sequenced the four viruses using next-generation sequencing (NGS) to analyze the dynamics of the H10N8 viral genome, polymorphism, and amino acid mutation of related proteins. We aimed to demonstrate how a mutant strain of low pathogenicity could become lethal to mice. Using Illumina high-throughput data, we detected the gradual mutations of F277S, C278Q, F611S and L653P in the polymerase acidic (PA) protein, and of L207V and E627K in the PB2 protein during adaptation. Interestingly, many amino acid sites mutated quickly; the others did so more slowly and remained in a heterozygous state for several generations. The PA amino acids S277 and Q278 have previously been found in clinical wild-type strains, including the human-H10N8 isolate in 2013. This demonstrates that the wild-type H10N8 virus had mutated to adapt to mammalian hosts. These data provide important reference information for influenza virus research.
Collapse
Affiliation(s)
- Kun Mei
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei 430071, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Hubei 430062, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Guang Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Zhenzhen Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei 430071, China; Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Hubei 430062, China
| | - Zhimin Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei 430071, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Lihua Zhao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Hubei 430071, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaolan Yu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Hubei 430062, China.
| | - Quanjiao Chen
- BGI-Shenzhen, Shenzhen 518083, China; Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
10
|
Clinical Implications of Antiviral Resistance in Influenza. Viruses 2015; 7:4929-44. [PMID: 26389935 PMCID: PMC4584294 DOI: 10.3390/v7092850] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 01/30/2023] Open
Abstract
Influenza is a major cause of severe respiratory infections leading to excessive hospitalizations and deaths globally; annual epidemics, pandemics, and sporadic/endemic avian virus infections occur as a result of rapid, continuous evolution of influenza viruses. Emergence of antiviral resistance is of great clinical and public health concern. Currently available antiviral treatments include four neuraminidase inhibitors (oseltamivir, zanamivir, peramivir, laninamivir), M2-inibitors (amantadine, rimantadine), and a polymerase inhibitor (favipiravir). In this review, we focus on resistance issues related to the use of neuraminidase inhibitors (NAIs). Data on primary resistance, as well as secondary resistance related to NAI exposure will be presented. Their clinical implications, detection, and novel therapeutic options undergoing clinical trials are discussed.
Collapse
|
11
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
12
|
Frey KG, Herrera-Galeano JE, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashi VP, Bishop-Lilly KA. Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 2014; 15:96. [PMID: 24495417 PMCID: PMC3922542 DOI: 10.1186/1471-2164-15-96] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/24/2014] [Indexed: 12/04/2022] Open
Abstract
Background The introduction of benchtop sequencers has made adoption of whole genome sequencing possible for a broader community of researchers than ever before. Concurrently, metagenomic sequencing (MGS) is rapidly emerging as a tool for interrogating complex samples that defy conventional analyses. In addition, next-generation sequencers are increasingly being used in clinical or related settings, for instance to track outbreaks. However, information regarding the analytical sensitivity or limit of detection (LoD) of benchtop sequencers is currently lacking. Furthermore, the specificity of sequence information at or near the LoD is unknown. Results In the present study, we assess the ability of three next-generation sequencing platforms to identify a pathogen (viral or bacterial) present in low titers in a clinically relevant sample (blood). Our results indicate that the Roche-454 Titanium platform is capable of detecting Dengue virus at titers as low as 1X102.5 pfu/mL, corresponding to an estimated 5.4X104 genome copies/ml maximum. The increased throughput of the benchtop sequencers, the Ion Torrent PGM and Illumina MiSeq platforms, enabled detection of viral genomes at concentrations as low as 1X104 genome copies/mL. Platform-specific biases were evident in sequence read distributions as well as viral genome coverage. For bacterial samples, only the MiSeq platform was able to provide sequencing reads that could be unambiguously classified as originating from Bacillus anthracis. Conclusion The analytical sensitivity of all three platforms approaches that of standard qPCR assays. Although all platforms were able to detect pathogens at the levels tested, there were several noteworthy differences. The Roche-454 Titanium platform produced consistently longer reads, even when compared with the latest chemistry updates for the PGM platform. The MiSeq platform produced consistently greater depth and breadth of coverage, while the Ion Torrent was unequaled for speed of sequencing. None of the platforms were able to verify a single nucleotide polymorphism responsible for antiviral resistance in an Influenza A strain isolated from the 2009 H1N1 pandemic. Overall, the benchtop platforms perform well for identification of pathogens from a representative clinical sample. However, unlike identification, characterization of pathogens is likely to require higher titers, multiple libraries and/or multiple sequencing runs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kimberly A Bishop-Lilly
- Naval Medical Research Center, NMRC-Frederick, 8400 Research Plaza, Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|