1
|
Du F, Shao K, Yang Y, Bai X, Hua Y, Shan G. Comparative dosimetric analysis of normal brain tissue in patients with Nasopharyngeal carcinoma at different stages after radiation therapy. Oral Oncol 2024; 158:106998. [PMID: 39178506 DOI: 10.1016/j.oraloncology.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
INTRODUCTION Radiotherapy (RT) is the main treatment for patients with nasopharyngeal carcinoma (NPC). NPC patients at different stages have varying levels of damage to normal brain tissue after RT. No study has yet thoroughly analyzed the variations in radiation dosages in the brain for different stages of NPC patients treated with RT. This study aims to examine these variations. METHODS 1446 NPC patients' CT and RTdose data were retrospectively reviewed. Analysis of the radiation dosage was executed on these 803 patients. The RTdose images for several patient groups were averaged after registering each patient's RTdose data to the CT brain template created in our earlier study. The voxel-based (VB) analysis was used to examine the dose variations in the brains of three groups of NPC patients: the early-stage group, the stage III group, and the stage IV group. RESULTS As the disease progresses from early to advanced stages, the intensity and volume of radiation in the brain increase. The normal brain tissue accepted a substantially larger dosage in more advanced NPC patients. Differences in brain regions between stage III and early-stage patients were minimal compared to any other two groups. Brain regions exhibited substantial variations between the stage IV group and all other patient groups were broadly distributed. CONCLUSION Our findings highlight the critical role of NPC staging in the therapeutic strategy, emphasizing the heterogeneity of radiation-induced tissue damage across disease stages and implying the need to develop stage-specific RT plans.
Collapse
Affiliation(s)
- Fenglei Du
- Zhejiang Cancer Hospital, Department of Radiation Physics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Kainan Shao
- Zhejiang Provincial People's Hospital, Department of Radiation Oncology, Hangzhou, Zhejiang 314408, China
| | - Yiwei Yang
- Zhejiang Cancer Hospital, Department of Radiation Physics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xue Bai
- Zhejiang Cancer Hospital, Department of Radiation Physics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yonghong Hua
- Zhejiang Cancer Hospital, Department of Radiation Oncology, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Guoping Shan
- Zhejiang Cancer Hospital, Department of Radiation Physics, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
2
|
Yacoub I, Qian JY, Nashed K, Youssef M, Khalil M, Kallini D, Lee NY. Radiation techniques and advancements in nasopharyngeal carcinoma. Oral Oncol 2024; 159:107060. [PMID: 39366056 DOI: 10.1016/j.oraloncology.2024.107060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Irini Yacoub
- Department of Radiation Oncology, New York Proton Center, USA
| | - Joshua Y Qian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Mary Youssef
- Jacobs School of Medicine and Biomedical Science, Buffalo, NY, USA
| | - Mikayla Khalil
- Department of Biological Sciences, University of California, San Diego, USA
| | - Daniel Kallini
- Rowan University School of Osteopathic Medicine, NJ, USA
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Dong J, Ng WT, Wong CHL, Li JS, Bollen H, Chow JCH, Eisbruch A, Lee AWM, Lee VHF, Ng SP, Nuyts S, Smee R, Ferlito A. Dosimetric parameters predict radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients: A systematic review and meta-analysis. Radiother Oncol 2024; 195:110258. [PMID: 38537680 DOI: 10.1016/j.radonc.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
This systematic review examines the role of dosimetric parameters in predicting temporal lobe necrosis (TLN) risk in nasopharyngeal carcinoma (NPC) patients treated with three-dimensional conformal RT (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). TLN is a serious late complication that can adversely affect the quality of life of NPC patients. Understanding the relationship between dosimetric parameters and TLN can guide treatment planning and minimize radiation-related complications. A comprehensive search identified relevant studies published up to July 2023. Studies reporting on dosimetric parameters and TLN in NPC patients undergoing 3D-CRT, IMRT, and VMAT were included. TLN incidence, follow-up duration, and correlation with dosimetric parameters of the temporal lobe were analyzed. The review included 30 studies with median follow-up durations ranging from 28 to 110 months. The crude incidence of TLN varied from 2.3 % to 47.3 % and the average crude incidence of TLN is approximately 14 %. Dmax and D1cc emerged as potential predictors of TLN in 3D-CRT and IMRT-treated NPC patients. Threshold values of >72 Gy for Dmax and >62 Gy for D1cc were associated with increased TLN risk. However, other factors should also be considered, including host characteristics, tumor-specific features and therapeutic factors. In conclusion, this systematic review highlights the significance of dosimetric parameters, particularly Dmax and D1cc, in predicting TLN risk in NPC patients undergoing 3D-CRT, IMRT, and VMAT. The findings provide valuable insights that can help in developing optimal treatment planning strategies and contribute to the development of clinical guidelines in this field.
Collapse
Affiliation(s)
- Jun Dong
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wai Tong Ng
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Charlene H L Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ji-Shi Li
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Heleen Bollen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Anne W M Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor H F Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, Australia
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
4
|
Guan X, Peng J, Sun J, Xing X, Hu C. Normal tissue complication probability model of temporal lobe injury following re-irradiation of IMRT for local recurrent nasopharyngeal carcinoma. Front Oncol 2024; 14:1394111. [PMID: 38873258 PMCID: PMC11169595 DOI: 10.3389/fonc.2024.1394111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024] Open
Abstract
Purpose We tried to establish the normal tissue complication probability (NTCP) model of temporal lobe injury of recurrent nasopharyngeal carcinoma (NPC) patients after two courses of intensity modulated radiotherapy (IMRT) to provide more reliable dose-volume data reference to set the temporal lobe tolerance dose for recurrent NPC patients in the future. Methods and materials Recurrent NPC patients were randomly divided into training data set and validation data set in a ratio of 2:1, All the temporal lobes (TLs) were re-contoured as R/L structures and named separately in the MIM system. The dose distribution of the initial IMRT plan was deformed into the second course planning CT via MIM software to get the deformed dose. Equivalent dose of TLs in 2Gy fractions was calculated via linear quadratic model, using an α/β=3 for temporal lobes. NTCP model that correlated the irradiated volume of the temporal lobe and? the clinical variables were evaluated in a multivariate prediction model using AUC analysis. Results From Jan. 2010 to Dec. 2020, 78 patients were enrolled into our study. Among which 26 (33.3%) developed TLI. The most important factors affecting TLI was the sum-dose d1.5cc of TL, while the possible clinical factors did not reach statistically significant differences in multivariate analysis. According to NTCP model, the TD5 and TD50 EQD2 dose of sum-dose d1.5cc were 65.26Gy (46.72-80.69Gy) and 125.25Gy (89.51-152.18Gy), respectively. For the accumulated EQD2 dose, the area under ROC shadow was 0.8702 (0.7577-0.9828) in model validation, p<0.001. Conclusion In this study, a NTCP model of temporal lobe injury after a second course of IMRT for recurrent nasopharyngeal carcinoma was established. TD5 and TD50 doses of temporal lobe injury after re-RT were obtained according to the model, and the model was verified by validation set data.
Collapse
Affiliation(s)
- Xiyin Guan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiyou Peng
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiayao Sun
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Xing Xing
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaosu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
5
|
Chow JCH, Ho JCS, Cheung KM, Johnson D, Ip BYM, Beitler JJ, Strojan P, Mäkitie AA, Eisbruch A, Ng SP, Nuyts S, Mendenhall WM, Babighian S, Ferlito A. Neurological complications of modern radiotherapy for head and neck cancer. Radiother Oncol 2024; 194:110200. [PMID: 38438018 DOI: 10.1016/j.radonc.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Radiotherapy is one of the mainstay treatment modalities for the management of non-metastatic head and neck cancer (HNC). Notable improvements in treatment outcomes have been observed in the recent decades. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and charged particle therapy, have significantly improved tumor target conformity and enabled better preservation of normal structures. However, because of the intricate anatomy of the head and neck region, multiple critical neurological structures such as the brain, brainstem, spinal cord, cranial nerves, nerve plexuses, autonomic pathways, brain vasculature, and neurosensory organs, are variably irradiated during treatment, particularly when tumor targets are in close proximity. Consequently, a diverse spectrum of late neurological sequelae may manifest in HNC survivors. These neurological complications commonly result in irreversible symptoms, impair patients' quality of life, and contribute to a substantial proportion of non-cancer deaths. Although the relationship between radiation dose and toxicity has not been fully elucidated for all complications, appropriate application of dosimetric constraints during radiotherapy planning may reduce their incidence. Vigilant surveillance during the course of survivorship also enables early detection and intervention. This article endeavors to provide a comprehensive review of the various neurological complications of modern radiotherapy for HNC, summarize the current incidence data, discuss methods to minimize their risks during radiotherapy planning, and highlight potential strategies for managing these debilitating toxicities.
Collapse
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region.
| | - Jason C S Ho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Ka Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - David Johnson
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - Bonaventure Y M Ip
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jonathan J Beitler
- Harold Alfond Center for Cancer Care, Maine General Hospital, Augusta, ME, USA
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Antti A Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium; Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Leuven, Belgium
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
6
|
Lin S, Lv X, Lin X, Chen S, Li Y, Xu M, Qiu Y, Tang L. Modulation Effects of the CEP128 Gene on Radiotherapy-Related Brain Injury: A Longitudinal Structural Study Using Multi-Parametric Brain MR Images. J Magn Reson Imaging 2024; 59:648-658. [PMID: 37249021 DOI: 10.1002/jmri.28824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The promoter variant rs17111237 in the CEP128 closely relates to radiotherapy (RT)-related brain necrosis in nasopharyngeal carcinoma (NPC) patients. PURPOSE To explore RT-related dynamic alterations in brain morphology and their potential genetic mechanism, and to explore the modulatory effects of CEP128 genetic variants on RT-related brain morphological alterations in NPC patients. STUDY TYPE Prospective, longitudinal. POPULATION One hundred one patients with histopathologic ally-proven NPC (age 41.64 ± 9.63, 46 male), analyzed at baseline (pre-RT), 3-months post-RT and 6 months post-RT, and 19 sex-, age- and education-matched healthy controls. FIELD STRENGTH/SEQUENCE 3D gradient echo brain volume (3D-BRAVO) and diffusion-weighted single-shot spin-echo echo-planar sequences at 3.0 T. ASSESSMENT rs17111237 in CEP128 was detected by Sanger sequencing. Structural and diffusion images were processed with FreeSurfer and FSL. Morphometric similarity network (MSN) was constructed with nine cortical indices derived from structural and diffusion images. STATISTICAL TESTS One-way ANOVA, chi-square test. Pearson's correlation analysis was conducted to measure the relationship between CEP128 gene-expression level in human brain and MSN alterations. Repeated analysis of variance performed to assess group differences in MSN and the modulatory effects of the CEP128 gene within patients. Significance level: P < 0.05, false-discovery rate correction. RESULTS RT-related significant widespread MSN alterations were observed in the cortices of NPC patients. Notably, regional MSN alterations had a weak but significant negative correlation with the cortical pattern of CEP128 gene expression (r = -0.152). Furthermore, rs17111237 in the CEP128 had significant modulatory effects on the observed MSN alterations in NPC patients, with the modulatory effects being most obvious at 3 months post-RT. CONCLUSIONS MSN has potential to serve as a sensitive biomarker to detect RT-related brain injury. Inter-brain regional and inter-patient variability of RT-related brain injuries may be attributed to the cortical expression of the CEP128 gene and the modulatory effects of the promoter variant rs17111237 in CEP128. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanqing Li
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Manxi Xu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Linquan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
7
|
Hou J, He Y, Li H, Ai Z, Lu Q, Zeng B, Xie C, Yu X. Evolution of radiation-induced temporal lobe injury after intensity-modulated radiation therapy in nasopharyngeal carcinoma: a large cohort retrospective study. Radiat Oncol 2024; 19:9. [PMID: 38243277 PMCID: PMC10797916 DOI: 10.1186/s13014-024-02400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated conflicting findings regarding the initial MRI patterns of radiotherapy-induced temporal lobe injury (RTLI) and the evolution of different RTLI patterns. The aim of this study was to evaluate the initial MRI pattern and evolution of RTLI in patients with nasopharyngeal carcinoma (NPC) by means of a large cohort study. METHODS Data of patients with RTLI were retrospectively collected from two hospitals between January 2011 and December 2021. The injured lobes were categorized into three patterns based on initial MRI patterns: isolated white matter lesions (WMLs), isolated contrast-enhanced lesions (CELs), and combined WMLs and CELs. The latency period, MRI appearances, and temporal changes in WMLs and CELs were evaluated. RESULTS A total of 913 RTLI patients with 1092 injured lobes were included in this study. The numbers of isolated WMLs, isolated CELs, and combined WMLs and CELs identified at the first MRI detection were 7 (0.6%), 172 (15.8%), and 913 (83.6%), respectively. The evolution of bilateral RTLI was different in the same patient, and that of unilateral RTLI combined with WMLs and CELs also may occur asynchronously. The time intervals from the initial MRI detection of isolated WMLs, isolated CELs, combined WMLs and CELs to the last negative MRI scan were 8.6, 8.9 and 11.0 months, respectively. A significant difference was observed in the time intervals between the three patterns (H = 14.287, P = 0.001). And the time interval was identified as an independent factor influencing the initial MRI pattern of RTLI after Poisson regression (P = 0.002). CONCLUSION Both WMLs and CELs could be the initial and only MRI abnormalities in patients with RTLI. This study is of great significance in accurately diagnosing RTLI early and providing timely treatment options. Additionally, it provides clinical evidence for guidelines on NPC, emphasizing the importance of regular follow-up of NPC patients.
