1
|
Guan X, Hu H, Tian M, Zhuang H, Ding C, Yu S. Differentially expressed long noncoding RNAs in RAW264.7 macrophages during Brucella infection and functional analysis on the bacterial intracellular replication. Sci Rep 2022; 12:21320. [PMID: 36494502 PMCID: PMC9734652 DOI: 10.1038/s41598-022-25932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of functional RNA molecules without protein-coding potential and play vital roles in majority of biological processes. To date, the expression profiles of lncRNAs and their influence on Brucella replication in RAW264.7 cells are poorly understood. In this study, we performed high-throughput transcriptome analysis to investigate the differentially expressed lncRNAs associated with Brucella abortus S2308 infection. Of these, 8, 6, 130 and 94 cellular lncRNAs were differentially expressed at 4, 8, 24 and 48 h post-infection, respectively. Moreover, 1918 protein-coding genes are predicted as potential cis target genes of differentially expressed lncRNAs by searching protein-coding genes located at upstream and downstream of lncRNA loci on the chromosome DNA of Mus musculus. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated that majority of lncRNA target genes were associated with B. abortus infection. Fourteen lncRNAs from transcriptome data were selected for qRT-PCR verification, confirming 13 were differentially expressed. Animal experiments revealed three were differentially expressed in vivo by qRT-PCR analysis. Furthermore, knockdown of LNC_000428 by CRISPR/dCas9 inhibition or Locked Nucleic Acids transfection downregulated Tnfrsf8 expression at mRNA level and increased Brucella intracellular replication. Thus, we provide a novel evidence that lncRNAs induced by Brucella-infection function on Brucella intracellular replication.
Collapse
Affiliation(s)
- Xiang Guan
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hai Hu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Minxing Tian
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Hongxu Zhuang
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Chan Ding
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| | - Shengqing Yu
- grid.410727.70000 0001 0526 1937Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Minhang District, Shanghai, 200241 China
| |
Collapse
|
2
|
Fan X, Chen G, Shan F, Ma F, Gong P, Liang Y, Meng C, Xu J. Molecular Insights into the mechanisms of mucosal immunity induced by Brucella abortus infection in nasal-associated lymphoid tissues. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1972348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xutao Fan
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Guowu Chen
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Fenglian Shan
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| | - Fengyu Ma
- Department of Spine Surgery, People's Hospital of Rizhao, Rizhao, People’s Republic of China
| | - Pihao Gong
- Graduate School of Jining Medical University, Jining, People’s Republic of China
| | - Yanhu Liang
- Graduate School of Jining Medical University, Jining, People’s Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
- Neuropathic Pain Institute for Spinal Nerve of Jining Medical University, Jining, People’s Republic of China
| | - Jing Xu
- Infectious Diseases Division, Affiliated Hospital of Jining Medical University, Jining, People’s Republic of China
| |
Collapse
|
3
|
Rajendhran J. Genomic insights into Brucella. INFECTION GENETICS AND EVOLUTION 2020; 87:104635. [PMID: 33189905 DOI: 10.1016/j.meegid.2020.104635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 01/21/2023]
Abstract
Brucellosis is a zoonotic disease caused by certain species of Brucella. Each species has its preferred host animal, though it can infect other animals too. For a longer period, only six classical species were recognized in the genus Brucella. No vaccine is available for human brucellosis. Therefore, human brucellosis can be controlled only by controlling brucellosis in animals. The genus is now expanding with the newly isolated atypical strains from various animals, including marine mammals. Presently, 12 species of Brucella have been recognized. The first genome of Brucella was released in 2002, and today, we have more than 1500 genomes of Brucella spp. isolated worldwide. Multiple genome sequences are available for the major zoonotic species, B. abortus, B. melitensis, and B. suis. The Brucella genome has two chromosomes with the approximate sizes of 2.1 and 1.2 Mbp. The genome of Brucella is highly conserved across all the species at the nucleotide level. One of the unanswered questions is what makes host preference in different species of Brucella. Here, I summarize the recent advancements in the Brucella genomics research.
