1
|
Riopelle JC, Shamsaddini A, Holbrook MG, Bohrnsen E, Zhang Y, Lovaglio J, Cordova K, Hanley P, Kendall LV, Bosio CM, Schountz T, Schwarz B, Munster VJ, Port JR. Sex differences and individual variability in the captive Jamaican fruit bat (Artibeus jamaicensis) intestinal microbiome and metabolome. Sci Rep 2024; 14:3381. [PMID: 38336916 PMCID: PMC10858165 DOI: 10.1038/s41598-024-53645-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The intestinal microbiome plays an important role in mammalian health, disease, and immune function. In light of this function, recent studies have aimed to characterize the microbiomes of various bat species, which are noteworthy for their roles as reservoir hosts for several viruses known to be highly pathogenic in other mammals. Despite ongoing bat microbiome research, its role in immune function and disease, especially the effects of changes in the microbiome on host health, remains nebulous. Here, we describe a novel methodology to investigate the intestinal microbiome of captive Jamaican fruit bats (Artibeus jamaicensis). We observed a high degree of individual variation in addition to sex- and cohort-linked differences. The intestinal microbiome was correlated with intestinal metabolite composition, possibly contributing to differences in immune status. This work provides a basis for future infection and field studies to examine in detail the role of the intestinal microbiome in antiviral immunity.
Collapse
Affiliation(s)
- Jade C Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Amirhossein Shamsaddini
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Eric Bohrnsen
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Yue Zhang
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kathleen Cordova
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Patrick Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lon V Kendall
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Catharine M Bosio
- Laboratory of Bacteriology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin Schwarz
- Research Technologies Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
2
|
Baldan-Martin M, Chaparro M, Gisbert JP. Systematic Review: Urine Biomarker Discovery for Inflammatory Bowel Disease Diagnosis. Int J Mol Sci 2023; 24:10159. [PMID: 37373307 DOI: 10.3390/ijms241210159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic, heterogeneous, and inflammatory conditions mainly affecting the gastrointestinal tract. Currently, endoscopy is the gold standard test for assessing mucosal activity and healing in clinical practice; however, it is a costly, time-consuming, invasive, and uncomfortable procedure for the patients. Therefore, there is an urgent need for sensitive, specific, fast and non-invasive biomarkers for the diagnosis of IBD in medical research. Urine is an excellent biofluid for discovering biomarkers because it is non-invasive to sample. In this review, we aimed to summarize proteomics and metabolomics studies performed in both animal models of IBD and humans that identify urinary biomarkers for IBD diagnosis. Future large-scale multi-omics studies should be conducted in collaboration with clinicians, researchers, and industry to make progress toward the development of sensitive and specific diagnostic biomarkers, thereby making personalized medicine possible.
Collapse
Affiliation(s)
- Montse Baldan-Martin
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| |
Collapse
|
3
|
Han QQ, Li XY, Wang YX. Dexmedetomidine attenuates lipopolysaccharide-induced inflammation through macrophageal IL-10 expression following α7 nAchR activation. Int Immunopharmacol 2022; 109:108920. [PMID: 35691275 DOI: 10.1016/j.intimp.2022.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022]
Abstract
Dexmedetomidine, a highly selective α2-adrenoceptor agonist, has been recently reported to alleviate systemic inflammatory response induced by lipopolysaccharide (LPS), in addition to its sedative, analgesic, bradycardic and hypotensive properties. This study aimed to illustrate the molecular mechanisms underlying dexmedetomidine-induced anti-inflammation. In the LPS-pretreated mice, subcutaneous injection of dexmedetomidine reduced the spleen weight as well as serum and spleen expression of proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β, and increased serum and spleen expression of IL-10, a known anti-inflammatory cytokine. In addition, dexmedetomidine-attenuated proinflammatory cytokine reduction was entirely inhibited by selective α7 nicotinic acetylcholine receptor (nAChR) antagonist methyllycaconitine but not α2-adrenoceptor antagonist yohimbine. Dexmedetomidine also increased macrophageal IL-10 expression in the presence and absence of LPS, which was also attenuated by methyllycaconitine but not yohimbine. Furthermore, the stimulatory effect of dexmedetomidine on the expression of IL-10 was also reduced by the α7 nAChR gene silencer siRNA/α7 nAChR. Lastly, pretreatment with the IL-10 neutralizing antibody reversed dexmedetomidine-supressed expression of proinflammatory cytokines. Our findings illustrate that dexmedetomidine-induced anti-inflammation is through macrophageal expression of IL-10 following activation of α7 nAchRs but not α2-adrenoceptors.
