1
|
Kim JY, Kim J, Lim YS, Gwak GY, Yeo I, Kim Y, Lee J, Shin D, Lee JH, Kim Y. Proteome Multimarker Panel for the Early Detection of Hepatocellular Carcinoma: Multicenter Derivation, Validation, and Comparison. ACS OMEGA 2022; 7:29934-29943. [PMID: 36061641 PMCID: PMC9434733 DOI: 10.1021/acsomega.2c02926] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Conventional methods for the surveillance of hepatocellular carcinoma (HCC) by imaging, with and without serum tumor markers, are suboptimal with regard to accuracy. We aimed to develop and validate a reliable serum biomarker panel for the early detection of HCC using a proteomic technique. This multicenter case-control study comprised 727 patients with HCC and patients with risk factors but no HCC. We developed a multiple reaction monitoring-mass spectrometry (MRM-MS) multimarker panel using 17 proteins from the sera of 398 patients. Area under the receiver operating characteristics curve (AUROC) values of this MRM-MS panel with and without α-fetoprotein (AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II) were compared. The combination and standalone MRM-MS panels had higher AUROC values than AFP in the training (0.940 and 0.929 vs 0.775, both P < 0.05), test (0.894 and 0.893 vs 0.593, both P < 0.05), and confirmation sets (0.961 and 0.937 vs 0.806, both P < 0.05) in detecting small single HCC. The combination and standalone MRM-MS panels had significantly higher AUROC values than the GALAD score (0.945 and 0.931 vs 0.829, both P < 0.05). Our proteome 17-protein multimarker panel distinguished HCC patients from high-risk controls and had high accuracy in the early detection of HCC.
Collapse
Affiliation(s)
- Ju Yeon Kim
- Department
of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaenyeon Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Suk Lim
- Department
of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44610, Republic of Korea
| | - Geum-Youn Gwak
- Department
of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic
of Korea
| | - Injoon Yeo
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Yoseop Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| | - Jihyeon Lee
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic of Korea
| | - Dongyoon Shin
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic of Korea
| | - Jeong-Hoon Lee
- Department
of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Interdisciplinary
Program of Bioengineering, Graduate School,
Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Chanukuppa V, Taware R, Taunk K, Chatterjee T, Sharma S, Somasundaram V, Rashid F, Malakar D, Santra MK, Rapole S. Proteomic Alterations in Multiple Myeloma: A Comprehensive Study Using Bone Marrow Interstitial Fluid and Serum Samples. Front Oncol 2021; 10:566804. [PMID: 33585190 PMCID: PMC7879980 DOI: 10.3389/fonc.2020.566804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell-associated cancer and exists as the second most common hematological malignancy worldwide. Although researchers have been working on MM, a comprehensive quantitative Bone Marrow Interstitial Fluid (BMIF) and serum proteomic analysis from the same patients’ samples is not yet reported. The present study involves the investigation of alterations in the BMIF and serum proteome of MM patients compared to controls using multipronged quantitative proteomic approaches viz., 2D-DIGE, iTRAQ, and SWATH-MS. A total of 279 non-redundant statistically significant differentially abundant proteins were identified by the combination of three proteomic approaches in MM BMIF, while in the case of serum 116 such differentially abundant proteins were identified. The biological context of these dysregulated proteins was deciphered using various bioinformatic tools. Verification experiments were performed in a fresh independent cohort of samples using immunoblotting and mass spectrometry based SRM assays. Thorough data evaluation led to the identification of a panel of five proteins viz., haptoglobin, kininogen 1, transferrin, and apolipoprotein A1 along with albumin that was validated using ELISA in a larger cohort of serum samples. This panel of proteins could serve as a useful tool in the diagnosis and understanding of the pathophysiology of MM in the future.