Collapse
Affiliation(s)
- Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
4
|
Zuo J, Yin H, Hu J, Miao J, Chen Z, Qi K, Wang Z, Gong J, Phouthapane V, Jiang W, Mi R, Huang Y, Wang C, Han X. Lsr operon is associated with AI-2 transfer and pathogenicity in avian pathogenic Escherichia coli. Vet Res 2019; 50:109. [PMID: 31831050 PMCID: PMC6909531 DOI: 10.1186/s13567-019-0725-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022] Open
Abstract
The function of Autoinducer-2 (AI-2) which acts as the signal molecule of LuxS-mediated quorum sensing, is regulated through the lsr operon (which includes eight genes: lsrK, lsrR, lsrA, lsrC, lsrD, lsrB, lsrF, and lsrG). However, the functions of the lsr operon remain unclear in avian pathogenic Escherichia coli (APEC), which causes severe respiratory and systemic diseases in poultry. In this study, the presence of the lsr operon in 60 APEC clinical strains (serotypes O1, O2, and O78) was investigated and found to be correlated with serotype and has the highest detection rate in O78. The AI-2 binding capacity of recombinant protein LsrB of APEC (APEC-LsrB) was verified and was found to bind to AI-2 in vitro. In addition, the lsr operon was mutated in an APEC strain (APEC94Δlsr(Cm)) and the mutant was found to be defective in motility and AI-2 uptake. Furthermore, deletion of the lsr operon attenuated the virulence of APEC, with the LD50 of APEC94Δlsr(Cm) decreasing 294-fold compared with wild-type strain APEC94. The bacterial load in the blood, liver, spleen, and kidneys of ducks infected with APEC94Δlsr(Cm) decreased significantly (p < 0.0001). The results of transcriptional analysis showed that 62 genes were up-regulated and 415 genes were down-regulated in APEC94Δlsr(Cm) compared with the wild-type strain and some of the down-regulated genes were associated with the virulence of APEC. In conclusion, our study suggests that lsr operon plays a role in the pathogenesis of APEC.
Collapse
Affiliation(s)
- Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huifang Yin
- College of Life Science, Longyan University, Longyan, 364000, People's Republic of China
| | - Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Kezong Qi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.,College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Vanhnaseng Phouthapane
- Biotechnology and Ecology Institute, Ministry of Science and Technology (MOST), Vientiane, 22797, Lao PDR
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Rongsheng Mi
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Yan Huang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China
| | - Chen Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No. 263 Kaiyuan Road, Luoyang, 471023, People's Republic of China.
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
5
|
Tavares GC, Carvalho AF, Pereira FL, Rezende CP, Azevedo VAC, Leal CAG, Figueiredo HCP. Transcriptome and Proteome of Fish-Pathogenic Streptococcus agalactiae Are Modulated by Temperature. Front Microbiol 2018; 9:2639. [PMID: 30450092 PMCID: PMC6224512 DOI: 10.3389/fmicb.2018.02639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022] Open
Abstract
Streptococcus agalactiae is one of the most important pathogens associated with streptococcosis outbreaks in Nile tilapia farms worldwide. High water temperature (above 27°C) has been described as a predisposing factor for the disease in fish. At low temperatures (below 25°C), fish mortalities are not usually observed in farms. Temperature variation can modulate the expression of genes and proteins involved in metabolism, adaptation, and bacterial pathogenicity, thus increasing or decreasing the ability to infect the host. This study aimed to evaluate the transcriptome and proteome of a fish-pathogenic S. agalactiae strain SA53 subjected to in vitro growth at different temperatures using a microarray and label-free shotgun LC-HDMSE approach. Biological triplicates of isolates were cultured in BHIT broth at 22 or 32°C for RNA and protein isolation and submitted for transcriptomic and proteomic analyses. In total, 1,730 transcripts were identified in SA53, with 107 genes being differentially expressed between the temperatures evaluated. A higher number of genes related to metabolism, mainly from the phosphotransferase system (PTS) and ATP-binding cassette (ABC) transport system, were upregulated at 32°C. In the proteome analysis, 1,046 proteins were identified in SA53, of which 81 were differentially regulated between 22 and 32°C. Proteins involved in defense mechanisms, lipid transport and metabolism, and nucleotide transport and metabolism were upregulated at 32°C. A higher number of interactions were observed in proteins involved in nucleotide transport and metabolism. We observed a low correlation between the transcriptome and proteome datasets. Our study indicates that the transcriptome and proteome of a fish-adapted S. agalactiae strain are modulated by temperature, particularly showing differential expression of genes/proteins involved in metabolism, virulence factors, and adaptation.