Collapse
Affiliation(s)
- Jing Hou
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yun He
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Handong Li
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zhaodong Ai
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Biao Zeng
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, People's Republic of China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
8
|
He YQ, Wang TM, Yang DW, Xue WQ, Deng CM, Li DH, Zhang WL, Liao Y, Xiao RW, Luo LT, Diao H, Tong XT, Wu YX, Chen XY, Zhang JB, Zhou T, Li XZ, Zhang PF, Zheng XH, Zhang SD, Hu YZ, Zhou GQ, Ma J, Sun Y, Jia WH. A comprehensive predictive model for radiation-induced brain injury in risk stratification and personalized radiotherapy of nasopharyngeal carcinoma. Radiother Oncol 2024; 190:109974. [PMID: 37913956 DOI: 10.1016/j.radonc.2023.109974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced brain injury (RBI) is a severe radiotoxicity for nasopharyngeal carcinoma (NPC) patients, greatly affecting their long-term life quality and survival. We aim to establish a comprehensive predictive model including clinical factors and newly developed genetic variants to improve the precision of RBI risk stratification. MATERIALS AND METHODS By performing a large registry-based retrospective study with magnetic resonance imaging follow-up on RBI development, we conducted a genome-wide association study and developed a polygenic risk score (PRS) for RBI in 1189 NPC patients who underwent intensity-modulated radiotherapy. We proposed a tolerance dose scheme for temporal lobe radiation based on the risk predicted by PRS. Additionally, we established a nomogram by combining PRS and clinical factors for RBI risk prediction. RESULTS The 38-SNP PRS could effectively identify high-risk individuals of RBI (P = 1.42 × 10-34). Based on genetic risk calculation, the recommended tolerance doses of temporal lobes should be 57.6 Gy for individuals in the top 10 % PRS subgroup and 68.1 Gy for individuals in the bottom 50 % PRS. Notably, individuals with high genetic risk (PRS > P50) and receiving high radiation dose in the temporal lobes (D0.5CC > 65 Gy) had an approximate 50-fold risk over individuals with low PRS and receiving low radiation dose (HR = 50.09, 95 %CI = 24.27-103.35), showing an additive joint effect (Pinteraction < 0.001). By combining PRS with clinical factors including age, tumor stage, and radiation dose of temporal lobes, the predictive accuracy was significantly improved with C-index increased from 0.78 to 0.85 (P = 1.63 × 10-2). CONCLUSIONS The PRS, together with clinical factors, could improve RBI risk stratification and implies personalized radiotherapy.
Collapse
Affiliation(s)
- Yong-Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Da-Wei Yang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang-Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Dan-Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ruo-Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu-Ting Luo
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua Diao
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xia-Ting Tong
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xue-Yin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Pei-Fen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Guan-Qun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ying Sun
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, China; School of Public Health, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
9
|
Zhu Y, Cheng J, Li Y, Pan D, Li H, Xu Y, Du Z, Lei M, Xiao S, Shen Q, Shi Z, Tang Y. Progression of cognitive dysfunction in NPC survivors with radiation-induced brain necrosis: A prospective cohort. Radiother Oncol 2024; 190:110033. [PMID: 38030079 DOI: 10.1016/j.radonc.2023.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND AND PURPOSE The evidence of longitudinal changes in cognition in nasopharyngeal carcinoma (NPC) survivors with radiation-induced brain necrosis (RIBN) after radiotherapy (RT) remained insufficient. We aimed to estimate the clinical progression rate of cognitive decline and identify patients with differential decline rates. MATERIALS AND METHODS Based on an ongoing prospective cohort study, NPC patients aged ≥18 years old and diagnosed with RIBN were included in this current analysis if they finished the time frame of 3-year follow-up and had at least twice cognition assessments. The Chinese version of the Montreal Cognitive Assessment (MoCA) was used to assess the cognitive state. Linear mixed-effect models were used to analyze the annual progression rates of MoCA total and seven sub-items scores. RESULTS Among 134 patients in this study, the transition probability from normal to mild/moderate cognitive dysfunction were 14.2 % (19/134) and 1.49 % (2/134) respectively during the median follow-up time of 2.35 years. The total MoCA score declined by -0.569 (SE 0.208) points annually (p = 0.008). Patients with ≤6 years of duration from RT to RIBN have higher annual progression rate of total scores [-0.851 (SE 0.321), p = 0.013; p for interaction = 0.041]. CONCLUSION Our findings of the annual decline rate of cognition in NPC patients with RIBN from a 3-year longitudinal data, particularly for those who developed RIBN rapidly after RT, have important implications for the upcoming clinical trials designed to prevent or decrease cognitive decline in NPC patients with RIBN, regarding the selection of study patients and the calculation of sample size.
Collapse
Affiliation(s)
- Yingying Zhu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Clinical Research Design Division, Clinical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Dong Pan
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 528406, China
| | - Honghong Li
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhicheng Du
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ming Lei
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qingyu Shen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhongshan Shi
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
10
|
Iyizoba-Ebozue Z, Prestwich R, Brown S, Hall E, Lilley J, Lowe M, Thomson DJ, Slevin F, Boele F, Murray L. Neurocognitive function following (chemo)radiotherapy for nasopharyngeal cancer and other head and neck cancers: A systematic review. Radiother Oncol 2023; 188:109863. [PMID: 37619657 DOI: 10.1016/j.radonc.2023.109863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
When radiotherapy is used in the treatment of head and neck cancers, the brain commonly receives incidental doses of radiotherapy with potential for neurocognitive changes and subsequent impact on quality of life. This has not been widely investigated to date. A systematic search of MEDLINE, EMBASE, Psycinfo Info and the Cochrane Central Register of Controlled Trials (CENTRAL) electronic databases was conducted. Of 2077 records screened, 20 were eligible comprising 1308 patients. There were no randomised studies and 73.3% of included patients were from single center studies. IMRT was delivered in 72.6% of patients, and chemotherapy used in 61%. There was considerable heterogeneity in methods. Narrative synthesis was therefore carried out. Most studies demonstrated inferior neurocognitive outcomes when compared to control groups at 12 months and beyond radiotherapy. Commonly affected neurocognitive domains were memory and language which appeared related to radiation dose to hippocampus, temporal lobe, and cerebellum. Magnetic Resonance Imaging could be valuable in the detection of early microstructural and functional changes, which could be indicative of future neurocognitive changes. In studies investigating quality of life, the presence of neurocognitive impairment was associated with inferior quality of life outcomes. (Chemo)radiotherapy for head and neck cancer appears to be associated with a risk of long-term neurocognitive impairment. Few studies were identified, with substantial variation in methodology, thus limiting conclusions. High quality large prospective head and neck cancer studies using standardised, sensitive, and reliable neurocognitive tests are needed.
Collapse
Affiliation(s)
| | - Robin Prestwich
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK
| | - Sarah Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research
| | - Emma Hall
- The Institute of Cancer Research, London, UK
| | - John Lilley
- Department of Radiotherapy Physics, Leeds Cancer Centre, Leeds, UK
| | - Matthew Lowe
- Department of Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - David J Thomson
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Finbar Slevin
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Florien Boele
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Louise Murray
- Department of Clinical Oncology, Leeds Cancer Centre, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| |
Collapse
|
11
|
Guan Y, Yu BB, Liu S, Luo HY, Huang ST. Research trends of radiation induced temporal lobe injury in patients with nasopharyngeal carcinoma from 2000 to 2022: a bibliometric analysis. Radiat Oncol 2023; 18:151. [PMID: 37705085 PMCID: PMC10498516 DOI: 10.1186/s13014-023-02345-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND In patients with nasopharyngeal cancer (NPC), radiation-induced temporal lobe injury (TLI) is the most dreaded late-stage complication following radiation therapy (RT). We currently lack a definitive algorithmic administration for this entity. In the meantime, the pathogenesis of TLI and the mechanism-based interventions to prevent or treat this adverse effect remain unknown. To better answer the aforementioned questions, it is necessary to comprehend the intellectual foundations and prospective trends of this field through bibliometric analysis. METHODS Articles were gathered from the Web of Science Core Collection (WoSCC) database between 2000 and 2022. CiteSpace was utilized to create a country/institutional co-authorship network, perform dual-map analysis, and find keywords with citation bursts. VOSviewer was used to build networks based on author co-authorship, journal citation, co-citation analysis of authors, references, and journals, and keyword co-occurrence. RESULTS A total of 140 articles and reviews were included in the final analysis. The number of publications has steadily increased with some fluctuations over the years. The country and institution contributing most to this field are the China and Sun Yat-Sen University. Han Fei was the most prolific author, while Lee Awm was the most frequently cited. The analysis of co-occurrence revealed three clusters, including: "radiation-induced injury or necrosis in NPC," "clinical studies on chemotherapy/radiotherapy complications and survival in recurrent NPC," and "IMRT/chemotherapy outcomes and toxicities in head and neck cancer"). Most recent keyword bursts were "volume," "temporal lobe injury," "toxicities," "model," "survival," "intensity modulated radiotherapy," "induced brain injury," "head and neck cancer," and "temporal lobe." CONCLUSION This study provides some insights of the major areas of interest in the field of radiation-induced TLI in patients with NPC by bibliometric analyses. This study assists scholars in locating collaborators and significant literature in this field, provides guidance for publishing journals, and identifies research hotspots. This analysis acknowledges significant contributions to the discipline and encourages the scientific community to conduct additional research.
Collapse
Affiliation(s)
- Ying Guan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No 71, Hedi Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Bin-Bin Yu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No 71, Hedi Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Shuai Liu
- Department of Radiotherapy Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510655 People’s Republic of China
| | - Han-Ying Luo
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No 71, Hedi Road, Nanning, 530021 Guangxi People’s Republic of China
| | - Shi-Ting Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No 71, Hedi Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
12
|
Chen Y, Zhang Q, Lu T, Hu C, Zong J, Xu Y, Zheng W, Chen L, Lin S, Qiu S, Xu L, Pan J, Guo Q, Lin S. Prioritizing sufficient dose to gross tumor volume over normal tissue sparing in intensity-modulated radiotherapy treatment of T4 nasopharyngeal carcinoma. Head Neck 2023; 45:1130-1140. [PMID: 36856128 DOI: 10.1002/hed.27315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND In intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC), priority is often given minimize dose to the critical organs at risk (OARs) to avoid potential morbid sequelae. However, in T4 NPC, dosimetric inadequacy enforced by dose constraints on OARs may significantly impact tumor control. METHODS This was a single-institute cohort that patients diagnosed between July 2005 and December 2010 with T4 NPC treated with IMRT. All patients were re-classification according to the 7th-AJCC stage. RESULTS Overall, the average doses such as Dmax , D1% , D2% and D1cc for various Central nervous system (CNS) OARs including brainstem, optic nerve, chiasm, temporal lobes and spinal cord were found to exceed published guidelines as RTOG0225. However, no clinical toxicities were seen during the follow-up period except for 13% patients with temporal lobe necrosis. CONCLUSION Our retrospective review showed that its feasible to maximize gross tumor volume dose coverage while exceeding most CNS OAR constraint standards, with ideal local control and no obvious increase of craniocerebral toxicity.
