1
|
Guan Z, Pang L, Ouyang Y, Jiang Y, Zhang J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Secondary Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2) Infection Augments Inflammatory Responses, Clinical Outcomes, and Pathogen Load in Glaesserella-parasuis-Infected Piglets. Vet Sci 2023; 10:vetsci10050365. [PMID: 37235448 DOI: 10.3390/vetsci10050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Glaesserella parasuis (Gps), Gram-negative bacteria, are a universal respiratory-disease-causing pathogen in swine that colonize the upper respiratory tract. Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus (HP-PRRSV2HP-PRRSV2) and Gps coinfections are epidemics in China, but little is known about the influence of concurrent coinfection on disease severity and inflammatory responses. Herein, we studied the effects of secondary HP-PRRS infection on clinical symptoms, pathological changes, pathogen load, and inflammatory response of Gps coinfection in the upper respiratory tract of piglets. All coinfected piglets (HP-PRRSV2 + Gps) displayed fever and severe lesions in the lungs, while fever was present in only a few animals with a single infection (HP-PRRSV2 or Gps). Additionally, HP-PRRSV2 and Gps loading in nasal swabs and blood and lung tissue samples was significantly increased in the coinfected group. Necropsy data showed that coinfected piglets suffered from severe lung damage and had significantly higher antibody titers of HP-PRRSV2 or Gps than single-infected piglets. Moreover, the serum and lung concentrations of inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-8) were also significantly higher in coinfected piglets than in those infected with HP-PRRSV2 or Gps alone. In conclusion, our results show that HP-PRRSV2 promotes the shedding and replication of Gps, and their coinfection in the upper respiratory tract aggravates the clinical symptoms and inflammatory responses, causing lung damage. Therefore, in the unavoidable situation of Gps infection in piglets, necessary measures must be made to prevent and control secondary infection with HP-PRRSV2, which can save huge economic losses to the pork industry.
Collapse
Affiliation(s)
- Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yan Ouyang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
- College of Agriculture, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Yifeng Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue Road, Shanghai 200241, China
| |
Collapse
|
2
|
Zhou Y, Jiang D, Yao X, Luo Y, Yang Z, Ren M, Zhang G, Yu Y, Lu A, Wang Y. Pan-genome wide association study of Glaesserella parasuis highlights genes associated with virulence and biofilm formation. Front Microbiol 2023; 14:1160433. [PMID: 37138622 PMCID: PMC10149723 DOI: 10.3389/fmicb.2023.1160433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Glaesserella parasuis is a gram-negative bacterium that causes fibrotic polyserositis and arthritis in pig, significantly affecting the pig industry. The pan-genome of G. parasuis is open. As the number of genes increases, the core and accessory genomes may show more pronounced differences. The genes associated with virulence and biofilm formation are also still unclear due to the diversity of G. parasuis. Therefore, we have applied a pan-genome-wide association study (Pan-GWAS) to 121 strains G. parasuis. Our analysis revealed that the core genome consists of 1,133 genes associated with the cytoskeleton, virulence, and basic biological processes. The accessory genome is highly variable and is a major cause of genetic diversity in G. parasuis. Furthermore, two biologically important traits (virulence, biofilm formation) of G. parasuis were studied via pan-GWAS to search for genes associated with the traits. A total of 142 genes were associated with strong virulence traits. By affecting metabolic pathways and capturing the host nutrients, these genes are involved in signal pathways and virulence factors, which are beneficial for bacterial survival and biofilm formation. This research lays the foundation for further studies on virulence and biofilm formation and provides potential new drug and vaccine targets against G. parasuis.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dike Jiang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Luo
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zexiao Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery (HKAP), Hong Kong, Hong Kong SAR, China
- Institute of Integrated Bioinformedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yin Wang,
| |
Collapse
|
3
|