Collapse
Affiliation(s)
- Venkatesh Chanukuppa
- Proteomics Lab, National Centre for Cell Science, Pune, India.,Savitribai Phule Pune University, Pune, India
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Pune, India
| | | | | | | | | | | | - Manas K Santra
- Cancer Biology and Epigenetics Lab, National Centre for Cell Science, Pune, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Pune, India
| |
Collapse
|
3
|
Elvira-Torales LI, Navarro-González I, Rodrigo-García J, Seva J, García-Alonso J, Periago-Castón MJ. Consumption of Spinach and Tomato Modifies Lipid Metabolism, Reducing Hepatic Steatosis in Rats. Antioxidants (Basel) 2020; 9:E1041. [PMID: 33114278 PMCID: PMC7690917 DOI: 10.3390/antiox9111041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a serious and growing clinical problem in developed and developing countries and is considered one of the most frequent chronic liver diseases in the world. The aim of this study was to evaluate the functionality of dietary carotenoids provided by tomato and spinach in the dietary treatment of steatosis. Twenty-two Sprague-Dawley rats with induced steatosis were grouped into three groups and fed standard diet (CD group) and two experimental diets supplemented with 12.75% (LC12.75 group) and 25.5% (HC25.5 group) of a mixture of spinach and tomato powder. Rats fed carotenoid-rich feeds showed an improvement in the plasma biomarkers of steatosis, with lower levels of glucose, total cholesterol, VLDL, TG, proteins, ALT and AST. Likewise, a decrease in oxidative stress was observed, with a significant reduction of malondialdehyde (MDA) in plasma (up to 54%), liver (up to 51.42%) and urine (up to 78.89%) (p < 0.05) and an increase in plasma antioxidant capacity (ORAC) (up to 73.41%) (p < 0.05). Furthermore, carotenoid-rich diets led to an accumulation of carotenoids in the liver and were inversely correlated with the content of total cholesterol and hepatic triglycerides, increasing the concentrations of MUFA and PUFA (up to 32.6% and 48%, respectively) (p < 0.05). The accumulation of carotenoids in the liver caused the modulation of genes involved in lipid metabolism, and we particularly observed an overexpression of ACOX1, APOA1 and NRIH2 (LXR) and the synthesis of the proteins. This study suggests that dietary carotenoids from spinach and tomato aid in the dietary management of steatosis by reversing steatosis biomarkers.
Collapse
Affiliation(s)
- Laura Inés Elvira-Torales
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30071 Murcia, Spain; (I.N.-G.); (J.G.-A.)
- Department of Food Engineering, National Technological of Mexico, Tierra Blanca Campus, 95180 Tierra Blanca, Veracruz, Mexico
| | - Inmaculada Navarro-González
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30071 Murcia, Spain; (I.N.-G.); (J.G.-A.)
| | - Joaquín Rodrigo-García
- Department of Health Sciences, Biomedical Sciences Institute, Autonomous University of Ciudad Juarez, 32310 Ciudad Juarez, Chihuahua, Mexico;
| | - Juan Seva
- Department of Anatomy and Comparative Pathological Anatomy, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Espinardo, 30071 Murcia, Spain;
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30071 Murcia, Spain; (I.N.-G.); (J.G.-A.)
| | - María Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, Espinardo, 30071 Murcia, Spain; (I.N.-G.); (J.G.-A.)
| |
Collapse
|
4
|
Apolipoprotein A-I (ApoA-I), Immunity, Inflammation and Cancer. Cancers (Basel) 2019; 11:cancers11081097. [PMID: 31374929 PMCID: PMC6721368 DOI: 10.3390/cancers11081097] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins (HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune response regulation. Many studies revealing alterations of ApoA-I during the development and progression of various types of cancer suggest that serum ApoA-I levels may represent a useful biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up, and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic, clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer prevention and treatment.
Collapse
|
5
|
Kim KH, Kim JY, Yoo JS. Mass spectrometry analysis of glycoprotein biomarkers in human blood of hepatocellular carcinoma. Expert Rev Proteomics 2019; 16:553-568. [DOI: 10.1080/14789450.2019.1626235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kwang Hoe Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jin Young Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Bharali D, Banerjee BD, Bharadwaj M, Husain SA, Kar P. Expression analysis of apolipoproteins AI & AIV in hepatocellular carcinoma: A protein-based hepatocellular carcinoma-associated study. Indian J Med Res 2018; 147:361-368. [PMID: 29998871 PMCID: PMC6057253 DOI: 10.4103/ijmr.ijmr_1358_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background & objectives: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer mortality. The objective of this study was to find out the differential expression of apolipoproteins (ApoAI and ApoAIV) in HCC and cases of liver cirrhosis and chronic hepatitis (controls) without HCC and to compare ApoAI and ApoAIV expression with alpha-foetoprotein (AFP), the conventional marker in HCC. Methods: Fifty patients with HCC and 50 controls comprising patients with liver cirrhosis (n=25) and chronic hepatitis (n=25) without HCC were included in this study. Total proteins were precipitated using acetone precipitation method followed by albumin and IgG depletion of precipitated protein using depletion kit. Proteins were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The expression changes of ApoAI and ApoAIV were confirmed by western blotting using specific primary and secondary polyclonal antibodies followed by densitometric protein semi-quantitative estimation. ApoAI, ApoAIV and AFP were measured in the plasma samples by ELISA method. Results: Semi-quantitative densitometric image analysis of the western blot images and the comparison between HCC patients with those without HCC (control) revealed differential expression of ApoAI and ApoAIV. Levels of ApoAI were significantly higher in patients with HCC compared to controls without HCC (0.279±0.216 vs 0.171±0.091 and 0.199±0.014; P <0.001). Levels of ApoAIV were significantly lower in patients of HCC compared to controls without HCC (0.119±0.061 vs 0.208±0.07 and 0.171±0.16; P <0.01). ELISA assays of apolipoproteins (ApoAI and ApoAIV) revealed similar results of expression of ApoAI and ApoAIV as detected in western blotting densitometric image analysis. Interpretation & conclusions: Increased expression of ApoAI and decreased expression of ApoAIV in HCC patients compared to controls without HCC revealed the abnormalities in HCC. These molecules need to be studied further for their use as potential biomarkers in the future diagnostic tools along with other conventional biomarkers for screening of HCC cases. It needs further analysis in higher number of patient population.