Collapse
Affiliation(s)
- Yanyan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China
| | - Quxia Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Tianzhu Lu
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Cairong Hu
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jingfeng Zong
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yun Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Wei Zheng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Lisha Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Senan Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Luying Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jianji Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
| | - Qiaojuan Guo
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaojun Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
13
|
Zhao F, Yang D, Li X. Effect of radiotherapy interruption on nasopharyngeal cancer. Front Oncol 2023; 13:1114652. [PMID: 37091186 PMCID: PMC10116059 DOI: 10.3389/fonc.2023.1114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the epithelial cells of the nasopharynx with a unique geographic distribution, and is particularly prevalent in East and Southeast Asia. Due to its anatomical location, the surgery is difficult to access and the high sensitivity of nasopharyngeal cancer to radiotherapy (RT) makes it the main treatment modality. Radical radiotherapy is the first-line treatment for early-stage nasopharyngeal carcinoma and the cornerstone of multidisciplinary treatment for patients with locally advanced nasopharyngeal carcinoma. Nevertheless, radiotherapy interruption is inevitable as a consequence of unavoidable factors such as public holidays, machine malfunction, patient compliance, and adverse response to treatment, which in turn leads to a reduction in bioactivity and causes sublethal loss of tumor cells to repair. Unirradiated tumor cells are more likely to repopulate at or near their original fastest growth rate during this interval. If no measures are taken after the radiotherapy interruption, such as increasing the dose of radiotherapy and systemic therapy, the tumor is most likely to go uncontrolled and then progress. This review describes the effects of radiotherapy interruption on nasopharyngeal carcinoma, the mechanism of the effect, and explores the measures that can be taken in response to such interruption.
Collapse
Affiliation(s)
- Fangrui Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dashuai Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Zamora C, Castillo M, Puac-Polanco P, Torres C. Oncologic Emergencies in the Head and Neck. Radiol Clin North Am 2023; 61:71-90. [DOI: 10.1016/j.rcl.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Bao D, Zhao Y, Wu W, Zhong H, Yuan M, Li L, Lin M, Zhao X, Luo D. Added value of histogram analysis of ADC in predicting radiation-induced temporal lobe injury of patients with nasopharyngeal carcinoma treated by intensity-modulated radiotherapy. Insights Imaging 2022; 13:197. [PMID: 36528686 PMCID: PMC9759610 DOI: 10.1186/s13244-022-01338-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND This study evaluated the predictive potential of histogram analysis derived from apparent diffusion coefficient (ADC) maps in radiation-induced temporal lobe injury (RTLI) of nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). RESULTS Pretreatment diffusion-weighted imaging (DWI) of the temporal lobes of 214 patients with NPC was retrospectively analyzed to obtain ADC histogram parameters. Of the 18 histogram parameters derived from ADC maps, 7 statistically significant variables in the univariate analysis were included in the multivariate logistic regression analysis. The final best prediction model selected by backward stepwise elimination with Akaike information criteria as the stopping rule included kurtosis, maximum energy, range, and total energy. A Rad-score was established by combining the four variables, and it provided areas under the curve (AUCs) of 0.95 (95% confidence interval [CI] 0.91-0.98) and 0.89 (95% CI 0.81-0.97) in the training and validation cohorts, respectively. The combined model, integrating the Rad-score with the T stage (p = 0.02), showed a favorable prediction performance in the training and validation cohorts (AUC = 0.96 and 0.87, respectively). The calibration curves showed a good agreement between the predicted and actual RTLI occurrences. CONCLUSIONS Pretreatment histogram analysis of ADC maps and their combination with the T stage showed a satisfactory ability to predict RTLI in NPC after IMRT.
Collapse
Affiliation(s)
- Dan Bao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Yanfeng Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Wenli Wu
- Medical Imaging Center, Liaocheng Tumor Hospital, Shandong, 252000 China
| | - Hongxia Zhong
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Yuan
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Lin Li
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Meng Lin
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Xinming Zhao
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China
| | - Dehong Luo
- grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 China ,grid.506261.60000 0001 0706 7839Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| |
Collapse
|
16
|
Spotted Temporal Lobe Necrosis following Concurrent Chemoradiation Therapy Using Image-Guided Radiotherapy for Nasopharyngeal Carcinoma. Case Rep Otolaryngol 2022; 2022:5877106. [PMID: 36204045 PMCID: PMC9532156 DOI: 10.1155/2022/5877106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background. To explore spotted temporal lobe necrosis (TLN) and changes in brain magnetic resonance imaging (MRI) after image-guided radiotherapy (IGRT) in a patient with nasopharyngeal carcinoma (NPC). Case presentation: a 57-year-old male was diagnosed with stage III NPC, cT1N2M0, in 2017. He underwent concurrent chemoradiation therapy (CCRT) with cisplatin (30 mg/m2) and 5- fluorouracil (5-FU, 500 mg/m2) plus IGRT with 70 Gy in 35 fractions for 7 weeks. The following MRI showed a complete response in the NPC. However, the patient suffered from fainting periodically when standing up approximately 3 years after CCRT. Neck sonography showed mild atherosclerosis (< 15%) of bilateral carotid bifurcations and bilateral small-diameter vertebral arteries, with reduced flow volume. The following MRI showed a 9 mm × 7 mm enhancing lesion in the right temporal lobe without locoregional recurrence, and TLN was diagnosed. The lesion was near the watershed area between the anterior temporal and temporo-occipital arteries. The volume of the necrotic lesion was 0.51 c.c., and the mean dose and Dmax of the lesion were 64.4 Gy and 73.7 Gy, respectively. Additionally, the mean dose, V45, D1 c.c. (dose to 1 ml of the temporal lobe volume), D0.5 c.c. and Dmax of the right and left temporal lobes were 11.1 Gy and 11.4 Gy, 8.5 c.c. and 6.7 c.c., 70.1 Gy and 67.1 Gy, 72.0 Gy and 68.8 Gy, and 74.2 Gy and 72.1 Gy, respectively. Conclusion. Spotted TLN in patients with NPC treated by IGRT may be difficult to diagnose due to a lack of clinical symptoms and radiological signs. Endothelial damage may occur in carotid and vertebral arteries within the irradiated area, affecting the small branches supplying the temporal lobe and inducing spotted TLN. Future research on the relationship between vessels and RT or CCRT and the development of TLN is warranted.
Collapse
|
17
|
Bao D, Zhao Y, Liu Z, Xu H, Zhang Y, Yuan M, Li L, Lin M, Zhao X, Luo D. Magnetic resonance imaging-based radiomics model for predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma after intensity-modulated radiotherapy. Head Neck 2022; 44:2842-2853. [PMID: 36161397 DOI: 10.1002/hed.27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND To develop a model based on magnetic resonance imaging (MRI) radiomics and clinical features for predicting radiation-induced temporal lobe injury (RTLI) in patients with nasopharyngeal carcinoma (NPC) after intensity-modulated radiotherapy (IMRT). METHODS Two hundred and sixteen patients with NPC were retrospectively included. Radiomics features were extracted and selected. The logistic regression analysis was performed for prediction models construction. The area under the receiver operating characteristic curve (AUC) was calculated for performance evaluation. RESULTS Three radiomics features were selected to construct the radiomics signature (AUC of 0.94 and 0.92). The clinical-radiomics model, integrating radiomics signature with T classification, achieved higher predictive performance in the training and validation cohorts (AUC of 0.95 and 0.93), as well as improved accuracy of the classification of RTLI outcomes (net reclassification improvement: 0.711; 95% CI: 0.57-0.86; p < 0.001). CONCLUSIONS The clinical-radiomics model and radiomics signature both showed great performance in predicting RTLI in patients with NPC.
Collapse
Affiliation(s)
- Dan Bao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haijun Xu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Zhang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yuan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Lin
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
18
|
Kang YF, Chen RT, Ding H, Li L, Gao JM, Liu LZ, Zhang YM. Structure–Function Decoupling: A Novel Perspective for Understanding the Radiation-Induced Brain Injury in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2022; 16:915164. [PMID: 35860295 PMCID: PMC9289669 DOI: 10.3389/fnins.2022.915164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Radiation-induced functional and structural brain alterations are well documented in patients with nasopharyngeal carcinoma (NPC), followed by radiotherapy (RT); however, alterations in structure–function coupling remain largely unknown. Herein, we aimed to assess radiation-induced structure–function decoupling and its importance in predicting radiation encephalopathy (RE). We included 62 patients with NPC (22 patients in the pre-RT cohort, 18 patients in the post-RT-RE+ve cohort, and 22 patients in the post-RT-RE–ve cohort). A metric of regional homogeneity (ReHo)/voxel-based morphometry (VBM) was used to detect radiation-induced structure–function decoupling, which was then used as a feature to construct a predictive model for RE. Compared with the pre-RT group, patients in the post-RT group (which included post-RT-RE+ve and post-RT-RE–ve) showed higher ReHo/VBM coupling values in the substantia nigra (SN), the putamen, and the bilateral thalamus and lower values in the brain stem, the cerebellum, the bilateral medial temporal lobes (MTLs), the bilateral insula, the right precentral and postcentral gyri, the medial prefrontal cortex (MPFC), and the left inferior parietal lobule (IPL). In the post-RT group, negative correlations were observed between maximum dosage of RT (MDRT) to the ipsilateral temporal lobe and ReHo/VBM values in the ipsilateral middle temporal gyrus (MTG). Moreover, structure–function decoupling in the bilateral superior temporal gyrus (STG), the bilateral precentral and postcentral gyri, the paracentral lobules, the right precuneus and IPL, and the right MPFC exhibited excellent predictive performance (accuracy = 88.0%) in identifying patients likely to develop RE. These findings show that ReHo/VBM may be a novel effective imaging metric that reflects the neural mechanism underlying RE in patients with NPC.
Collapse
Affiliation(s)
- Ya-fei Kang
- Shaanxi Provincial Key Research Center of Child Mental and Behavioral Health, School of Psychology, Shaanxi Normal University, Xi’an, China
| | - Rui-ting Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Ding
- Department of Radiology, Affiliated Hospital of Guilin Medical University, Guilin, China
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Li Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-ming Gao
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-zhi Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - You-ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: You-ming Zhang,
| |
Collapse
|
19
|
A MRI-based radiomics model predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma. Eur Radiol 2022; 32:6910-6921. [PMID: 35639143 DOI: 10.1007/s00330-022-08853-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To develop and validate a radiomics-based model for predicting radiation-induced temporal lobe injury (RTLI) in nasopharyngeal carcinoma (NPC) by pretreatment MRI of the temporal lobe. METHODS A total of 216 patients with diagnosed NPC were retrospectively reviewed. Patients were randomly allocated to the training (n = 136) and the validation cohort (n = 80). Radiomics features were extracted from pretreatment contrast-enhanced T1- or fat-suppressed T2 weighted MRI. A radiomics signature was generated by the least absolute shrinkage and selection operator (LASSO) regression algorithm, Pearson correlation analysis, and univariable logistic analysis. Clinical features were selected with logistic regression analysis. Multivariable logistic regression analysis was conducted to develop three models for RTLI prediction in the training cohort: namely radiomics signature, clinical variables, and clinical-radiomics parameters. A radiomics nomogram was used and assessed with respect to calibration, discrimination, reclassification, and clinical application. RESULTS The radiomics signature, composed of two radiomics features, was significantly associated with RTLI. The proposed radiomics model demonstrated favorable discrimination in both the training (AUC, 0.89) and the validation cohort (AUC, 0.92), outperforming the clinical prediction model (p < 0.05). Combining radiomics and clinical features, higher AUCs were achieved (AUC, 0.93 and 0.95), as well as a better calibration and improved accuracy of the prediction of RTLI. The clinical-radiomics model showed also excellent performance in predicting RTLI in different clinical-pathologic subgroups. CONCLUSION A radiomics model derived from pretreatment MRI of the temporal lobe showed persuasive performance for predicting radiation-induced temporal lobe injury in nasopharyngeal carcinoma. KEY POINTS • Radiomics features from pretreatment MRI are associated with radiation-induced temporal lobe injury in nasopharyngeal carcinoma. • The radiomics model shows better predictive performance than a clinical model and was similar to a clinical-radiomics model. • A clinical-radiomics model shows excellent performance in the prediction of radiation-induced temporal lobe injury in different clinical-pathologic subgroups.