Collapse
Affiliation(s)
- Guilherme C Tavares
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alex F Carvalho
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Felipe L Pereira
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana P Rezende
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- LGCM-Laboratory of Cellular and Molecular Genetics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos A G Leal
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Henrique C P Figueiredo
- AQUACEN-National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Tian M, Lian Z, Bao Y, Bao S, Yin Y, Li P, Ding C, Wang S, Li T, Qi J, Wang X, Yu S. Identification of a novel, small, conserved hypothetical protein involved inBrucella abortusvirulence by modifying the expression of multiple genes. Transbound Emerg Dis 2018; 66:349-362. [DOI: 10.1111/tbed.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/05/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Zhengmin Lian
- China College of Veterinary Medicine Gansu Agricultural University LanzhouChina
| | - Yanqing Bao
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shijun Bao
- China College of Veterinary Medicine Gansu Agricultural University LanzhouChina
| | - Yi Yin
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Peng Li
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Chan Ding
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Tao Li
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences (CAAS) Shanghai China
| |
Collapse
|
7
|
Jung M, Shim S, Im YB, Park WB, Yoo HS. Global gene-expression profiles of intracellular survival of the BruAb2_1031 gene mutated Brucella abortus in professional phagocytes, RAW 264.7 cells. BMC Microbiol 2018; 18:82. [PMID: 30064361 PMCID: PMC6069796 DOI: 10.1186/s12866-018-1223-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/19/2018] [Indexed: 01/18/2023] Open
Abstract
Background Since recognizing the interaction between Brucella and host cells is crucial to the elucidation of the infectious process, Brucella researches have prioritized the investigation of genes related to pathogenicity. To demonstrate the roles of Brucella genes, RAW 264.7 cells were infected with the Brucella abortus wild-type and mutant strains (generated using transposon mutagenesis), after which the different transcriptional responses of the infected cells were determined using microarray. Results Following infection, enhanced strategies for intracellular survival, such as down-regulation of genes associated with cytokine responses and apoptosis, were observed in RAW 264.7 cells infected with C3 mutant strain when compared to the transcriptional responses of wild-type infected cells. Using sequence analysis, we determined the mutation site of a C3 mutant strain as the ATP-binding cassette transporter permease (BruAb2_1031). These results were evidenced by an increased level of intracellular survival of the C3 mutant strain. Conclusions Characteristics of each mutant strain including bacterial growth rate, abilities to induce cytokine production in macrophages after infection, internalization, and levels of intracellular survival and replication, were investigated by performing RAW 264.7 cell infection experiments. Our results indicate that the BruAb2_1031 gene might be closely related with intracellular survival of B. abortus in RAW 264.7 cells. Electronic supplementary material The online version of this article (10.1186/s12866-018-1223-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Present address: Department of Microbiology, Research Institute of Life Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Woo Bin Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea. .,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea.
| |
Collapse
|
8
|
Tian M, Bao Y, Li P, Hu H, Ding C, Wang S, Li T, Qi J, Wang X, Yu S. The putative amino acid ABC transporter substrate-binding protein AapJ2 is necessary for Brucella virulence at the early stage of infection in a mouse model. Vet Res 2018; 49:32. [PMID: 29598830 PMCID: PMC5874993 DOI: 10.1186/s13567-018-0527-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/12/2018] [Indexed: 01/17/2023] Open
Abstract
Brucellosis is a zoonotic bacterial disease caused by Brucella spp. The virulence of these bacteria is dependent on their ability to invade and replicate within host cells. In a previous study, a putative gene bab_RS27735 encoding an amino acid ABC transporter substrate-binding protein homologous to AapJ protein was found to be involved in Brucella abortus virulence. In this study, we successfully constructed a bab_RS27735 deletion mutant, Δ27735. Compared with the wild-type strain, the lipopolysaccharide pattern of the mutant was not changed, but the growth ability was slightly defected in the exponential phase. In tolerance tests, sensitivity of the Δ27735 mutant to oxidative stress, bactericidal peptides or low pH was not different from that of the wild-type strain. Cell infection assay showed that the mutant was reduced survival within macrophages but could efficiently escape lysosome degradation. The results of a virulence test showed that the Δ27735 mutant was attenuated in a mouse model at the early stage of infection but recovered its virulence at the late stage of infection. Meanwhile, the development of splenomegaly and histopathological lesions was observed in mice infected with either the wild-type strain or the mutant. These results are in line with the release of IL-12p40 and TNF-α into the peripheral blood of infected mice. Besides, expression of diverse genes was up-regulated in the Δ27735 mutant, which may contribute to the reduced virulence of the mutant. These data elucidated that the bab_RS27735 gene is necessary for B. abortus virulence at the early stage of infection in a mouse model.