Collapse
Affiliation(s)
- Qiao-Qiao Han
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xin-Yan Li
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| | - Yong-Xiang Wang
- King's Lab, Shanghai Jiao Tong University School of Pharmacy, Shanghai 200240, China.
| |
Collapse
|
4
|
Xu X, Ocansey DKW, Hang S, Wang B, Amoah S, Yi C, Zhang X, Liu L, Mao F. The gut metagenomics and metabolomics signature in patients with inflammatory bowel disease. Gut Pathog 2022; 14:26. [PMID: 35729658 PMCID: PMC9215062 DOI: 10.1186/s13099-022-00499-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Inflammatory bowel disease (IBD), a chronic gut immune dysregulation and dysbiosis condition is rapidly increasing in global incidence. Regardless, there is a lack of ideal diagnostic markers, while conventional treatment provides scarce desired results, thus, the exploration for better options. Changes in the gut microbial composition and metabolites either lead to or are caused by the immune dysregulation that characterizes IBD. This study examined the fecal metagenomics and metabolomic changes in IBD patients. A total of 30 fecal samples were collected from 15 IBD patients and 15 healthy controls for 16S rDNA gene sequencing and UHPLC/Q-TOF-MS detection of metabolomics. Results showed that there was a severe perturbation of gut bacteria community composition, diversity, metabolites, and associated functions and metabolic pathways in IBD. This included a significantly decreased abundance of Bacteroidetes and Firmicutes, increased disease-associated phyla such as Proteobacteria and Actinobacteria, and increased Escherichiacoli and Klebsiellapneumoniae in IBD. A total of 3146 metabolites were detected out of which 135 were differentially expressed between IBD and controls. Metabolites with high sensitivity and specificity in differentiating IBD from healthy individuals included 6,7,4′-trihydroxyisoflavone and thyroxine 4′-o-.beta.-d-glucuronide (AUC = 0.92), normorphine and salvinorin a (AUC = 0.90), and trichostachine (AUC = 0.91). Moreover, the IBD group had significantly affected pathways including primary bile acid biosynthesis, vitamin digestion and absorption, and carbohydrate metabolism. This study reveals that the combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and IBD patients and consequently serve as therapeutic and diagnostic targets.
Collapse
Affiliation(s)
- Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Sanhua Hang
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, 212300, Jiangsu, People's Republic of China
| | - Bo Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Samuel Amoah
- Directorate of University Health Services, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, 212028, Jiangsu, People's Republic of China
| | - Xu Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Lianqin Liu
- Huai'an Maternity and Children Hospital, Huaian, 223002, Jiangsu, People's Republic of China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Wu SS, Xu XX, Shi YY, Chen Y, Li YQ, Jiang SQ, Wang T, Li P, Li F. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from herb couple on rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114969. [PMID: 34999146 DOI: 10.1016/j.jep.2022.114969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herb couple Angelicae pubescentis radix (APR) and Notopterygii rhizoma et radix (NRR), composition of two traditional Chinese medicinal herbs, has been used clinically in China for the treatment of rheumatoid arthritis (RA) over years. APR and NRR contain coumarins and phenolic acids, which have been reported to have analgesic and anti-inflammatory activities. AIM OF THE STUDY The active ingredients combination (AIC) and potential therapeutic mechanism of APR and NRR (AN) herb couple remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on RA. MATERIALS AND METHODS Firstly, a novel strategy of in vitro experiments, computational analysis, UPLC-QTOF-MS and UPLC-QQQ-MS was established to confirm the optimum ratio of AN herb couple samples and identified the AIC. Then, the anti-arthritis effects of the optimal herb couple and AIC were studied with Collagen II induced rheumatoid arthritis (CIA) rats in vivo. Finally, an integrated model of network pharmacology, metabolomics, gut microbiota analysis and biological techniques were applied to clarify the underlying mechanism through a comprehensive perspective. RESULTS AN7:3 herb couple was regarded as the optimal ratio of AN herbal samples, and AIC was screened as osthole, columbianadin, notopterol, isoimperatorin, psoralen, xanthotoxin, bergapten, nodakenin and bergaptol respectively. Additionally, AIC exerted similar therapeutic effects as AN 7:3 in CIA rats. Moreover, AIC ameliorated RA might via regulating MAPK signaling pathway, altering metabolic disorders and gut microbiome involved autoimmunity. CONCLUSIONS our findings provided scientific evidence to support that AIC of AN herb couple could be used as a prebiotic agent for RA. Importantly, this research provided a systematic and feasible strategy to optimize the proportion of medicinal materials and screen AIC from multi-component traditional Chinese herb couples or Chinese medicine formulae. Moreover, it provided a comprehensive perspective to discover AIC, clarify the overall effects and understand the mechanisms for natural products through the perspective of database and multi-omics integration.