Expression Analysis of Outer Membrane Protein HPS_06257 in Different Strains of Glaesserella parasuis and Its Potential Role in Protective Immune Response against HPS_06257-Expressing Strains via Antibody-Dependent Phagocytosis. Vet Sci 2022; 9:vetsci9070342. [PMID: 35878359 PMCID: PMC9316402 DOI: 10.3390/vetsci9070342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Glaesserella parasuis, one of the opportunistic pathogens causing Glässer’s disease in piglets, has become a significant concern for pig farmers. Vaccination has been shown to be effective in preventing Glaesserella parasuis infection by inducing the protective immune response. Notably, a humoral immune response plays an important role in protection of Glaesserella parasuis infection. The mechanism of protection by antibodies has been shown to be associated with antibody-opsonized phagocytosis, which facilitates uptake of Glaesserella parasuis by phagocytes such as macrophages. Outer membrane proteins of Glaesserella parasuis, as the promising candidates, are often chosen to develop subunit vaccines. HPS_06257 is one of the outer membrane proteins that has been shown to confer protection against Glaesserella parasuis infection. However, little is known about the role of HPS_06257 in the protective immune response. We demonstrate that antibody-dependent phagocytosis is involved in the protective effects of HPS_06257. Our findings extend our understanding of how antibody-dependent phagocytosis may contribute to the immune protection afforded by other outer membrane proteins. Thus, our study provides insight into the protective antigens of Glaesserella parasuis and useful information for the development of novel vaccines to prevent Glaesserella parasuis infection. Abstract HPS_06257 has been identified as an important protective antigen against Glaesserella parasuis infection. However, little is known about the role of HPS_06257 in the protective immune response. A whole-genome data analysis showed that among 18 isolates of Glaesserella parasuis, 11 were positive for the HPS_06257 gene, suggesting that not every strain contains this gene. We used PCR to investigate the presence of the HPS_06257 gene among 13 reference strains and demonstrated that 5 strains contained the gene. A polyclonal antibody against HPS_06257 was generated with a recombinant protein to study the expression of HPS_06257 in those 13 strains. Consistent with the PCR data, five strains expressed HPS_06257, whereas eight strains were HPS_06257 null. We also compared the protective effects of HPS_06257 against an HPS_06257-expressing strain (HPS5) and an HPS_06257-null strain (HPS11). Immunization with HPS_06257 only protected against HPS5 and not HPS11. Moreover, phagocytosis of antibody-opsonized bacteria demonstrates that the antibody against HPS_06257 increased the phagocytosis of the HPS5 strain by macrophages but not the phagocytosis of the HPS11 strain, suggesting that antibody-dependent phagocytosis is responsible for the protective role exerted by HPS_06257 in the immune response to HPS5. Our data also show that the antibody against HPS_06257 increased the phagocytosis of the other HPS_06257-expressing strains by macrophages but not that of HPS_06257-null strains. In summary, our findings demonstrate that antibody-dependent phagocytosis contributes to the protective immune response induced by immunization with HPS_06257 against HPS_06257-expressing strains.
Collapse
|
4
|
Wan X, Wang G, Gao W, Li C, Yan H. Comparative genome analysis of multidrug-resistant and susceptible Glaesserella parasuis strains isolated from diseased pigs in China. Vet Microbiol 2021; 254:109002. [PMID: 33610012 DOI: 10.1016/j.vetmic.2021.109002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Glaesserella parasuis (G. parasuis) is a respiratory pathogen of swine and the etiological agent of Glässer's disease. Although the emergence of multidrug-resistant (MDR) G. parasuis is a critical problem in the swine industry, there are few publications on the genetic basis of antimicrobial resistance of G. parasuis. In this study, comparative genome analyses were used to identify genomic differences between two phenotypically distinct isolates, an MDR isolate (HPS-1) and a susceptible isolate (HPS-2), from diseased swines in China. These isolates were both serovar 4, which is predominant in cases of Glässer's disease and is the most prevalent serovar in China. Based on clusters of orthologous group (COG) annotations, genes assigned to the extracellular structure category were only detected in HPS-1 and genes related to cell motility were more abundant in HPS-1 than in HPS-2. A comparative genomic analysis showed that these two isolates are closely related, although there was a large-scale genomic rearrangement. Eighteen percent of the genome consisted of strain-specific accessory genes of HPS-1. Notably, only the two genes aac(6')-Ie-aph(2'')-Ia and blaROB-1 on a plasmid were specific to HPS-1. We also detected 30,599 single nucleotide polymorphisms (SNPs), including nonsynonymous SNPs in the aminoglycoside resistance gene aph(3'')-Ib, the fusidic acid resistance gene fusA, and the two rifampicin resistance genes rpoC and rpoB in HPS-1. These findings improve our understanding of the differences between MDR and susceptible isolates and will aid the development of treatment strategies to decrease the prevalence and disease burden caused by G. parasuis.