Collapse
Affiliation(s)
- Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Yanqing Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Peng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Hai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, 200241, China.
| |
Collapse
|
9
|
Kumar S, Negi S, Maiti P. Biological and analytical techniques used for detection of polyaromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:25810-25827. [PMID: 29032529 DOI: 10.1007/s11356-017-0415-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons contain two or more fused benzene rings that are considered as cosmo-pollutants ubiquitously found in the environment. The identification and monitoring of polycyclic aromatic hydrocarbons (PAHs) are of great interests for rapid and on-site detection. Therefore, many analytical and biological techniques have been proposed for the qualitative and quantitative assessments of PAHs. Non-biological analytical techniques such as infrared, Raman, and fluorescence spectroscopies are commonly exploited as non-destructive techniques while gas chromatography (GC) and high-performance liquid chromatography (HPLC) with multiple detectors are extensively employed for the separation and detection of an analyte. Even though spectroscopy and chromatography are more accurate, convenient, and feasible techniques, often, these methods are expensive and sophisticated which require high maintenance cost. On the other hand, biological approaches, i.e., immunoassay, PCR, and microarray, offer comprehensive high-throughput specificity and sensitivity for a similar analyte. Biosensor- and immunoassay-mediated detections of PAHs have opened up new avenues in terms of low cost, rapid determination, and higher sensitivity. In this review, we have discussed the strengths and limitations of biological and analytical techniques that were explored for precise evaluation and were trusted at both the legislation and research levels.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| | - Sangeeta Negi
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, 221004, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| |
Collapse
|
10
|
Hop HT, Arayan LT, Reyes AWB, Huy TXN, Min W, Lee HJ, Son JS, Kim S. Simultaneous RNA-seq based transcriptional profiling of intracellular Brucella abortus and B. abortus-infected murine macrophages. Microb Pathog 2017; 113:57-67. [PMID: 29054743 DOI: 10.1016/j.micpath.2017.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Brucella is a zoonotic pathogen that survives within macrophages; however the replicative mechanisms involved are not fully understood. We describe the isolation of sufficient Brucella abortus RNA from primary host cell environment using modified reported methods for RNA-seq analysis, and simultaneously characterize the transcriptional profiles of intracellular B. abortus and bone marrow-derived macrophages (BMM) from BALB/c mice at 24 h (replicative phase) post-infection. Our results revealed that 25.12% (801/3190) and 16.16% (515/3190) of the total B. abortus genes were up-regulated and down-regulated at >2-fold, respectively as compared to the free-living B. abortus. Among >5-fold differentially expressed genes, the up-regulated genes are mostly involved in DNA, RNA manipulations as well as protein biosynthesis and secretion while the down-regulated genes are mainly involved in energy production and metabolism. On the other hand, the host responses during B. abortus infection revealed that 14.01% (6071/43,346) of BMM genes were reproducibly transcribed at >5-fold during infection. Transcription of cytokines, chemokines and transcriptional factors, such as tumor necrosis factor (Tnf), interleukin-1α (Il1α), interleukin-1β (Il1β), interleukin-6 (Il6), interleukin-12 (Il12), chemokine C-X-C motif (CXCL) family, nuclear factor kappa B (Nf-κb), signal transducer and activator of transcription 1 (Stat1), that may contribute to host defense were markedly induced while transcription of various genes involved in cell proliferation and metabolism were suppressed upon B. abortus infection. In conclusion, these data suggest that Brucella modulates gene expression in hostile intracellular environment while simultaneously alters the host pathways that may lead to the pathogen's intracellular survival and infection.