Collapse
|
20
|
Ng SP, Corry J, Ng WT. The Janus Face in Defining the Optimal Radiation Dose for Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2022; 113:114-116. [DOI: 10.1016/j.ijrobp.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/08/2022]
|
21
|
Engeseth GM, Hysing LB, Yepes P, Pettersen HES, Mohan R, Fuller CD, Stokkevåg CH, Wu R, Zhang X, Frank SJ, Gunn GB. Impact of RBE variations on risk estimates of temporal lobe necrosis in patients treated with intensity-modulated proton therapy for head and neck cancer. Acta Oncol 2022; 61:215-222. [PMID: 34534047 PMCID: PMC9969227 DOI: 10.1080/0284186x.2021.1979248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Temporal lobe necrosis (TLN) is a potential late effect after radiotherapy for skull base head and neck cancer (HNC). Several photon-derived dose constraints and normal tissue complication probability (NTCP) models have been proposed, however variation in relative biological effectiveness (RBE) may challenge the applicability of these dose constraints and models in proton therapy. The purpose of this study was therefore to investigate the influence of RBE variations on risk estimates of TLN after Intensity-Modulated Proton Therapy for HNC. MATERIAL AND METHODS Seventy-five temporal lobes from 45 previously treated patients were included in the analysis. Sixteen temporal lobes had radiation associated Magnetic Resonance image changes (TLIC) suspected to be early signs of TLN. Fixed (RWDFix) and variable RBE-weighed doses (RWDVar) were calculated using RBE = 1.1 and two RBE models, respectively. RWDFix and RWDVar for temporal lobes were compared using Friedman's test. Based on RWDFix, six NTCP models were fitted and internally validated through bootstrapping. Estimated probabilities from RWDFix and RWDVar were compared using paired Wilcoxon test. Seven dose constraints were evaluated separately for RWDFix and RWDVar by calculating the observed proportion of TLIC in temporal lobes meeting the specific dose constraints. RESULTS RWDVar were significantly higher than RWDFix (p < 0.01). NTCP model performance was good (AUC:0.79-0.84). The median difference in estimated probability between RWDFix and RWDVar ranged between 5.3% and 20.0% points (p < 0.01), with V60GyRBE and DMax at the smallest and largest differences, respectively. The proportion of TLIC was higher for RWDFix (4.0%-13.1%) versus RWDVar (1.3%-5.3%). For V65GyRBE ≤ 0.03 cc the proportion of TLIC was less than 5% for both RWDFix and RWDVar. CONCLUSION NTCP estimates were significantly influenced by RBE variations. Dmax as model predictor resulted in the largest deviations in risk estimates between RWDFix and RWDVar. V65GyRBE ≤ 0.03 cc was the most consistent dose constraint for RWDFix and RWDVar.
Collapse
Affiliation(s)
- Grete May Engeseth
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA,Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Clinical Science, Bergen, Norway,Corresponding author: Grete May Engeseth, , Haukeland University Hospital, Department of Oncology and Medical Physics, Postboks 1400, 5021 Bergen
| | - Liv Bolstad Hysing
- Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Physics and Technology, Bergen, Norway
| | - Pablo Yepes
- Rice University, Physics and Astronomy Department, Houston, USA
| | | | - Rahde Mohan
- University of Texas MD Anderson Cancer Center, Department of Radiation Physics, Houston, USA
| | - Clifton Dave Fuller
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Camilla Hanquist Stokkevåg
- Haukeland University Hospital, Department of Oncology and Medical Physics, Bergen, Norway,University of Bergen, Department of Physics and Technology, Bergen, Norway
| | - Richard Wu
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Xiaodong Zhang
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Steven Jay Frank
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| | - Gary Brandon Gunn
- University of Texas MD Anderson Cancer Center, Department of Radiation Oncology, Houston, USA
| |
Collapse
|
22
|
Treatment of Radiation-Induced Brain Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:4793517. [PMID: 34976300 PMCID: PMC8720020 DOI: 10.1155/2021/4793517] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Radiation-induced brain necrosis (RBN) is a serious complication of intracranial as well as skull base tumors after radiotherapy. In the past, due to the lack of effective treatment, radiation brain necrosis was considered to be progressive and irreversible. With better understanding in histopathology and neuroimaging, the occurrence and development of RBN have been gradually clarified, and new treatment methods are constantly emerging. In recent years, some scholars have tried to treat RBN with bevacizumab, nerve growth factor, and gangliosides and have achieved similar results. Some cases of brain necrosis can be repairable and reversible. We aimed to summarize the incidence, pathogenesis, and treatment of RBN.
Collapse
|
23
|
Kong FF, Ni MS, Zhai RP, Ying HM, Hu CS. Local control and failure patterns after intensity modulated radiotherapy with reduced target volume delineation after induction chemotherapy for patients with T4 nasopharyngeal carcinoma. Transl Oncol 2021; 16:101324. [PMID: 34953342 PMCID: PMC8715109 DOI: 10.1016/j.tranon.2021.101324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/08/2022] Open
Abstract
Induction chemotherapy combined with radiotherapy achieved excellent local control. In-field recurrence is major local failure pattern for T4 nasopharyngeal carcinoma. Radiotherapy with reduced target volume after induction chemotherapy is feasible.
Background The delineation of target volume after induction chemotherapy(IC) for nasopharyngeal carcinoma(NPC) is currently controversial. In this study, we aimed to analyze the long-term local control(LC) and failure patterns of T4 NPC treated with reduced target volume radiotherapy after IC. Methods From September 2007 to January 2013, 145 patients with T4 NPC were retrospectively reviewed. All patients received at least 1 cycle of IC followed by intensity modulated radiotherapy(IMRT). The gross tumor volume(GTV) was delineated according to the post-IC images for intracavity tumors and lymph nodes. The LC and overall survival (OS) rates were calculated using the Kaplan-Meier method. The location and extent of local failures were transferred to the pretreatment planning computed tomography (CT) for dosimetric analysis. Results With a median follow-up time of 95 months (range, 16–142 months), 23 local failures were found. The estimated 10-year LC and OS rates were 81.1%and 54.8% respectively. Among the 20 local failures with available diagnostic images, 18(90%) occurred within the 95% isodose lines and were considered in-field failures and 2(10%) were marginal. There was no outside-field failure. Conclusions In-field failure was the major pattern of local failure for T4 NPC. IMRT with reduced target volume after IC seems to be feasible. Further researches exploring optimal volume and radiation dose for local advanced NPC in the era of IC are warranted.
Collapse
Affiliation(s)
- Fang-Fang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, PR China
| | - Meng-Shan Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, PR China
| | - Rui-Ping Zhai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, PR China
| | - Hong-Mei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, PR China.
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 20032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 20032, PR China.
| |
Collapse
|
24
|
Imaging of Complications of Chemoradiation. Neuroimaging Clin N Am 2021; 32:93-109. [PMID: 34809846 DOI: 10.1016/j.nic.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoradiation for head and neck cancer is associated with a variety of early and late complications. Toxicities may affect the aero-digestive tract (mucositis, salivary gland injury), regional osseous and cartilaginous structures (osteoradionecrosis (ORN) and chondronecrosis), vasculature (progressive radiation vasculopathy and carotid blow out syndromes), and neural structures (optic neuritis, myelitis, and brain injury). These may be difficult to distinguish from tumor recurrence on imaging, and may necessitate the use of advanced MRI and molecular imaging techniques to reach the correct diagnosis. Secondary radiation-induced malignancies include thyroid cancer and a variety of sarcomas that may manifest several years after treatment. Checkpoint inhibitors can cause a variety of adverse immune events, including autoimmune hypophysitis and encephalitis.
Collapse
|
25
|
Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, Xin Y, Jiang X. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 2021; 32:319-330. [PMID: 34327577 DOI: 10.1007/s00330-021-08164-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is an effective treatment for head and neck cancer (HNC). Radiation-induced temporal lobe injury (TLI) is a serious complication of RT. Late symptoms of radiation-induced TLI are irreversible and manifest as memory loss, cognitive impairment, and even temporal lobe necrosis (TLN). It is currently believed that the mechanism of radiation-induced TLI involves microvascular injury, neuron and neural stem cell injury, glial cell damage, inflammation, and the production of free radicals. Significant RT-related structural changes and dose-dependent changes in gray matter (GM) and white matter (WM) volume and morphology were observed through computed tomography (CT) and magnetic resonance imaging (MRI) which were common imaging assessment tools. Diffusion tensor imaging (DTI), dispersion kurtosis imaging (DKI), susceptibility-weighted imaging (SWI), resting-state functional magnetic resonance (rs-fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) can be used for early diagnosis and prognosis evaluation according to functional, molecular, and cellular processes of TLI. Early diagnosis of TLI is helpful to reduce the incidence of TLN and its related complications. This review summarizes the clinical features, mechanisms, and imaging of radiation-induced TLI in HNC patients. KEY POINTS: • Radiation-induced temporal lobe injury (TLI) is a clinical complication and its symptoms mainly include memory impairment, headache, and cognitive impairment. • The mechanisms of TLI include microvascular injury, cell injury, and inflammatory and free radical injury. Significant RT-related structural changes and dose-dependent changes in TL volume and morphology were observed through CT and MRI. • SWI, MRS, DTI, and DKI and other imaging examinations can detect anatomical and functional, molecular, and cellular changes of TLI.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Kong F, Zhai R, Huang J, Ying H, Hu C. Long-Term Results of Intensity-Modulated Radiotherapy for T4 Nasopharyngeal Carcinoma: New Insight into the Value of Concurrent Chemotherapy. Cancer Invest 2021; 39:645-652. [PMID: 34182848 DOI: 10.1080/07357907.2021.1948563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the study was to report long-term results of intensity-modulated radiotherapy for patients with T4 classification nasopharyngeal carcinoma (NPC). From September 2007 to January 2013, 155 patients were retrospectively analyzed. The estimated 10-year local recurrent-free survival (LRFS), regional recurrent-free survival (RRFS), distant metastasis-free survival (DMFS), and overall survival (OS) rates were 79.4%, 93.2%, 69.0%, and 54.2%, respectively. Cycle number of chemotherapy was a significant predictor of LRFS, OS, and progression-free survival. There was no significant difference in survival rates between patients treated with induction chemotherapy (IC) plus concurrent chemoradiotherapy (CCRT) and patients with IC plus IMRT and adjuvant chemotherapy (AC).
Collapse
Affiliation(s)
- Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Ruiping Zhai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Juan Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Chaosu Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
27
|
Holtzman AL, Rotondo RL, Rutenberg MS, Indelicato DJ, De Leo A, Rao D, Patel J, Morris CG, Mendenhall WM. Clinical Outcomes Following Dose-Escalated Proton Therapy for Skull-Base Chordoma. Int J Part Ther 2021; 8:179-188. [PMID: 34285945 PMCID: PMC8270096 DOI: 10.14338/ijpt-20-00066.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/04/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose To evaluate the effectiveness of external-beam proton therapy (PT) on local control and survival in patients with skull-base chordoma. Materials and Methods We reviewed the medical records of patients with skull-base chordoma treated with definitive or adjuvant high-dose PT and updated their follow-up when feasible. We assessed overall survival, disease-specific survival, local control, and freedom from distant metastasis. Radiotherapy toxicities were scored using the Common Terminology Criteria for Adverse Events, version 4.0. Results A total 112 patients were analyzed, of whom 105 (94%) received PT and 7 (6%) received combined proton-photon therapy between 2007 and 2019. Eighty-seven patients (78%) underwent a subtotal resection, 22 (20%) a gross total resection, and 3 (3%) a biopsy alone. The median radiotherapy dose was 73.8 Gy radiobiologic equivalent (GyRBE; range, 69.6-74.4). Ninety patients (80%) had gross disease at radiotherapy and 7 (6%) were treated for locally recurrent disease following surgery. Median follow-up was 4.4 years (range, 0.4-12.6); for living patients, it was 4.6 years (range, 0.4-12.6), and for deceased patients, 4.1 years (range, 1.2-11.2). At 5 years after radiotherapy, the actuarial overall survival, disease-specific survival, local control, and freedom from distant metastasis rates were 78% (n = 87), 83% (n = 93), 74% (n = 83), and 99% (n = 111), respectively. The median time to local progression was 2.4 years (range, 0.8-7). Local control and disease-specific survival by resection status was 95% versus 70% (P = 0.28) and 100% versus 80% (P = 0.06) for gross total, versus subtotal, resection or biopsy alone, respectively. There were no serious acute toxicities (grade ≥ 3) related to radiotherapy. Conclusion High-dose PT alone or after surgical resection for skull-base chordoma reaffirms the favorable 5-year actuarial local control rate compared with conventional techniques with acceptable late-complication–free survival. Outcomes following gross total resection and adjuvant PT were excellent. Further follow-up of this cohort is necessary to better characterize long-term disease control and late toxicities.