Collapse
Affiliation(s)
- Shan-Shan Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xi-Xi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan-Yuan Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qi Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Cachexia, a feature of cancer and other chronic diseases, is marked by progressive weight loss and skeletal muscle wasting. This review aims to highlight the sex differences in manifestations of cancer cachexia in patients, rodent models, and our current understanding of the potential mechanisms accounting for these differences. RECENT FINDINGS Male cancer patients generally have higher prevalence of cachexia, greater weight loss or muscle wasting, and worse outcomes compared with female cancer patients. Knowledge is increasing about sex differences in muscle fiber type and function, mitochondrial metabolism, global gene expression and signaling pathways, and regulatory mechanisms at the levels of sex chromosomes vs. sex hormones; however, it is largely undetermined how such sex differences directly affect the susceptibility to stressors leading to muscle wasting in cancer cachexia. Few studies have investigated basic mechanisms underlying sex differences in cancer cachexia. A better understanding of sex differences would improve cachexia treatment in both sexes.
Collapse
Affiliation(s)
- Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA.
- Research Service, Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
- IU Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Post-inflammatory behavioural despair in male mice is associated with reduced cortical glutamate-glutamine ratios, and circulating lipid and energy metabolites. Sci Rep 2020; 10:16857. [PMID: 33033375 PMCID: PMC7545201 DOI: 10.1038/s41598-020-74008-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.
Collapse
|
8
|
Pan L, Han P, Ma S, Peng R, Wang C, Kong W, Cong L, Fu J, Zhang Z, Yu H, Wang Y, Jiang J. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm Sin B 2020; 10:249-261. [PMID: 32082971 PMCID: PMC7016297 DOI: 10.1016/j.apsb.2019.10.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
The progression of hyperuricemia disease is often accompanied by damage to renal function. However, there are few studies on hyperuricemia nephropathy, especially its association with intestinal flora. This study combines metabolomics and gut microbiota diversity analysis to explore metabolic changes using a rat model as well as the changes in intestinal flora composition. The results showed that amino acid metabolism was disturbed with serine, glutamate and glutamine being downregulated whilst glycine, hydroxyproline and alanine being upregulated. The combined glycine, serine and glutamate could predict hyperuricemia nephropathy with an area under the curve of 1.00. Imbalanced intestinal flora was also observed. Flavobacterium, Myroides, Corynebacterium, Alcaligenaceae, Oligella and other conditional pathogens increased significantly in the model group, while Blautia and Roseburia, the short-chain fatty acid producing bacteria, declined greatly. At phylum, family and genus levels, disordered nitrogen circulation in gut microbiota was detected. In the model group, the uric acid decomposition pathway was enhanced with reinforced urea liver-intestine circulation. The results implied that the intestinal flora play a vital role in the pathogenesis of hyperuricemia nephropathy. Hence, modulation of gut microbiota or targeting at metabolic enzymes, i.e., urease, could assist the treatment and prevention of this disease.