Collapse
Affiliation(s)
- Huynh Tan Hop
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jee Soo Son
- iNtRON Biotechnology, Inc., Room 903, JungAng Induspia, 137, Sagimakgol-ro, Jungwon-gu, Seongnam, Gyeonggi-do 13202, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
11
|
Rossetti CA, Drake KL, Lawhon SD, Nunes JS, Gull T, Khare S, Adams LG. Systems Biology Analysis of Temporal In vivo Brucella melitensis and Bovine Transcriptomes Predicts host:Pathogen Protein-Protein Interactions. Front Microbiol 2017; 8:1275. [PMID: 28798726 PMCID: PMC5529337 DOI: 10.3389/fmicb.2017.01275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
To date, fewer than 200 gene-products have been identified as Brucella virulence factors, and most were characterized individually without considering how they are temporally and coordinately expressed or secreted during the infection process. Here, we describe and analyze the in vivo temporal transcriptional profile of Brucella melitensis during the initial 4 h interaction with cattle. Pathway analysis revealed an activation of the "Two component system" providing evidence that the in vivo Brucella sense and actively regulate their metabolism through the transition to an intracellular lifestyle. Contrarily, other Brucella pathways involved in virulence such as "ABC transporters" and "T4SS system" were repressed suggesting a silencing strategy to avoid stimulation of the host innate immune response very early in the infection process. Also, three flagellum-encoded loci (BMEII0150-0168, BMEII1080-1089, and BMEII1105-1114), the "flagellar assembly" pathway and the cell components "bacterial-type flagellum hook" and "bacterial-type flagellum" were repressed in the tissue-associated B. melitensis, while RopE1 sigma factor, a flagellar repressor, was activated throughout the experiment. These results support the idea that Brucella employ a stealthy strategy at the onset of the infection of susceptible hosts. Further, through systems-level in silico host:pathogen protein-protein interactions simulation and correlation of pathogen gene expression with the host gene perturbations, we identified unanticipated interactions such as VirB11::MAPK8IP1; BtaE::NFKBIA, and 22 kDa OMP precursor::BAD and MAP2K3. These findings are suggestive of new virulence factors and mechanisms responsible for Brucella evasion of the host's protective immune response and the capability to maintain a dormant state. The predicted protein-protein interactions and the points of disruption provide novel insights that will stimulate advanced hypothesis-driven approaches toward revealing a clearer understanding of new virulence factors and mechanisms influencing the pathogenesis of brucellosis.
Collapse
Affiliation(s)
- Carlos A Rossetti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Jairo S Nunes
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Tamara Gull
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Sangeeta Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| | - Leslie G Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Science, Texas A&M UniversityCollege Station, TX, United States
| |
Collapse
|
12
|
Barbier T, Zúñiga-Ripa A, Moussa S, Plovier H, Sternon JF, Lázaro-Antón L, Conde-Álvarez R, De Bolle X, Iriarte M, Moriyón I, Letesson JJ. Brucella central carbon metabolism: an update. Crit Rev Microbiol 2017; 44:182-211. [PMID: 28604247 DOI: 10.1080/1040841x.2017.1332002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The brucellae are facultative intracellular pathogens causing brucellosis, an important zoonosis. Here, we review the nutritional, genetic, proteomic and transcriptomic studies on Brucella carbon uptake and central metabolism, information that is needed for a better understanding of Brucella virulence. There is no uniform picture across species but the studies suggest primary and/or secondary transporters for unknown carbohydrates, lactate, glycerol phosphate, erythritol, xylose, ribose, glucose and glucose/galactose, and routes for their incorporation to central metabolism, including an erythritol pathway feeding the pentose phosphate cycle. Significantly, all brucellae lack phosphoenolpyruvate synthase and phosphofructokinase genes, which confirms previous evidence on glycolysis absence, but carry all Entner-Doudoroff (ED) pathway and Krebs cycle (and glyoxylate pathway) genes. However, glucose catabolism proceeds through the pentose phosphate cycle in the classical species, and the ED pathway operates in some rodent-associated brucellae, suggesting an ancestral character for this pathway in this group. Gluconeogenesis is functional but does not rely exclusively on classical fructose bisphosphatases. Evidence obtained using infection models is fragmentary but suggests the combined or sequential use of hexoses/pentoses, amino acids and gluconeogenic substrates. We also discuss the role of the phosphotransferase system, stringent reponse, quorum sensing, BvrR/S and sRNAs in metabolism control, an essential aspect of the life style of facultative intracellular parasites.