Collapse
Affiliation(s)
- Adam L Holtzman
- Department of Radiation Oncology University of Florida College of Medicine, Jacksonville, FL, USA
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Kansas, Kansas City, KS, USA
| | - Michael S Rutenberg
- Department of Radiation Oncology University of Florida College of Medicine, Jacksonville, FL, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology University of Florida College of Medicine, Jacksonville, FL, USA
| | - Alexandra De Leo
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Dinesh Rao
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Jeet Patel
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Christopher G Morris
- Department of Radiation Oncology University of Florida College of Medicine, Jacksonville, FL, USA
| | - William M Mendenhall
- Department of Radiation Oncology University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
28
|
Du QH, Gan YX, Wang RS, Liu WQ, Li J, Liang FF, Li XD, Zhu HJ, Ou X, Zhong QL, Luo DJ, Zhu ZP, Zhu SY. Half-Brain Delineation for Prediction of Radiation-Induced Temporal Lobe Injury in Nasopharyngeal Carcinoma Receiving Intensity-Modulated Radiotherapy. Front Oncol 2021; 11:599942. [PMID: 33868994 PMCID: PMC8047307 DOI: 10.3389/fonc.2021.599942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/15/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose To investigate the role of half-brain delineation in the prediction of radiation-induced temporal lobe injury (TLI) in nasopharyngeal carcinoma (NPC) receiving intensity-modulated radiotherapy (IMRT). Methods and Materials A total of 220 NPC cases treated with IMRT and concurrent platinum-based chemotherapy were retrospectively analyzed. Dosimetric parameters of temporal lobes, half-brains, and brains included maximum dose (Dmax), doses covering certain volume (DV) from 0.03 to 20 cc and absolute volumes receiving specific dose (VD) from 40 to 80 Gy. Inter-structure variability was assessed by coefficients of variation (CV) and paired samples t-tests. Receiver operating characteristic curve (ROC) and Youden index were used for screening dosimetric parameters to predict TLI. Dose/volume response curve was calculated using the logistic dose/volume response model. Results CVs of brains, left/right half-brains, and left/right temporal lobes were 9.72%, 9.96%, 9.77%, 27.85%, and 28.34%, respectively. Each DV in temporal lobe was significantly smaller than that in half-brain (P < 0.001), and the reduction ranged from 3.10% to 45.98%. The area under the curve (AUC) of DV and VD showed an "increase-maximum-decline" behavior with a peak as the volume or dose increased. The maximal AUCs of DVs in brain, half-brain and temporal lobe were 0.808 (D2cc), 0.828 (D1.2cc) and 0.806 (D0.6cc), respectively, and the maximal AUCs of VDs were 0.818 (D75Gy), 0.834 (V72Gy) and 0.814 (V70Gy), respectively. The cutoffs of V70Gy (0.86 cc), V71Gy (0.72 cc), V72Gy (0.60 cc), and V73Gy (0.45 cc) in half-brain had better Youden index. TD5/5 and TD50/5 of D1.2cc were 58.7 and 80.0 Gy, respectively. The probability of TLI was higher than >13% when V72Gy>0 cc, and equal to 50% when V72Gy = 7.66 cc. Conclusion Half-brain delineation is a convenient and stable method which could reduce contouring variation and could be used in NPC patients. D1.2cc and V72Gy of half-brain are feasible for TLI prediction model. The dose below 70 Gy may be relatively safe for half-brain. The cutoff points of V70-73Gy could be considered when the high dose is inevitable.
Collapse
Affiliation(s)
- Qing-Hua Du
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi-Xiu Gan
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ren-Sheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wen-Qi Liu
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei-Fei Liang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang-De Li
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui-Jun Zhu
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Ou
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiu-Lu Zhong
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan-Jing Luo
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhi-Peng Zhu
- Department of Radiation Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shang-Yong Zhu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
29
|
Chen X, Ren L, Qiu G, Cao L. Long-term recurrence and brain metastasis of nasopharyngeal carcinoma mimicking cystic radiation encephalopathy relapse: a case report. BMC Neurol 2021; 21:59. [PMID: 33557786 PMCID: PMC7869473 DOI: 10.1186/s12883-021-02088-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During medical imaging, cystic radiation encephalopathy and brain metastasis are difficult to differentiate, and hence they are easily misdiagnosed. To our knowledge, a nasopharyngeal carcinoma recurrence after more than seven years with cerebral metastasis that mimicked cystic radiation encephalopathy has not been reported. CASE PRESENTATION A 52-year-old man was admitted to the hospital owing to weakness of the right limb for one month, which increased in intensity for three days. He had been diagnosed with nasopharyngeal carcinoma in 2011, which was treated by radiotherapy. The patient successively developed cystic radiation encephalopathy and brain metastasis from the nasopharyngeal carcinoma, which mimicked cystic radiation encephalopathy relapse. Left frontotemporal craniotomy, surgical resection of brain metastasis, and repair of the skull base and dura were performed. Postoperative computed tomography showed that midline deviation recovered, and brain edema was reduced. CONCLUSIONS This report is significant because brain metastasis from nasopharyngeal carcinoma can masquerade as a benign entity and cause fatal consequences. In patients presenting with cystic radiation encephalopathy, brain metastasis should be considered as a differential diagnosis.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, 518000, Shenzhen, China
| | - Lijie Ren
- Department of Neurology, Shenzhen University First Affiliated Hospital, 3002 Sungang West Road, Futian District, 518000, Shenzhen, China.,Department of Neurology, Shenzhen Second People's Hospital, 518000, Shenzhen, China
| | - Guozhen Qiu
- Department of Neurology, The 3rd Affiliated Hospital of Shenzhen University, 518000, Shenzhen, China
| | - Liming Cao
- Department of Neurology, Shenzhen University First Affiliated Hospital, 3002 Sungang West Road, Futian District, 518000, Shenzhen, China. .,Department of Neurology, The 3rd Affiliated Hospital of Shenzhen University, 518000, Shenzhen, China.
| |
Collapse
|
30
|
Li Z, Zhan Z, Xiao J, Lan Y. Radiation-Induced Optical Coherence Tomography Angiography Retinal Alterations in Patients With Nasopharyngeal Carcinoma. Front Med (Lausanne) 2021; 7:630880. [PMID: 33614678 PMCID: PMC7886685 DOI: 10.3389/fmed.2020.630880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of the study was to investigate the early neurovascular alterations of the retina in radiation encephalopathy (RE) patients with normal-ranged visual acuity after radiotherapy for nasopharyngeal carcinoma. Methods: Fifty-five RE patients and 54 healthy age-matched subjects were enrolled in this retrospective cross-sectional case–control study. The best corrected visual acuity (LogMAR) of the included eye should not be more than 0. The vessel density and thickness of different locations in the retina were acquired automatically using optical coherence tomography angiography (OCTA). The data were then compared between the RE patients and the controls. The location included the whole retina, the superficial vascular plexus (SVP)/the ganglion cell complex (GCC), the deep vascular plexus (DVP), and the choroid in the macular area, as well as the inside disc and peripapillary area in the optic nerve head (ONH). The risk factors in OCTA retinal impairments were analyzed using a backward multiple linear regression. The relationships between mean deviation (MD) and pattern standard deviation (PSD) in the visual field (VF) and the OCTA parameters were also analyzed in RE patients. Results: The vessel density of the GCC was significantly reduced in RE patients compared with controls (p = 0.018), and the reductions were mainly shown in the parafoveal (p = 0.049) and perifoveal fields (p = 0.006). The thickness of the GCC was correspondingly reduced (whole image GCC mean thickness: p = 0.044; parafoveal thickness: p = 0.038; perifoveal thickness: p = 0.038). In addition, the sub-foveal choroidal thickness (p = 0.039) was also reduced in RE patients. The vessel density of the GCC (R2 = 0.643) and DVP (R2 = 0.777) had a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (ApoA1) and had a significant negative correlation with age (GCC: HDL-C, β = 29.89, p = 0.005; ApoA1, β = 78.92, p = 0.002; age, β = −0.886, p = 0.001; DVP: HDL-C, β = 40.09, p = 0.003; ApoA1, β = 62.65, p = 0.013; age, β = −1.31, p = 0.001). The vessel density of the GCC also had a significant negative correlation with apolipoprotein B (ApoB) (β = −32.18, p = 0.006). In the VF, MD had a significant positive correlation with the vessel density inside disc (R2 = 0.241, β = 0.304, p = 0.045), whereas PSD showed a significant negative correlation with the vessel density inside disc and the average GCC thickness, respectively (R2 = 0.437; vessel density inside disc, β = −0.358, p = 0.004; average GCC thickness, β = −0.510, p < 0.001). Conclusion: With the aid of OCTA, we found that neurovascular alterations of the retina may exist in RE patients with normal-ranged visual acuity. Herein, we suggest the implementation of OCTA to assist ophthalmologists in the early detection and consistent monitoring of radiation-related eye diseases to avoid delayed diagnosis.
Collapse
Affiliation(s)
- Zijing Li
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongyi Zhan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhui Xiao
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Lan
- Department of Ophthalmology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Zhou X, Liu P, Wang X. Temporal Lobe Necrosis Following Radiotherapy in Nasopharyngeal Carcinoma: New Insight Into the Management. Front Oncol 2021; 10:593487. [PMID: 33552967 PMCID: PMC7859432 DOI: 10.3389/fonc.2020.593487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is one of the most prominent sequelae following radiation therapy for nasopharyngeal carcinoma (NPC), which might have devastating effects on patients' quality of life (QOL). Advances in histopathology and neuro-radiology have shed light on the management of CRN more comprehensively, yet effective therapeutic interventions are still lacking. CRN was once regarded as progressive and irreversible, however, in the past 20 years, with the application of intensity-modulated radiation therapy (IMRT), both the incidence and severity of CRN have declined. In addition, newly developed medical agents including bevacizumab-a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), nerve growth factor (NGF), monosialotetrahexosylganglioside (GM1), etc., have shown great potency in successfully reversing radiation-induced CRN. As temporal lobes are most frequently compromised in NPC patients, this review will summarize the state-of-the-art progress regarding the incidence, pathophysiology, prevention, treatment, and prognosis of temporal lobe necrosis (TLN) after IMRT in NPC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Guan W, Xie K, Fan Y, Lin S, Huang R, Tang Q, Chen A, Song Y, Lang J, Zhang P. Development and Validation of a Nomogram for Predicting Radiation-Induced Temporal Lobe Injury in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:594494. [PMID: 33363025 PMCID: PMC7761292 DOI: 10.3389/fonc.2020.594494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background The purpose was to develop and validate a nomogram for prediction on radiation-induced temporal lobe injury (TLI) in patients with nasopharyngeal carcinoma (NPC). Methods The prediction model was developed based on a primary cohort that consisted of 194 patients. The data was gathered from January 2008 to December 2010. Clinical factors associated with TLI and dose–volume histograms for 388 evaluable temporal lobes were analyzed. Multivariable logistic regression analysis was used to develop the predicting model, which was conducted by R software. The performance of the nomogram was assessed with calibration and discrimination. An external validation cohort contained 197 patients from January 2011 to December 2013. Results Among the 391 patients, 77 patients had TLI. Prognostic factors contained in the nomogram were Dmax (the maximum point dose) of temporal lobe, D1cc (the maximum dose delivered to a volume of 1 ml), T stage, and neutrophil-to-lymphocyte ratios (NLRs). The Internal validation showed good discrimination, with a C-index of 0.847 [95%CI 0.800 to 0.893], and good calibration. Application of the nomogram in the external validation cohort still obtained good discrimination (C-index, 0.811 [95% CI, 0.751 to 0.870]) and acceptable calibration. Conclusions This study developed and validated a nomogram, which may be conveniently applied for the individualized prediction of TLI.