Collapse
Affiliation(s)
- Libin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Can Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Weijia Kong
- Insitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Lin Cong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhengwei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
- Corresponding authors. Tel.: +86 10 63165238, Fax: +86 10 63165238; Tel.: +86 10 83160005, Fax: +86 10 63017757.
| |
Collapse
|
9
|
Jang HJ, Lee JD, Jeon HS, Kim AR, Kim S, Lee HS, Kim KB. Metabolic Profiling of Eccentric Exercise-Induced Muscle Damage in Human Urine. Toxicol Res 2018; 34:199-210. [PMID: 30057694 PMCID: PMC6057290 DOI: 10.5487/tr.2018.34.3.199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/29/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle can be ultrastructurally damaged by eccentric exercise, and the damage causes metabolic disruption in muscle. This study aimed to determine changes in the metabolomic patterns in urine and metabolomic markers in muscle damage after eccentric exercise. Five men and 6 women aged 19~23 years performed 30 min of the bench step exercise at 70 steps per min at a determined step height of 110% of the lower leg length, and stepping frequency at 15 cycles per min. 1H NMR spectral analysis was performed in urine collected from all participants before and after eccentric exercise-induced muscle damage conventionally determined using a visual analogue scale (VAS) and maximal voluntary contraction (MVC). Urinary metabolic profiles were built by multivariate analysis of principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) using SIMCA-P. From the OPLS-DA, men and women were separated 2 hr after the eccentric exercise and the separated patterns were maintained or clarified until 96 hr after the eccentric exercise. Subsequently, urinary metabolic profiles showed distinct trajectory patterns between men and women. Finally, we found increased urinary metabolites (men: alanine, asparagine, citrate, creatine phosphate, ethanol, formate, glucose, glycine, histidine, and lactate; women: adenine) after the eccentric exercise. These results could contribute to understanding metabolic responses following eccentric exercise-induced muscle damage in humans.
Collapse
Affiliation(s)
- Hyun-Jun Jang
- College of Pharmacy, Dankook University, Cheonan, Korea.,Department of Animal Biotechnology, Chonbuk National University, Jeonju, Korea
| | - Jung Dae Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyun-Sik Jeon
- Department of Kinesiologic Medical Science, Graduate School, Dankook University, Cheonan, Korea
| | - Ah-Ram Kim
- Department of Kinesiologic Medical Science, Graduate School, Dankook University, Cheonan, Korea.,Department of Physical Therapy, Namseoul University, Cheonan, Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Korea
| | - Ho-Seong Lee
- Department of Kinesiologic Medical Science, Graduate School, Dankook University, Cheonan, Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Korea
| |
Collapse
|
10
|
Nitahara-Kasahara Y, Takeda S, Okada T. Inflammatory predisposition predicts disease phenotypes in muscular dystrophy. Inflamm Regen 2016; 36:14. [PMID: 29259687 PMCID: PMC5725653 DOI: 10.1186/s41232-016-0019-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
Duchenne muscular dystrophy is an incurable genetic disease that presents with skeletal muscle weakness and chronic inflammation and is associated with early mortality. Indeed, immune cell infiltration into the skeletal muscle is a notable feature of the disease pathophysiology and is strongly associated with disease severity. Interleukin (IL)-10 regulates inflammatory immune responses by reducing both M1 macrophage activation and the production of pro-inflammatory cytokines, thereby promoting the activation of the M2 macrophage phenotype. We previously reported that genetic ablation of IL-10 in dystrophic mice resulted in more severe phenotypes, in regard to heart and respiratory function, as evidenced by increased macrophage infiltration, high levels of inflammatory factors in the muscle, and progressive cardiorespiratory dysfunction. These data therefore indicate that IL-10 comprises an essential immune-modulator within dystrophic muscles. In this review, we highlight the pivotal role of the immune system in the pathogenesis of muscular dystrophy and discuss how an increased understanding of the pathogenesis of this disease may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku Tokyo, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira Tokyo, Japan
| |
Collapse
|
11
|
Sarosiek I, Schicho R, Blandon P, Bashashati M. Urinary metabolites as noninvasive biomarkers of gastrointestinal diseases: A clinical review. World J Gastrointest Oncol 2016; 8:459-465. [PMID: 27190585 PMCID: PMC4865713 DOI: 10.4251/wjgo.v8.i5.459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/12/2016] [Accepted: 03/09/2016] [Indexed: 02/05/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) disorders is usually based on invasive techniques such as endoscopy. A key important factor in GI cancer is early diagnosis which warrants development of non- or less-invasive diagnostic techniques. In addition, monitoring and surveillance are other important parts in the management of GI diseases. Metabolomics studies with nuclear magnetic resonance and mass spectrometry can measure the concentration of more than 3000 chemical compounds in the urine providing possible chemical signature in different diseases and during health. In this review, we discuss the urinary metabolomics signature of different GI diseases including GI cancer and elaborate on how these biomarkers could be used for the classification, early diagnosis and the monitoring of the patients. Moreover, we discuss future directions of this still evolving field of research.