Collapse
Affiliation(s)
- T Barbier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - A Zúñiga-Ripa
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - S Moussa
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - H Plovier
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - J F Sternon
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - L Lázaro-Antón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - R Conde-Álvarez
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - X De Bolle
- a Unité de Recherche en Biologie des Microorganismes , Laboratoire d'Immunologie et de Microbiologie, NARILIS, Université de Namur , Namur , Belgium
| | - M Iriarte
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - I Moriyón
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| | - J J Letesson
- b Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdISNA) and Depto. Microbiología y Parasitología , Universidad de Navarra, Edificio de Investigación , Pamplona , Spain
| |
Collapse
|
13
|
Pyruvate kinase is necessary for Brucella abortus full virulence in BALB/c mouse. Vet Res 2016; 47:87. [PMID: 27561260 PMCID: PMC5000513 DOI: 10.1186/s13567-016-0372-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Brucellosis, caused by a facultative intracellular pathogen Brucella, is one of the most prevalent zoonosis worldwide. Host infection relies on several uncanonical virulence factors. A recent research hotpot is the links between carbon metabolism and bacterial virulence. In this study, we found that a carbon metabolism-related pyruvate kinase (Pyk) encoded by pyk gene (locus tag BAB_RS24320) was associated with Brucella virulence. Determination of bacterial growth curves and resistance to environmental stress factors showed that Pyk plays an important role in B. abortus growth, especially under the conditions of nutrition deprivation, and resistance to oxidative stress. Additionally, cell infection assay showed that Pyk is necessary for B. abortus survival and evading fusion with lysosomes within RAW264.7 cells. Moreover, animal experiments exhibited that the Pyk deletion significantly reduced B. abortus virulence in a mouse infection model. Our results elucidated the role of the Pyk in B. abortus virulence and provided information for further investigation of Brucella virulence associated carbon metabolism.
Collapse
|
14
|
Tian M, Qu J, Bao Y, Gao J, Liu J, Wang S, Sun Y, Ding C, Yu S. Construction of pTM series plasmids for gene expression in Brucella species. J Microbiol Methods 2016; 123:18-23. [DOI: 10.1016/j.mimet.2016.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/25/2022]
|
15
|
RNA-seq reveals the critical role of CspA in regulating Brucella melitensis metabolism and virulence. SCIENCE CHINA-LIFE SCIENCES 2016; 59:417-24. [PMID: 26740105 DOI: 10.1007/s11427-015-4981-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Brucella melitensis is a facultative intracellular bacterium that replicates within macrophages. The ability of Brucella to survive and multiply in the hostile environment of host macrophages is essential for its virulence. The cold shock protein CspA plays an important role in the virulence of B. melitensis. To analyze the genes regulated by CspA, the whole transcriptomes of B. melitensis NIΔcspA and its parental wild-type strain, B. melitensis NI, were sequenced and analyzed using the Solexa/Illumina sequencing platform. A total of 446 differentially expressed genes were identified, including 324 up-regulated and 122 down-regulated genes. Numerous genes identified are involved in amino acid, fatty acid, nitrogen, and energy metabolism. Interestingly, all genes involved in the type IV secretion system and LuxR-type regulatory protein VjbR were significantly down-regulated in NIΔcspA. In addition, an effector translocation assay confirmed that the function of T4SS in NIΔcspA is influenced by deletion of the cspA gene. These results revealed the differential phenomena associated with virulence and metabolism in NIΔcspA and NI, providing important information for understanding detailed CspA-regulated interaction networks and Brucella pathogenesis.
Collapse
|
16
|
Shao G, Li T, Zuo W, Wu S, Liu T. A Combinational Clustering Based Method for cDNA Microarray Image Segmentation. PLoS One 2015; 10:e0133025. [PMID: 26241767 PMCID: PMC4524615 DOI: 10.1371/journal.pone.0133025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/22/2015] [Indexed: 12/03/2022] Open
Abstract
Microarray technology plays an important role in drawing useful biological conclusions by analyzing thousands of gene expressions simultaneously. Especially, image analysis is a key step in microarray analysis and its accuracy strongly depends on segmentation. The pioneering works of clustering based segmentation have shown that k-means clustering algorithm and moving k-means clustering algorithm are two commonly used methods in microarray image processing. However, they usually face unsatisfactory results because the real microarray image contains noise, artifacts and spots that vary in size, shape and contrast. To improve the segmentation accuracy, in this article we present a combination clustering based segmentation approach that may be more reliable and able to segment spots automatically. First, this new method starts with a very simple but effective contrast enhancement operation to improve the image quality. Then, an automatic gridding based on the maximum between-class variance is applied to separate the spots into independent areas. Next, among each spot region, the moving k-means clustering is first conducted to separate the spot from background and then the k-means clustering algorithms are combined for those spots failing to obtain the entire boundary. Finally, a refinement step is used to replace the false segmentation and the inseparable ones of missing spots. In addition, quantitative comparisons between the improved method and the other four segmentation algorithms--edge detection, thresholding, k-means clustering and moving k-means clustering--are carried out on cDNA microarray images from six different data sets. Experiments on six different data sets, 1) Stanford Microarray Database (SMD), 2) Gene Expression Omnibus (GEO), 3) Baylor College of Medicine (BCM), 4) Swiss Institute of Bioinformatics (SIB), 5) Joe DeRisi's individual tiff files (DeRisi), and 6) University of California, San Francisco (UCSF), indicate that the improved approach is more robust and sensitive to weak spots. More importantly, it can obtain higher segmentation accuracy in the presence of noise, artifacts and weakly expressed spots compared with the other four methods.