Collapse
Affiliation(s)
- Wenqiang Guan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Department of Oncology, The Second People's Hospital of Yibin, Yibin, China
| | - Kang Xie
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,The Second Department of Oncology, Chengdu First People's Hospital, Chengdu, China
| | - Yixin Fan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Stefan Lin
- Department of Computer Science and Engineering, Office for Student Affairs, School of Statistics, Economics Institute, University of Minnesota-Twin Cities, Minneapolis, MN, United States.,Viterbi School of Engineering Applied Data Science, University of Southern California, Los Angeles, CA, United States
| | - Rui Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianlong Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Ailin Chen
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yanqiong Song
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
33
|
Li S, Shen L. Impact of tumor volume enlargement after induction chemotherapy on subsequent radiotherapy in locally advanced nasopharyngeal carcinoma: A propensity-score matching analysis. Cancer Med 2020; 9:8832-8843. [PMID: 33022902 PMCID: PMC7724294 DOI: 10.1002/cam4.3494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 12/27/2022] Open
Abstract
A small proportion of nasopharyngeal carcinoma (NPC) patients show resistance to induction chemotherapy (IC). This study sought to investigate the impact of tumor volume enlargement after IC on the dosimetric parameters of subsequent radiotherapy. The records of a total of 240 locally advanced NPC patients who received IC followed by concurrent chemoradiotherapy were retrospectively reviewed. Patients with a tumor volume enlargement of ≥10% and patients with a tumor volume reduction of ≥10% after induction chemotherapy were classified as the enlargement group and the control group, respectively. The dosimetric parameters of the planning target volumes (PTVs) and the organs at risk (OARs) were compared between the matched groups after propensity score matching (PSM). For the gross tumor volume of nasopharynx (GTVnx), 21 patients and 127 patients were classified as the enlargement group and the control group, respectively. After matching, 20 sub-pairs of 40 patients were generated in the post-PSM cohort. The GTVnx enlargement group exhibited no significant disadvantages in all of the dosimetric parameters, except in the planning organ-at-risk volume (PRV) of contralateral lens (Dmax, 722 cGy vs. 634 cGy, p = 0.041). For the gross tumor volume of lymph nodes (GTVnd), 44 patients and 144 patients were classified as the enlargement group and the control group, respectively. After matching, 39 sub-pairs of 78 patients were generated in the post-PSM cohort. The GTVnd enlargement group exhibited no significant disadvantages in all of the dosimetric parameters. Univariate and multivariate analyses showed that the enlargement of GTVnx and the enlargement of GTVnd were not independently associated with any of the dosimetric parameters. A tumor volume enlargement of ≥10% in GTVnx or GTVnd after induction chemotherapy has no significant impact on the dosimetric parameters of subsequent radiotherapy in locally advanced NPC.
Collapse
Affiliation(s)
- Shan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
34
|
Wu VWC, Tam SY. Radiation induced temporal lobe necrosis in nasopharyngeal cancer patients after radical external beam radiotherapy. Radiat Oncol 2020; 15:112. [PMID: 32414378 PMCID: PMC7227265 DOI: 10.1186/s13014-020-01560-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Radiation-induced temporal lobe necrosis (TLN) is one of the late post-radiotherapy complications in nasopharyngeal cancer (NPC) patients. Since NPC is common to have skull base infiltration, irradiation of the temporal lobes is inevitable despite the use of the more advanced intensity-modulated radiotherapy (IMRT). Moreover, the diagnosis and treatment of TLN remain challenging. In this review, we discuss the diagnosis of TLN with conventional and advanced imaging modalities, onset and predictive parameters of TLN development, the impact of IMRT on TLN in terms of incidence and dosimetric analyzes, and the recent advancements in the treatment of TLN.
Collapse
Affiliation(s)
- Vincent W C Wu
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Shing-Yau Tam
- Department of Health Technology & Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
35
|
Liu P, Niu X, Ou D, Qiu J, Lou P, Xue L, Zhou X, Xu T, Wang X. Dynamic Changes in Cognitive Function in Patients With Radiation-Induced Temporal Lobe Necrosis After IMRT for Nasopharyngeal Cancer. Front Oncol 2020; 10:450. [PMID: 32391255 PMCID: PMC7188760 DOI: 10.3389/fonc.2020.00450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose: Radiation-induced temporal lobe necrosis (TLN) was once regarded as a progressive and irreversible disease in the era of two-dimensional radiotherapy. However, in the era of intensity-modulated radiotherapy (IMRT), the long-term development process of TLN remains unknown. We performed a prospective study to evaluate the dynamic changes in cognitive function in patients with TLN after definitive IMRT for nasopharyngeal carcinoma (NPC). Methods: The enrollment criteria were as follows: (1) patients must have had confirmed NPC and must have received only one course of definitive IMRT; (2) patients radiologically diagnosed with TLN during follow-up; (3) patients with TLN who had not undergone surgical resection; and (4) patients with TLN with a follow-up period of more than 2 years. Cognitive function was measured with the mini-mental state examination (MMSE) at an interval of every 3 months. Changes in the size of the necrotic mass in the temporal lobe were evaluated by magnetic resonance imaging. The treatment interventions included the wait-and-see policy or the administration of nerve growth factor (NGF) combined with pulsed steroids. Results: From January 2008 to December 2017, 86 patients with TLN entered this study. With a median follow-up of 32 months (26–50 months), 60 patients (70%) showed normal cognitive function as quantified by MMSE scores (≥27). Twenty-six patients (30%) demonstrated obvious cognitive impairment (MMSE scores ≤ 26) during follow-up. However, after receiving NGF combined with pulsed steroids, cognitive function improved significantly, and 21 of 26 patients demonstrated recovery to normal levels. Magnetic resonance imaging studies demonstrated that 10 patients had a complete response (CR), 13 had a partial response, and 3 had stable disease. Conclusions: In the IMRT era, TLN is not always a progressive disease. Most patients remain stable both in their cognitive function and in the size of the necrotic mass. For patients with progressive TLN, active intervention with the administration of NGF and pulsed steroids not only can improve cognitive function but also can decrease the size of the necrotic mass.
Collapse
Affiliation(s)
- PeiYao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - XiaoShuang Niu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - JianJian Qiu
- Department of Radiation Therapy, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - PengRong Lou
- Center of Chemoradio-Oncology, Ningbo First Hospital, Ningbo, China
| | - LiangJun Xue
- Department of Radiation Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Xu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - XiaoShen Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Yin G, Tu B, Ye L. Correlation of intensity-modulated radiation therapy at a specific radiation dose with the prognosis of nasal mucous damage after radiotherapy. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:245-255. [PMID: 32030481 DOI: 10.1007/s00411-020-00830-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Objective of the present study was to investigate the tolerant radiation dose of nasal mucosa by observing and analyzing patients who received intensity-modulated radiation therapy (IMRT). Patients with nasopharyngeal carcinoma (N = 66) were selected for this study. The modified saccharin assay, endoscopy test, magnetic resonance imaging, and sino-nasal outcome test-20 (SNOT-20) survey were performed for the patients before and at 0 (T0), 3 (T1), 6 (T2), and 12 (T3) months after radiotherapy. The threshold doses of IMRT before radiotherapy and at T0, T1, T2, and T3 were determined as, respectively, 37 Gy, 37 Gy, 39 Gy, and 37 Gy for the saccharin test; 38 Gy, 37 Gy, 40 Gy, and 38 Gy for the endoscopy test; and 39 Gy, 37 Gy, 39 Gy, and 39 Gy for the nasal-related symptom scoring test. The modified saccharin assay, endoscopy test, and SNOT-20 survey revealed that a low dose (< threshold dose) of IMRT was associated with higher mucocilia transport rate (MRT), better endoscopy test score, and improved SNOT-20 score. The patients who received IMRT at a dose less than the threshold had the least damaged nasal mucosa morphology, and functional impairment scores were highest at T1 of IMRT. We conclude that nasal mucosa showed the most serious damage within 3 months after IMRT. If the radiation dose can be controlled within the threshold, the nasal mucosa can recover in the following few months, but recovery will be difficult otherwise.
Collapse
Affiliation(s)
- Gendi Yin
- Department of Otolaryngology and Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Bo Tu
- Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Ji Nan University, Guangzhou, 510632, Guangdong, China
| | - Ling Ye
- Department of Oncology, The First Affiliated Hospital of Ji Nan University, No. 613 Huang Pu Road west, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
37
|
Slevin F, Pan S, Mistry H, Sen M, Foran B, Slevin N, Dixon L, Thomson D, Prestwich R. A Multicentre UK Study of Outcomes of Nasopharyngeal Carcinoma Treated With Intensity-Modulated Radiotherapy ± Chemotherapy. Clin Oncol (R Coll Radiol) 2019; 32:238-249. [PMID: 31813661 DOI: 10.1016/j.clon.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022]
Abstract
AIMS To report the outcomes of nasopharyngeal carcinoma in adults across three large centres in a non-endemic region in the era of intensity-modulated radiotherapy (IMRT). MATERIALS AND METHODS Adult patients with nasopharyngeal carcinoma treated in three large cancer centres with IMRT ± chemotherapy with curative intent between 2009 and 2016 were identified from institutional databases. Radiotherapy was delivered with 70 Gy in 33-35 daily fractions. A univariable analysis was carried out to evaluate the relationship of patient, tumour and treatment factors with progression-free survival (PFS) and overall survival. RESULTS In total, 151 patients were identified with a median follow-up of 5.2 years. The median age was 52 years (range 18-85). Seventy-five per cent were of Caucasian origin; 75% had non-keratinising tumours; Epstein Barr virus status was only available in 23% of patients; 74% of patients had stage III or IV disease; 54% of patients received induction chemotherapy; 86% of patients received concurrent chemotherapy. Five-year overall survival, PFS, local disease-free survival, regional disease-free survival and distant disease-free survival were 70%, 65%, 91%, 94% and 82%, respectively. Keratinising squamous cell carcinoma, older age, worse performance status, smoking and alcohol intake were associated with inferior overall survival and PFS. CONCLUSIONS Local, regional and distant disease control are relatively high following IMRT ± chemotherapy in a non-endemic population. There was considerable heterogeneity in terms of radiotherapy treatment and the use of chemotherapy, encouraging the development of treatment protocols and expert peer review in non-endemic regions.
Collapse
Affiliation(s)
- F Slevin
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - S Pan
- The Christie NHS Foundation Trust, Manchester, UK
| | - H Mistry
- University of Manchester, Manchester, UK
| | - M Sen
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - B Foran
- Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - N Slevin
- The Christie NHS Foundation Trust, Manchester, UK
| | - L Dixon
- Weston Park Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - D Thomson
- The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - R Prestwich
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
38
|
Du T, Xiao J, Qiu Z, Wu K. The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. PLoS One 2019; 14:e0219611. [PMID: 31291379 PMCID: PMC6619803 DOI: 10.1371/journal.pone.0219611] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND At present, the management of nasopharyngeal carcinoma (NPC) is mainly based on radiotherapy, but there are many radiation delivery techniques such as intensity-modulated radiotherapy (IMRT) and 2-dimensional radiotherapy (2D-RT). MATERIALS AND METHODS We searched all the eligible studies through the PubMed, Cochrane Library, Medline, and Embase. The endpoint events in meta-analysis were overall survival (OS), tumor local control including local-regional free survival (LRFS), progression-free survival (PFS), and distant metastasis-free survival (DMFS), and late toxicities. RESULTS A total of ten publications met the criteria and were identified through searches of the databases and references. We included 13304 patients in the meta-analysis, of whom 5212 received IMRT and 8092 were allocated to 2D-RT alone group. Compared with 2D-RT treatment, the IMRT group was associated with a better 5-year OS (OR = 1.70; 95% CI = 1.36-2.12), LRFS (OR = 2.08; 95% CI = 1.82-2.37), and PFS (OR = 1.40; 95% CI = 1.26-1.56). Additionally, the incidence of late toxicities such as late xerostomia (OR = 0.21; 95% CI = 0.09-0.51), trismus (OR = 0.16; 95% CI = 0.04-0.60), and temporal lobe neuropathy (TLN) (OR = 0.40; 95% CI = 0.24-0.67) for NPC patients in IMRT group were significantly lower than 2D-RT. CONCLUSIONS The meta-analysis demonstrates that IMRT provides improved long-term tumor overall survival and local control including LRFS and PFS. Additionally, IMRT yields a lower incidence of late toxicities induced by irradiation in NPC patients. Compared to 2D-RT, IMRT may be an effective treatment for patients with NPC. Further intensive studies should be pursued to examine the association.