Collapse
Affiliation(s)
- Xiulin Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Guoxia Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Wenxuan Gao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chunling Li
- Institute of Animal Health Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
| | - He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
5
|
Wan X, Li X, Osmundson T, Li C, Yan H. Whole-genome sequence analyses of Glaesserella parasuis isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. PeerJ 2020; 8:e9293. [PMID: 32607281 PMCID: PMC7316082 DOI: 10.7717/peerj.9293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Background Glaesserella parasuis (G. parasuis) is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. The structural organization of genetic information, antibiotic resistance genes, potential pathogenicity, and evolutionary relationships among global G. parasuis strains remain unclear. The aim of this study was to better understand patterns of genetic variation, antibiotic resistance factors, and virulence mechanisms of this pathogen. Methods The whole-genome sequence of a ST328 isolate from diseased swine in China was determined using Pacbio RS II and Illumina MiSeq platforms and compared with 54 isolates from China sequenced in this study and 39 strains from China and eigtht other countries sequenced by previously. Patterns of genetic variation, antibiotic resistance, and virulence mechanisms were investigated in relation to the phylogeny of the isolates. Electrotransformation experiments were performed to confirm the ability of pYL1—a plasmid observed in ST328—to confer antibiotic resistance. Results The ST328 genome contained a novel Tn6678 transposon harbouring a unique resistance determinant. It also contained a small broad-host-range plasmid pYL1 carrying aac(6’)-Ie-aph(2”)-Ia and blaROB-1; when transferred to Staphylococcus aureus RN4220 by electroporation, this plasmid was highly stable under kanamycin selection. Most (85.13–91.74%) of the genetic variation between G. parasuis isolates was observed in the accessory genomes. Phylogenetic analysis revealed two major subgroups distinguished by country of origin, serotype, and multilocus sequence type (MLST). Novel virulence factors (gigP, malQ, and gmhA) and drug resistance genes (norA, bacA, ksgA, and bcr) in G. parasuis were identified. Resistance determinants (sul2, aph(3”)-Ib, norA, bacA, ksgA, and bcr) were widespread across isolates, regardless of serovar, isolation source, or geographical location. Conclusions Our comparative genomic analysis of worldwide G. parasuis isolates provides valuable insight into the emergence and transmission of G. parasuis in the swine industry. The result suggests the importance of transposon-related and/or plasmid-related gene variations in the evolution of G. parasuis.