Collapse
|
12
|
Lee J, Jung Y, Park JY, Lee SH, Ryu DH, Hwang GS. LC/MS-based polar metabolite profiling reveals gender differences in serum from patients with myocardial infarction. J Pharm Biomed Anal 2015; 115:475-86. [PMID: 26299524 DOI: 10.1016/j.jpba.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/30/2022]
Abstract
Myocardial infarction (MI), a leading cause of death worldwide, results from prolonged myocardial ischemia with necrosis of myocytes due to a blood supply obstruction to an area of the heart. Many studies have reported gender-related differences in the clinical features of MI, but the reasons for these differences remain unclear. In this study, we applied ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) and various statistical methods-such as multivariate, pathway, and correlation analyses-to identify gender-specific metabolic patterns in polar metabolites in serum from healthy individuals and patients with MI. Patients with diagnosed MI (n=68), and age- and body mass index-matched healthy individuals (n=68), were included in this study. The partial least-squares discriminant analysis (PLS-DA) model was generated from metabolic profiling data, and the score plots showed a significant gender-related difference in patients with MI. Many pathways were associated with amino acids and purines; amino acids, acylcarnitines, and purines differed significantly between male and female patients with MI. This approach could be utilized to observe gender-specific metabolic pattern differences between healthy controls and patients with MI.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 120-140,Republic of Korea; Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 120-140,Republic of Korea
| | - Ju Yeon Park
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 120-140,Republic of Korea
| | - Sang-Hak Lee
- Cardiology Division, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Republic of Korea.
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute (KBSI), Seoul 120-140,Republic of Korea; Department of Life Science, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
13
|
Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol 2015; 279:25-32. [DOI: 10.1016/j.jneuroim.2015.01.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/09/2014] [Accepted: 01/05/2015] [Indexed: 12/31/2022]
|
14
|
Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Günther U, Nielsen OH. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics 2015; 11:122-133. [PMID: 25598765 PMCID: PMC4289537 DOI: 10.1007/s11306-014-0677-3] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
This study employs spectroscopy-based metabolic profiling of fecal extracts from healthy subjects and patients with active or inactive ulcerative colitis (UC) and Crohn's disease (CD) to substantiate the potential use of spectroscopy as a non-invasive diagnostic tool and to characterize the fecal metabolome in inflammatory bowel disease (IBD). Stool samples from 113 individuals (UC 48, CD 44, controls 21) were analyzed by 1H nuclear magnetic resonance (NMR) spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with principal component analysis and orthogonal-projection to latent structure-discriminant analysis using SIMCA-P + 12 and MATLAB. Significant differences were found in the metabolic profiles making it possible to differentiate between active IBD and controls and between UC and CD. The metabolites holding differential power primarily belonged to a range of amino acids, microbiota-related short chain fatty acids, and lactate suggestive of an inflammation-driven malabsorption and dysbiosis of the normal bacterial ecology. However, removal of patients with intestinal surgery and anti-TNF-α antibody treatment eliminated the discriminative power regarding UC versus CD. This study consequently demonstrates that 1H NMR spectroscopy of fecal extracts is a potential non-invasive diagnostic tool and able to characterize the inflammation-driven changes in the metabolic profiles related to malabsorption and dysbiosis. Intestinal surgery and medication are to be accounted for in future studies, as it seems to be factors of importance in the discriminative process.