Collapse
Affiliation(s)
- Taifeng Du
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zhaolong Qiu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
39
|
Dosimetric comparison of conformal technique (3D) with volumetric modulated arc therapy with respect to doses obtained in the temporal lobe area in patients irradiated for brain meningioma. Rep Pract Oncol Radiother 2019; 24:325-330. [DOI: 10.1016/j.rpor.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/17/2019] [Accepted: 05/12/2019] [Indexed: 11/22/2022] Open
|
40
|
Wang TM, Shen GP, Chen MY, Zhang JB, Sun Y, He J, Xue WQ, Li XZ, Huang SY, Zheng XH, Zhang SD, Hu YZ, Qin HD, Bei JX, Ma J, Mu J, Yao Shugart Y, Jia WH. Genome-Wide Association Study of Susceptibility Loci for Radiation-Induced Brain Injury. J Natl Cancer Inst 2019; 111:620-628. [PMID: 30299488 PMCID: PMC6579742 DOI: 10.1093/jnci/djy150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiation-induced brain injury is a nonnegligible issue in the management of cancer patients treated by partial or whole brain irradiation. In particular, temporal lobe injury (TLI), a deleterious late complication in nasopharyngeal carcinoma, greatly affects the long-term life quality of these patients. Although genome-wide association studies (GWASs) have successfully identified single nucleotide polymorphisms (SNPs) associated with radiation toxicity, genetic variants contributing to the radiation-induced brain injury have not yet been assessed. METHODS We recruited and performed follow-up for a prospective observational cohort, Genetic Architecture of Radiotherapy Toxicity and Prognosis, using magnetic resonance imaging for TLI diagnosis. We conducted genome-wide association analysis in 1082 patients and validated the top associations in two independent cohorts of 1119 and 741 patients, respectively. All statistical tests were two-sided. RESULTS We identified a promoter variant rs17111237 (A > G, minor allele frequency [MAF] = 0.14) in CEP128 associated with TLI risk (hazard ratio = 1.45, 95% confidence interval = 1.26 to 1.66, Pcombined=3.18 × 10-7) which is in moderate linkage disequilibrium (LD) with rs162171 (MAF = 0.18, R2 = 0.69), the top signal in CEP128 (hazard ratio = 1.46, 95% confidence interval = 1.29-1.66, Pcombined= 6.17 × 10-9). Combining the clinical variables with the top SNP, we divided the patients into different subgroups with varying risk with 5-year TLI-free rates ranging from 33.7% to 95.5%. CEP128, a key component of mother centriole, tightly interacts with multiple radiation-resistant genes and plays an important role in maintaining the functional cilia, which otherwise will lead to a malfunction of the neural network. We found that A > G alteration at rs17111237 impaired the promoter activity of CEP128 and knockdown of CEP128 decreased the clonogenic cell survival of U87 cells under radiation. Noteworthy, 12.7% (27/212) of the GWAS-based associated genes (P < .001) were enriched in the neurogenesis pathway. CONCLUSIONS This three-stage study is the first GWAS of radiation-induced brain injury that implicates the genetic susceptibility gene CEP128 involved in TLI development and provides the novel insight into the underlying mechanisms of radiation-induced brain injury.
Collapse
Affiliation(s)
- Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Ping Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Yi Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-De Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianbing Mu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Correspondence to: Wei-Hua Jia, PhD, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China (e-mail: )
| |
Collapse
|
41
|
Wang J, Miao Y, Ou X, Wang X, He X, Shen C, Ying H, Hu W, Hu C. Development and validation of a model for temporal lobe necrosis for nasopharyngeal carcinoma patients with intensity modulated radiation therapy. Radiat Oncol 2019; 14:42. [PMID: 30866964 PMCID: PMC6416868 DOI: 10.1186/s13014-019-1250-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/04/2019] [Indexed: 11/11/2022] Open
Abstract
Purpose To develop and validate a quantitative complication model of temporal lobe necrosis (TLN). To analyze the effect of clinical and dosimetric factors on TLN. Patients and methods In this study the prediction model was developed in a training cohort that consisted of 256 nasopharyngeal carcinoma (NPC) patients from January 2009 to December 2009. Dosimetric and clinical factors were extracted for model building. Dosimetric factors including the maximum dose, minimum dose, mean dose, dose covering specific volume and dose of percentage volume. Clinical factors include age, gender, T/N-stage, overall stage, diabetes and hypertension. LASSO (least absolute shrinkage and selection operator) regression model was used for feature selection, and prediction model building. A testing cohort containing 493 consecutive patients from January 2010 to December 2010 was used for model validation. The performance of the prediction model was assessed with respect to its calibration, discrimination. Results The prediction model, which consisted of two dosimetric features (D0.5cc and D10), is significantly associated with LN status (P < .001 for both training and testing cohorts). None of clinical factors show direct prediction value. The model shows good discrimination, with a C-index of 0.685 (95% CI: 0.6048–0.765) on testing set, and a consistent trend in calibration on testing set. Conclusion This study presents a prediction model can be conveniently used to facilitate the individualized prediction of TLN in patients with NPC. Clinical factors have no direct impact on TLN. Electronic supplementary material The online version of this article (10.1186/s13014-019-1250-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiazhou Wang
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yibing Miao
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomin Ou
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiayun He
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunying Shen
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongmei Ying
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weigang Hu
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chaosu Hu
- Department of radiation oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Huang J, Kong FF, Oei RW, Zhai RP, Hu CS, Ying HM. Dosimetric predictors of temporal lobe injury after intensity-modulated radiotherapy for T4 nasopharyngeal carcinoma: a competing risk study. Radiat Oncol 2019; 14:31. [PMID: 30736809 PMCID: PMC6368802 DOI: 10.1186/s13014-019-1229-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/23/2019] [Indexed: 03/30/2024] Open
Abstract
BACKGROUND In patients with T4 nasopharyngeal carcinoma (NPC), death may occur prior to the occurrence of temporal lobe injury (TLI). Because such competing risk death precludes the occurrence of TLI and thus the competing risk analysis should be applied to TLI research. The aim was to investigate the incidence and predictive factors of TLI after intensity-modulated radiotherapy (IMRT) among T4 NPC patients. METHODS From March 2008 to December 2014, T4 NPC patients treated with full-course radical IMRT at our center were reviewed retrospectively. A nested case-control study was designed for this cohort of patients. The cases were patients with TLI diagnosed by MRI during the follow-up period, and the controls were patients without TLI after IMRT matched 1:1 to each case by gender, age at diagnosis, intercranial involvement, and follow-up time. The end point was time to TLI or death without prior TLI. We analyzed the cumulative incidence function (CIF) and performed a competing risk regression model to identify the predictors of TLI. RESULTS With a median follow-up of 40.1 months, 63 patients (63/506, 12.5%) developed TLI as diagnosed by MRI, and 136 deaths occurred during the period. The cumulative incidence of TLI at 5 years was 13.2%, while 26.7% died without prior TLI. The univariate analysis showed that all selected dosimetric parameters were associated with the occurrence of TLI. On multivariate analysis, D1cc and V20 remained statistically significant. Based on the area-under-the-curve (AUC) values, D1cc was considered the most predictive. The patients with D1cc > 71.14 Gy had a 7.920-fold increased risk of TLI compared with those with D1cc ≤71.14 Gy (P < 0.05). Similarly, V20 > 42.22 cc was found to result in a statistically significant higher risk of TLI (subdistribution hazard ratio [sHR] =3.123, P < 0.05). CONCLUSIONS TL D1cc and V20 were predictive of TLI after IMRT for T4 NPC. They should be considered as first and second priorities of dose constraints of the TL. D1cc ≤71.14 Gy and V20 ≤ 42.22 cc could be useful dose-volume constraints for reducing the occurrence of TLI during IMRT treatment planning without obviously compromising the tumor coverage.
Collapse
Affiliation(s)
- Juan Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Fang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ronald Wihal Oei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui-Ping Zhai
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao-Su Hu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Mei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Lin CS, Chen YW, Liu SC, Tsao CC, Lin KT, Lee SP, Fan CY, Liu MY, Shen PC, Jen YM. Treatment outcomes with whole-field versus split-field intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma. Head Neck 2018; 41:598-605. [DOI: 10.1002/hed.25328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/11/2018] [Accepted: 04/19/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine; Taipei Medical University; Taipei Taiwan
| | - Yuan-Wu Chen
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Shao-Cheng Liu
- Department of Otolaryngology - Head and Neck Surgery, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Chih-Cheng Tsao
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Kuen-Tze Lin
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Steve P. Lee
- Department of Radiation Oncology, David Geffen School of Medicine; University of California; Los Angeles California
| | - Chao-Yueh Fan
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Ming-Yueh Liu
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
| | - Yee-Min Jen
- Department of Radiation Oncology, Tri-Service General Hospital; National Defense Medical Center; Taipei Taiwan
- Department of Radiation Oncology; Yee Zen General Hospital; Taoyuan Taiwan
| |
Collapse
|
44
|
Sun PY, Chen YH, Feng XB, Yang CX, Wu F, Wang RS. High-Dose Static and Dynamic Intensity-Modulated Radiotherapy Combined with Chemotherapy for Patients with Locally Advanced Nasopharyngeal Carcinoma Improves Survival and Reduces Brainstem Toxicity. Med Sci Monit 2018; 24:8849-8859. [PMID: 30524119 PMCID: PMC6295138 DOI: 10.12659/msm.910465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Intensity-modulated radiotherapy (IMRT) is the standard treatment for patients with nasopharyngeal cancer (NPC). However, the dose-volume criteria for adjacent anatomically normal organs at risk (OARs) remain controversial. The aim of this study was to evaluate the effects of higher than conventional doses of static and dynamic IMRT on the locoregional control of NPC, patient survival, and brainstem radiation toxicity. MATERIAL AND METHODS Patients (n=186) with stage III and stage IVa NPC underwent high-dose static and dynamic IMRT treatment (68-76.96 Gy) with or without chemotherapy for 34-57 days. Overall survival (OS), the presence of distant metastases, and brainstem toxicity were assessed. One-year, three-year, and five-year follow-up was performed. RESULTS High-dose IMRT alone or in combination with chemotherapy resulted in a 100% objective response rate and significantly improved OS rates, with one-year, three-year, and five-year OS rates of 94.1%, 89.8%, and 88.2%, respectively. The local recurrence rate (17.6%), and distant metastasis to the lung, liver, and bone (17.2%), and mortality (n=22) were reduced. Chemotherapy was the only factor that was significantly correlated with patient survival. Brainstem toxicity was reduced in patients treated with static IMRT (0.07%) and dynamic IMRT (0.08%). There were 26 additional factors that were not found to significantly affect brainstem toxicity. CONCLUSIONS High-dose static or dynamic IMRT combined with chemotherapy improved survival and reduces distal metastasis with a very low occurrence of brainstem toxicity in patients with locally advanced NPC. These findings might provide therapeutic guidance for clinicians when planning optimal dose-volume IMRT parameters.