Collapse
Affiliation(s)
- Xiulin Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, United States of America
| | - Todd Osmundson
- Department of Biology, University of Wisconsin-La Crosse, La Crosse, United States of America
| | - Chunling Li
- Institute of Animal Health Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - He Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Che Y, Wang L, Wu X, Chen R, Wang C, Zhou L. Characterization of Haemophilus Parasuis Serovar 2 CL120103, a Moderately Virulent Strain in China. Open Life Sci 2018; 13:217-226. [PMID: 33817086 PMCID: PMC7874736 DOI: 10.1515/biol-2018-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/27/2018] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is an important bacterium affecting pigs, causing Glässer’s disease. To further characterize this species, we determined the complete genomic sequence of H. parasuis CL120103, which was isolated from diseased pigs. The strain H. parasuis CL120103 was identified as serovar 2. The size of the largest scaffold is 2,326,318 bp and contains 145 large contigs, with the N50 contig being 20,573 bp in length. The complete genome of H. parasuis CL120103 is 2,305,354 bp in length with 39.97% GC content and contains 2227 protein-coding genes, 19 ribosomal rRNA operons and 60 tRNA genes. Sequence similarity of the genome of H. parasuis CL120103 to the previously sequenced genome of H. parasuis was up to 96% and query cover to 86%. Annotation of the genome of H. parasuis CL120103 identified a number of genes encoding potential virulence factors. These virulence factors are involved in metabolism, adhesion, secretion and LPS biosynthesis. These related genes pave the way to better understand mechanisms underlying metabolic capabilities. The comprehensive genetic and phylogenetic analysis shows that H. parasuis is closely related to Actinobacillus pleuropneumoniae and provides a foundation for future experimental confirmation of the virulence and pathogen-host interactions in H. parasuis.
Collapse
Affiliation(s)
- Yongliang Che
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Longbai Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Xuemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Rujing Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Chenyan Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| | - Lunjiang Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, P. R. China
| |
Collapse
|
7
|
Pina-Pedrero S, Olvera À, Bensaid A. The extended leader peptide of Haemophilus parasuis trimeric autotransporters conditions their protein expression in Escherichia coli. Protein Expr Purif 2017; 133:15-24. [PMID: 28254554 DOI: 10.1016/j.pep.2017.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
Trimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated. The 13 genes encoding the VtaA1 to VtaA13 passenger domains of the strain Nagasaki were cloned in the pASK-IBA33plus plasmid and expressed in E. coli. Recombinant protein production was higher for truncated forms in which the entire leader peptide was deleted, and the recombinant protein accumulated in the cytoplasm of the cells. The yield of protein production of the different VtaAs was size dependent, and reached maximal amount at 2-4 h post -induction. The optimization of these conditions allowed to scale-up the production to obtain enough recombinant protein to immunize large animals.
Collapse
Affiliation(s)
- Sonia Pina-Pedrero
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Àlex Olvera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Albert Bensaid
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Zhang L, Li Y, Dai K, Wen X, Wu R, Huang X, Jin J, Xu K, Yan Q, Huang Y, Ma X, Wen Y, Cao S. Establishment of a Successive Markerless Mutation System in Haemophilus parasuis through Natural Transformation. PLoS One 2015; 10:e0127393. [PMID: 25985077 PMCID: PMC4436007 DOI: 10.1371/journal.pone.0127393] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis, belonging to the family Pasteurellaceae, is the causative agent of Glässer's disease leading to serious economic losses. In this study, a successive markerless mutation system for H. parasuis using two sequential steps of natural transformation was developed. By the first homologous recombination, the target genes were replaced by a cassette carrying kanamycin resistance gene and sacB (which confers sensitivity to sucrose) gene using kanamycin selection, followed by the second reconstruction to remove the selection cassette, with application of sucrose to further screen unmarked mutants. To improve DNA transformation frequency, several parameters have been analyzed further in this work. With this method, two unmarked deletions in one strain have been generated successfully. It is demonstrated that this system can be employed to construct multi-gene scarless deletions, which is of great help for developing live attenuated vaccines for H. parasuis.