Collapse
Affiliation(s)
- Jacob Tveiten Bjerrum
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People’s Republic of China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ludwig
- HWB-NMR, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ulrich Günther
- HWB-NMR, School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Hetzler KL, Hardee JP, Puppa MJ, Narsale AA, Sato S, Davis JM, Carson JA. Sex differences in the relationship of IL-6 signaling to cancer cachexia progression. Biochim Biophys Acta Mol Basis Dis 2014; 1852:816-25. [PMID: 25555992 DOI: 10.1016/j.bbadis.2014.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023]
Abstract
A devastating aspect of cancer cachexia is severe loss of muscle and fat mass. Though cachexia occurs in both sexes, it is not well-defined in the female. The Apc(Min/+) mouse is genetically predisposed to develop intestinal tumors; circulating IL-6 is a critical regulator of cancer cachexia in the male Apc(Min/+) mouse. The purpose of this study was to examine the relationship between IL-6 signaling and cachexia progression in the female Apc(Min/+) mouse. Male and female Apc(Min/+) mice were examined during the initiation and progression of cachexia. Another group of females had IL-6 overexpressed between 12 and 14 weeks or 15-18 weeks of age to determine whether IL-6 could induce cachexia. Cachectic female Apc(Min/+) mice lost body weight, muscle mass, and fat mass; increased muscle IL-6 mRNA expression was associated with these changes, but circulating IL-6 levels were not. Circulating IL-6 levels did not correlate with downstream signaling in muscle in the female. Muscle IL-6r mRNA expression and SOCS3 mRNA expression as well as muscle IL-6r protein and STAT3 phosphorylation increased with severe cachexia in both sexes. Muscle SOCS3 protein increased in cachectic females but decreased in cachectic males. IL-6 overexpression did not affect cachexia progression in female Apc(Min/+) mice. Our results indicate that female Apc(Min/+) mice undergo cachexia progression that is at least initially IL-6-independent. Future studies in the female will need to determine mechanisms underlying regulation of IL-6 response and cachexia induction.
Collapse
Affiliation(s)
- Kimbell L Hetzler
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Justin P Hardee
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Melissa J Puppa
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Aditi A Narsale
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - Shuichi Sato
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - J Mark Davis
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA
| | - James A Carson
- Integrative Muscle Biology Laboratory, Department of Exercise Science, University of South Carolina, 921 Assembly St., Columbia, SC 29208 USA.
| |
Collapse
|
16
|
Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T, Nishiyama A, Okada H, Takeda S, Okada T. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet 2014; 23:3990-4000. [PMID: 24659498 DOI: 10.1093/hmg/ddu113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease that causes respiratory and cardiac failure. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, but its role and regulation in the disease time course has not been sufficiently examined. In the present study, we used IL-10(-/-)/mdx mice lacking both dystrophin and the anti-inflammatory cytokine, interleukin-10 (IL-10), to investigate whether a predisposition to inflammation affects the severity of DMD with advancing age. The IL-10 deficiency caused a profound DMD phenotype in the dystrophic heart such as muscle degeneration and extensive myofiber loss, but the limb muscle and diaphragm morphology of IL-10(-/) (-)/mdx mice was similar to that of mdx mice. Extensive infiltrates of pro-inflammatory M1 macrophages in regeneration of cardiotoxin-injured muscle, altered M1/M2 macrophage phenotype and increased pro-inflammatory cytokines/chemokines production were observed in the diaphragm and heart of IL-10(-/-)/mdx mice. We characterized the IL-10(-/-)/mdx mice as a dystrophic model with chronic inflammation and severe cardiorespiratory dysfunction, as evidenced by decreased percent fractional shortening (%FS) and ejection fraction percent (EF%) on echocardiography, reduced lower tidal volume on whole-body plethysmography. This study suggests that a predisposition to inflammation is an important indicator of DMD disease progression. Therefore, the development of anti-inflammatory strategies may help in slowing down the cardiorespiratory dysfunction on DMD.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Chiyo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Akiyo Nishiyama
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hironori Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|