Collapse
Affiliation(s)
- Pi-Yun Sun
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Liuzhou Chinese Medicine Hospital, Liuzhou, Guangxi, China (mainland)
| | - Yan-Hua Chen
- Liuzhou Chinese Medicine Hospital, Liuzhou, Guangxi, China (mainland)
| | - Xian-Bin Feng
- Liuzhou Chinese Medicine Hospital, Liuzhou, Guangxi, China (mainland)
| | - Chun-Xu Yang
- Liuzhou Chinese Medicine Hospital, Liuzhou, Guangxi, China (mainland)
| | - Fang Wu
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ren-Sheng Wang
- Department of Radiation Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland).,Guangxi Cancer Radiation Oncology Clinical Research Center, Nanning, Guangxi, China (mainland)
| |
Collapse
|
45
|
Liao W, Zhou H, Fan S, Zheng Y, Zhang B, Zhao Z, Xiao S, Bai S, Liu J. Comparison of Significant Carotid Stenosis for Nasopharyngeal Carcinoma between Intensity-Modulated Radiotherapy and Conventional Two-Dimensional Radiotherapy. Sci Rep 2018; 8:13899. [PMID: 30224668 PMCID: PMC6141472 DOI: 10.1038/s41598-018-32398-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/31/2018] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) serves as the most efficient treatment for nasopharyngeal carcinoma (NPC) and can cause carotid stenosis. This work compared the incidence of significant carotid stenosis between intensity-modulated radiotherapy (IMRT) and two-dimensional conventional radiotherapy (2D-RT) for NPC and explored the risk factors. We retrospectively reviewed 233 cases with NPC who underwent carotid ultrasound post IMRT or 2D-RT from 2006 to 2015. The incidence of significant stenosis after RT was 19.3%. Significant stenosis was identified in 20 (14.6%) of 137 patients treated with IMRT and 25 (26.0%) of 96 patients with 2D-RT, respectively (p = 0.035). Multivariate logistic analysis indicated age (odds ratio = 1.054, 95% CI = 1.011-1.099, p = 0.014), radiation technique (IMRT) (odds ratio = 0.471, 95%CI = 0.241-0.919, p = 0.027) and time interval (odds ratio = 1.068, 95%CI = 1.033-1.105, p = 0.001) as independent predictors for significant carotid stenosis. Our study suggests that IMRT was associated with decreased incidence of significant carotid stenosis versus 2D-RT for NPC. Prevention and carotid ultrasound should be considered for older NPC survivors with longer interval from RT, especially those treated with 2D-RT.
Collapse
Affiliation(s)
- Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Shengnuo Fan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuqiu Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Bei Zhang
- Department of Neurology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhongyan Zhao
- Department of Neurology, People's Hospital of Hainan Province, Haikou, 570311, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shoumin Bai
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
46
|
Zhang YM, Chen MN, Yi XP, Li L, Gao JM, Zhang JL, Yuan XR, Zhang N, Liu LZ, Cai PQ, Chen BT, Zee C, Liao WH, Zhang YC. Cortical Surface Area Rather Than Cortical Thickness Potentially Differentiates Radiation Encephalopathy at Early Stage in Patients With Nasopharyngeal Carcinoma. Front Neurosci 2018; 12:599. [PMID: 30210281 PMCID: PMC6120047 DOI: 10.3389/fnins.2018.00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Radiation encephalopathy (RE) is one of the most severe complications in nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT). However, the morphological alteration of early RE is insufficiently investigated. We aimed to investigate the cortical thickness and surface area alterations in NPC patients with or without RE in the follow-up. A total of 168 NPC patients each underwent a single scan and analysis at various times either Pre-RT (n = 56) or Post-RT (n = 112). We further divided the Post-RT NPC patients into three groups based on the time of the analysis following RT (Post-RTwithin 6 months and Post-RT7-12 months) or whether RE signs were detected in the analysis (Post-RTRE proved in follow-up). We confined the vertex-wise analyses of the cortical thickness and surface area to the bilateral temporal lobes. Interestingly, we revealed a gradual increase in the cortical surface area of the temporal lobe with increasing time after RT within the Post-RTRE proved in follow-up group, consistent with the between-group findings, which showed a significant increase in cortical surface area in the Post-RTRE proved in follow-up group relative to the Pre-RT group and the Post-RTwithin 6 months group. By contrast, such a trend was not observed in the cortical thickness findings. We concluded that the cortical surface area, rather than cortical thickness, may serve as a potential biomarker for early diagnosis of RE.
Collapse
Affiliation(s)
- You-Ming Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Na Chen
- Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jian-Ming Gao
- Department of Radiation Oncology, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Lei Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin-Ru Yuan
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Na Zhang
- School of Mathematical Sciences, University of Jinan, Jinan, China
| | - Li-Zhi Liu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Pei-Qiang Cai
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| | - Chishing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan-Chao Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Wang L, Wu Z, Xie D, Zeng R, Cheng W, Hu J, Huang S, Zhou S, Zhong R, Su Y. Reduction of Target Volume and the Corresponding Dose for the Tumor Regression Field after Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma. Cancer Res Treat 2018; 51:685-695. [PMID: 30121968 PMCID: PMC6473261 DOI: 10.4143/crt.2018.250] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
Purpose This study aims to investigate the feasibility of contouring target volume according to residual tumor and decreasing the dose to the tumor regression field after induction chemotherapy (IC) in locoregionally advanced nasopharyngeal carcinoma (NPC). Materials and Methods From August 2009 to August 2013, patients with stage III–IVB NPC were treated with IC and concurrent chemoradiotherapy. Gross tumor volume of nasopharynx (GTVnx)–residual and gross tumor volume of cervical lymph node (GTVnd)–residual were contoured according to post-IC residual primary tumor and any N+ disease, respectively. The tumor regression field was included in CTVnx1/CTVnd1 and prescribed a dose of 60 Gy. Outcomes and toxicities of all patients were evaluated. Results A total of 57 patients were enrolled. At a median follow-up of 68 months, three cases displayed locoregional recurrence and one case showed both distant metastasis and locoregional recurrence. All locoregional recurrences were in the GTVnx-residual/GTVnd-residual and in-field. The 5-year overall, locoregional relapse-free, distant metastasis-free, and progression-free survival rates were 82.2%, 87.7%, 85.8% and 80.3%, respectively. Conclusion After IC, contouring of GTVnx-residual/GTVnd-residual as residual tumor volume and distribution 60 Gy ofradiation dose to the tumorregression field may be feasible and need further investigation.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zheng Wu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehuan Xie
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Ruifang Zeng
- Department of Radiotherapy, TCM-Integrated Cancer Center of Southern Medical University, Guangzhou, China
| | - Wanqin Cheng
- Department of Oncology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Jiang Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Shaomin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Shu Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Rui Zhong
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Yong Su
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| |
Collapse
|
48
|
Lu L, Sheng Y, Zhang G, Li Y, OuYang PY, Ge Y, Xie T, Chang H, Deng X, Wu JQ. Temporal lobe injury patterns following intensity modulated radiotherapy in a large cohort of nasopharyngeal carcinoma patients. Oral Oncol 2018; 85:8-14. [PMID: 30220323 DOI: 10.1016/j.oraloncology.2018.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES To analyze the correlation between dose-volume-histograms (DVHs) with three patterns (edema, enhancement, and necrosis) of temporal lobe injury (TLI) in patients receiving intensity modulated radiation therapy (IMRT) for nasopharyngeal carcinoma (NPC) and to determine optimal thresholds to predict the incidence of each TLI pattern, with particular emphasis on the relationship between edema volume and the risk of enhancement and necrosis. MATERIALS AND METHODS A cohort of 4186 NPC patients treated with IMRT was retrospectively reviewed with TLI presenting in 188 patients. The atlases of complication incidence (ACI) for each pattern were constructed using DVH curves of temporal lobes. Optimal threshold for predicting incidence of each pattern was determined using the point closest to top-left of the plot. The accuracy of using edema volume to predict enhancement and necrosis incidence was evaluated via area under curve (AUC) of receiver operator characteristics (ROC). RESULTS All DVH parameters, Dmean, Dmax, D0.25cc, D0.5cc, D1cc, D3cc, D6cc, V20Gy, V30Gy, V40Gy, V50Gy, V60Gy, and V70Gy, except Dmin showed statistically significant differences between subgroups of each pattern (p < 0.05). For predicting incidence of each pattern, optimal DVH thresholds over the range of D0.25-D1cc, Dmean and V20-V70 were derived. The optimal thresholds of edema volume for predicting enhancement were 0.96 and 2.2cc and for predicting necrosis were 0.94 and 11.5cc. CONCLUSION Optimal DVH thresholds were generated for limiting risk of each injury pattern. Edema volume was a strong predictor for risk of enhancement and necrosis, which could potentially be reduced by lowering edema volume below threshold.
Collapse
Affiliation(s)
- Lixia Lu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yang Sheng
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | - Guangshun Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yizhuo Li
- Department of Imaging Diagnosis and Interventional Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yaorong Ge
- Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tianyi Xie
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| | - Hui Chang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Xiaowu Deng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng Road East, Guangzhou 510060, China.
| | - Jackie Q Wu
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
49
|
Feng M, Huang Y, Fan X, Xu P, Lang J, Wang D. Prognostic variables for temporal lobe injury after intensity modulated-radiotherapy of nasopharyngeal carcinoma. Cancer Med 2018; 7:557-564. [PMID: 29473319 PMCID: PMC5852358 DOI: 10.1002/cam4.1291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022] Open
Abstract
To determine predictive factors for temporal lobe injury (TLI) in nasopharyngeal carcinoma patient (NPC) treated with intensity-modulated radiation therapy (IMRT). A total of 695 NPC cases treated with IMRT were retrospectively analyzed. TLI was diagnosed on MRI images. Volume-dose histograms for 870 evaluable temporal lobes were analyzed, and the predictive factors for the occurrence of TLI was evaluated. Receiver operating characteristic curve (ROC) and Logistic regression analysis was used to determine volume-dose parameters that predict temporal lobe injury (TLI). Univariate and multivariate analysis were used to analyze the predictive factors for TLI. The radiation dose-tolerance model of temporal lobe was calculated by logistic dose-response model. The median follow-up time was 73 months. A total of 8.5% patients were diagnosed with TLI. Among all the volume-dose parameters, logistic regression model showed D2cc (the dose Gray delivered to 2 cubic centimeter volume) was an only independent predictive factor. Multivariate analysis showed D2cc of temporal lobe, fraction size of prescription, T stage, and chemotherapy were the independent predictive factors for TLI. Logistic dose-response model has indicated the TD5/5 and TD50/5 of D2cc are 60.3 Gy and 76.9 Gy, respectively. D2cc of temporal lobe, fraction size of prescription, T stage, and chemotherapy were the possible independent predictive factors for TLI after IMRT of NPC. Biologic effective doses (TD5/5 and TD50/5 ) of D2cc are considered to prevent TLI.
Collapse
Affiliation(s)
- Mei Feng
- Department of Radiation OncologySichuan Cancer Hospital and InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Yecai Huang
- Department of Radiation OncologySichuan Cancer Hospital and InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Xigang Fan
- Department of Radiation OncologySichuan Cancer Hospital and InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Peng Xu
- Department of Radiation OncologySichuan Cancer Hospital and InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jinyi Lang
- Department of Radiation OncologySichuan Cancer Hospital and InstituteSichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dian Wang
- Rush University Medical Center of Chicago Medical UniversityChicagoIlinois
| |
Collapse
|
50
|
The angiographic and clinical outcomes of intracranial aneurysms following irradiation in patients with nasopharyngeal carcinoma: A 13-year experience and literature review. J Neuroradiol 2018; 45:224-229. [PMID: 29474882 DOI: 10.1016/j.neurad.2018.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 08/05/2017] [Accepted: 01/14/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Intracranial aneurysms are a known but rare complication of radiotherapy (RT). We reviewed the angiographic and clinical outcomes of intracranial aneurysms following RT in patients with nasopharyngeal carcinoma (NPC), a malignancy endemic in Hong Kong. MATERIALS AND METHODS The clinical, angiographic and laboratory data was collected for nine NPC patients harboring fifteen intracranial aneurysms following RT, diagnosed between 1st January 2000 and 31st December 2012. RESULTS The median age at aneurysm diagnosis was 56 years with a male predilection (67%). The median latent period to diagnosis was nine years (0.3-30). Eight patients (89%) presented with aneurysmal subarachnoid hemorrhage. Nine aneurysms were located at the anterior circulation, and 14 were saccular in morphology. Of the treated aneurysms, eight underwent endovascular intervention and two were surgically clipped. Within a year, 50% of the treated aneurysms had recurred. Poor neurological outcome was noted. At two-year follow-up, the median score for modified Rankin score and Glasgow Outcome score was 5 and 2 respectively. The two-year mortality rate of patients with treated ruptured intracranial aneurysms was 50%. CONCLUSION Compared to previous studies, our irradiated NPC patients had higher mortality and morbidity rates after aneurysm rupture and a higher angiographic recurrence rate following treatment. Greater vigilance is required in the detection of post-treatment recurrence of these aneurysms due to the higher risk of rupture. The authors recommend dedicated screening of intracranial aneurysms by active surveillance in routine CT protocols or the addition of three-dimensional time-of-flight magnetic resonance angiography in MR protocols.
Collapse
|