Collapse
Affiliation(s)
- Luhua Zhang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ying Li
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ke Dai
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xintian Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Rui Wu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaobo Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Jin Jin
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Kui Xu
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qigui Yan
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yong Huang
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xiaoping Ma
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yiping Wen
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| | - Sanjie Cao
- Porcine Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
- * E-mail: (YW); (SC)
| |
Collapse
|
9
|
Howell KJ, Weinert LA, Chaudhuri RR, Luan SL, Peters SE, Corander J, Harris D, Angen Ø, Aragon V, Bensaid A, Williamson SM, Parkhill J, Langford PR, Rycroft AN, Wren BW, Holden MTG, Tucker AW, Maskell DJ. The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genomics 2014; 15:1179. [PMID: 25539682 PMCID: PMC4532294 DOI: 10.1186/1471-2164-15-1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023] Open
Abstract
Background Haemophilus parasuis is the etiologic agent of Glässer’s disease in pigs and causes devastating losses to the farming industry. Whilst some hyper-virulent isolates have been described, the relationship between genetics and disease outcome has been only partially established. In particular, there is weak correlation between serovar and disease phenotype. We sequenced the genomes of 212 isolates of H. parasuis and have used this to describe the pan-genome and to correlate this with clinical and carrier status, as well as with serotype. Results Recombination and population structure analyses identified five groups with very high rates of recombination, separated into two clades of H. parasuis with no signs of recombination between them. We used genome-wide association methods including discriminant analysis of principal components (DAPC) and generalised linear modelling (glm) to look for genetic determinants of this population partition, serovar and pathogenicity. We were able to identify genes from the accessory genome that were significantly associated with phenotypes such as potential serovar specific genes including capsule genes, and 48 putative virulence factors that were significantly different between the clinical and non-clinical isolates. We also show that the presence of many previously suggested virulence factors is not an appropriate marker of virulence. Conclusions These genes will inform the generation of new molecular diagnostics and vaccines, and refinement of existing typing schemes and show the importance of the accessory genome of a diverse species when investigating the relationship between genotypes and phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1179) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kate J Howell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Roy R Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Shi-Lu Luan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Sarah E Peters
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00100, Finland.
| | - David Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Øystein Angen
- Norwegian Veterinary Institute, N-0106, Oslo, Norway.
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, and, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| | - Albert Bensaid
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, and, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain.
| | - Susanna M Williamson
- Animal Health and Veterinary Laboratories Agency (AHVLA), Rougham Hill, Bury St Edmunds, Suffolk, IP33 2RX, UK.
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Paul R Langford
- Department of Medicine, Section of Paediatrics, Imperial College London, St. Mary's Campus, London, W2 1PG, UK.
| | - Andrew N Rycroft
- The Royal Veterinary College, Hawkshead Campus, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK.
| | - Matthew T G Holden
- School of Medicine, University of St. Andrews, St Andrews, KY16 9TF, UK.
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | | |
Collapse
|
10
|
Bello-Ortí B, Aragon V, Pina-Pedrero S, Bensaid A. Genome comparison of three serovar 5 pathogenic strains of Haemophilus parasuis: insights into an evolving swine pathogen. Microbiology (Reading) 2014; 160:1974-1984. [DOI: 10.1099/mic.0.079483-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis is the causative agent of Glässer’s disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that H. parasuis serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered. Genomes from two serovar 5 strains, SH0165 and 29755, are already available. Here, we present the draft genome of a third H. parasuis serovar 5 strain, the formal serovar 5 reference strain Nagasaki. An in silico genome subtractive analysis with full-length predicted genes of the three H. parasuis serovar 5 strains detected 95, 127 and 95 strain-specific genes (SSGs) for Nagasaki, SH0165 and 29755, respectively. We found that the genomic diversity within these three strains was high, in part because of a high number of mobile elements. Furthermore, a detailed analysis of large sequence polymorphisms (LSPs), encompassing regions ranging from 2 to 16 kb, revealed LSPs in virulence-related elements, such as a Toll-IL receptor, the AcrA multidrug efflux protein, an ATP-binding cassette (ABC) transporter, lipopolysaccharide-synthetizing enzymes and a tripartite ATP-independent periplasmic (TRAP) transporter. The whole-genome codon adaptation index (CAI) was also calculated and revealed values similar to other well-known bacterial pathogens. In addition, whole-genome SNP analysis indicated that nucleotide changes tended to be increased in membrane-related genes. This analysis provides further evidence that the genome of H. parasuis has been subjected to multiple lateral gene transfers (LGTs) and to fine-tuning of virulence factors, and has the potential for accelerated genome evolution.