Collapse
Affiliation(s)
- Guifang Shao
- Department of Automation, Xiamen University, Xiamen, P.R. China
| | - Tiejun Li
- Information Engineering College, Jimei University, Xiamen, P.R. China
| | - Wangda Zuo
- Department of Civil, Architectural and Environmental Engineering, University of Miami, Coral Gables, United States of America
| | - Shunxiang Wu
- Department of Automation, Xiamen University, Xiamen, P.R. China
| | - Tundong Liu
- Department of Automation, Xiamen University, Xiamen, P.R. China
| |
Collapse
|
17
|
On Brucella pathogenesis: looking for the unified challenge in systems and synthetic biology. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 9:73-5. [PMID: 25972991 DOI: 10.1007/s11693-014-9158-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
Brucellosis is a zoonotic infection transmitted to humans from infected animals and is one of the widely spread zoonoses. Recently, six species were recognized within the genus Brucella wherein B. melitensis, B. suis and B. abortus are considered virulent for humans. While these species differ phenotypically by their pattern of metabolic activities, there has been an imperative need to understand pathogenesis of Brucella species. It has been foreseen that creating a human vaccine for Brucellosis would entail decreased dose of antibiotics. However the emerging role of Brucella pathogenesis still centers on isolation of the organism and various diagnostic tests thereby leading to varying strategies of treatment cycle. In view of disease heterogeneity, we focus systems and synthetic biology challenges that might improve our understanding the Brucella pathogenesis.
Collapse
|
18
|
Mechanism of Asp24 upregulation in Brucella abortus rough mutant with a disrupted O-antigen export system and effect of Asp24 in bacterial intracellular survival. Infect Immun 2014; 82:2840-50. [PMID: 24752516 DOI: 10.1128/iai.01765-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that Brucella abortus rough mutant strain 2308 ΔATP (called the ΔrfbE mutant in this study) exhibits reduced intracellular survival in RAW264.7 cells and attenuated persistence in BALB/c mice. In this study, we performed microarray analysis to detect genes with differential expression between the ΔrfbE mutant and wild-type strain S2308. Interestingly, acid shock protein 24 gene (asp24) expression was significantly upregulated in the ΔrfbE mutant compared to S2308, as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. Further studies using additional strains indicated that the upregulation of asp24 occurred only in rough mutants with disrupted O-antigen export system components, including the ATP-binding protein gene rfbE (bab1_0542) and the permease gene rfbD (bab1_0543), while the ΔwboA rough mutant (which lacks an O-antigen synthesis-related glycosyltransferase) and the RB51 strain (a vaccine strain with the rough phenotype) showed no significant changes in asp24 expression compared to S2308. In addition, abolishing the intracellular O-antigen synthesis of the ΔrfbE mutant by deleting the wboA gene (thereby creating the ΔrfbE ΔwboA double-knockout strain) recovered asp24 expression. These results indicated that asp24 upregulation is associated with intracellular O-antigen synthesis and accumulation but not with the bacterial rough phenotype. Further studies indicated that asp24 upregulation in the ΔrfbE mutant was associated neither with bacterial adherence and invasion nor with cellular necrosis on RAW264.7 macrophages. However, proper expression of the asp24 gene favors intracellular survival of Brucella in RAW264.7 cells and HeLa cells during an infection. This study reveals a novel mechanism for asp24 upregulation in B. abortus mutants.
Collapse
|
19
|
Chen P, Jeannotte R, Weimer BC. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier. Trends Microbiol 2014; 22:292-300. [PMID: 24725482 DOI: 10.1016/j.tim.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023]
Abstract
Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome.
Collapse
Affiliation(s)
- Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile
| | - Richard Jeannotte
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile; Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA; Universidad de Tarapacá, Avenida General Velásquez N°1775, Arica, Chile.
| |
Collapse
|