Collapse
Affiliation(s)
- Bernardo Bello-Ortí
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Virginia Aragon
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sonia Pina-Pedrero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Albert Bensaid
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
11
|
Brockmeier SL, Register KB, Kuehn JS, Nicholson TL, Loving CL, Bayles DO, Shore SM, Phillips GJ. Virulence and draft genome sequence overview of multiple strains of the swine pathogen Haemophilus parasuis. PLoS One 2014; 9:e103787. [PMID: 25137096 PMCID: PMC4138102 DOI: 10.1371/journal.pone.0103787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/05/2014] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis is the cause of Glässer's disease in swine, which is characterized by systemic infection resulting in polyserositis, meningitis, and arthritis. Investigation of this animal disease is complicated by the enormous differences in the severity of disease caused by H. parasuis strains, ranging from lethal systemic disease to subclinical carriage. To identify differences in genotype that could account for virulence phenotypes, we established the virulence of, and performed whole genome sequence analysis on, 11 H. parasuis strains. Virulence was assessed by evaluating morbidity and mortality following intranasal challenge of Caesarean-derived, colostrum-deprived (CDCD) pigs. Genomic DNA from strains Nagasaki (serotype 5), 12939 (serotype 1), SW140 (serotype 2), 29755 (serotype 5), MN-H (serotype 13), 84-15995 (serotype 15), SW114 (serotype 3), H465 (serotype 11), D74 (serotype 9), and 174 (serotype 7) was used to generate Illumina paired-end libraries for genomic sequencing and de novo assembly. H. parasuis strains Nagasaki, 12939, SH0165 (serotype 5), SW140, 29755, and MN-H exhibited a high level of virulence. Despite minor differences in expression of disease among these groups, all pigs challenged with these strains developed clinical signs consistent with Glässer's disease between 1–7 days post-challenge. H. parasuis strains 84-15995 and SW114 were moderately virulent, in that approximately half of the pigs infected with each developed Glässer's disease. H. parasuis strains H465, D74, and 174 were minimally virulent or avirulent in the CDCD pig model. Comparative genomic analysis among strains identified several noteworthy differences in coding regions. These coding regions include predicted outer membrane, metabolism, and pilin or adhesin related genes, some of which likely contributed to the differences in virulence and systemic disease observed following challenge. These data will be useful for identifying H. parasuis virulence factors and vaccine targets.
Collapse
Affiliation(s)
- Susan L. Brockmeier
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
- * E-mail:
| | - Karen B. Register
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
| | - Joanna S. Kuehn
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Tracy L. Nicholson
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
| | - Crystal L. Loving
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
| | - Darrell O. Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
| | - Sarah M. Shore
- Virus and Prion Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America
| | - Gregory J. Phillips
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
12
|
Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep 2014; 4:4974. [PMID: 24827399 PMCID: PMC4021336 DOI: 10.1038/srep04974] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/22/2014] [Indexed: 01/20/2023] Open
Abstract
Streptococcus thermophilus ASCC 1275 (ST 1275), a typical dairy starter bacterium, yields the highest known amount (~1,000 mg/L) of exopolysaccharide (EPS) in milk among the species of S. thermophilus. The addition of this starter in milk fermentation exhibited texture modifying properties for fermented dairy foods such as yogurt and cheese in the presence of EPS as its important metabolite. In this genomic study, a novel eps gene cluster for EPS assembly of repeating unit has been reported. It contains two-pair epsC-epsD genes which are assigned to determine the chain length of EPS. This also suggests this organism produces two types of EPSs – capsular and ropy EPS, as observed in our previous studies. Additionally, ST 1275 appears to exhibit effective proteolysis system and sophisticated stress response systems to stressful conditions, and has the highest number of four separate CRISPR/Cas loci. These features may be conducive to milk adaptation of this starter and against undesirable bacteriophage infections which leads to failure of milk fermentation. Insights into the genome of ST 1275 suggest that this strain may be a model high EPS-producing dairy starter.
Collapse
|