Collapse
Affiliation(s)
- Dipu Bharali
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences, Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, ICMR-National Institute of Cancer Prevention & Research, Noida, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Milia Islamia University, New Delhi, India
| | - Premashis Kar
- Department of Medicine, Maulana Azad Medical College, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
Jiang H, Zhang L, Zhang Y, Xie L, Wang Y, Lu H. HST-MRM-MS: A Novel High-Sample-Throughput Multiple Reaction Monitoring Mass Spectrometric Method for Multiplex Absolute Quantitation of Hepatocellular Carcinoma Serum Biomarker. J Proteome Res 2018; 18:469-477. [PMID: 30346787 DOI: 10.1021/acs.jproteome.8b00790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absolute quantification of clinical biomarkers by mass spectrometry (MS) has been challenged due to low sample-throughput of current multiple reaction monitoring (MRM) methods. For this problem to be overcome, in this work, a novel high-sample-throughput multiple reaction monitoring mass spectrometric (HST-MRM-MS) quantification approach is developed to achieve simultaneous quantification of 24 samples. Briefly, triplex dimethyl reagents (L, M, and H) and eight-plex iTRAQ reagents were used to label the N- and C-termini of the Lys C-digested peptides, respectively. The triplex dimethyl labeling produces three coelute peaks in MRM traces, and the iTRAQ labeling produces eight peaks in MS2, resulting in 24 (3×8) channels in a single experiment. HST-MRM-MS has shown good accuracy ( R2 > 0.98 for absolute quantification), reproducibility (RSD < 15%), and linearity (2-3 orders of magnitude). Moreover, the novel method has been successfully applied in quantifying serum biomarkers in hepatocellular carcinoma (HCC)-related serum samples. In conclusion, HST-MRM-MS is an accurate, high-sample-throughput, and broadly applicable MS-based absolute quantification method.
Collapse
|
8
|
Ehsani Ardakani MJ, Safaei A, Arefi Oskouie A, Haghparast H, Haghazali M, Mohaghegh Shalmani H, Peyvandi H, Naderi N, Zali MR. Evaluation of liver cirrhosis and hepatocellular carcinoma using Protein-Protein Interaction Networks. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2016; 9:S14-S22. [PMID: 28224023 PMCID: PMC5310795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM In the current study, we analysised only the articles that investigate serum proteome profile of cirrhosis patients or HCC patients versus healthy controls. BACKGROUND Increased understanding of cancer biology has enabled identification of molecular events that lead to the discovery of numerous potential biomarkers in diseases. Protein-protein interaction networks is one of aspect that could elevate the understanding level of molecular events and protein connections that lead to the identification of genes and proteins associated with diseases. METHODS Gene expression data, including 63 gene or protein names for hepatocellular carcinoma and 29 gene or protein names for cirrhosis, were extracted from a number of previous investigations. The networks of related differentially expressed genes were explored using Cytoscape and the PPI analysis methods such as MCODE and ClueGO. Centrality and cluster screening identified hub genes, including APOE, TTR, CLU, and APOA1 in cirrhosis. RESULTS CLU and APOE belong to the regulation of positive regulation of neurofibrillary tangle assembly. HP and APOE involved in cellular oxidant detoxification. C4B and C4BP belong to the complement activation, classical pathway and acute inflammation response pathway. Also, it was reported TTR, TFRC, VWF, CLU, A2M, APOA1, CKAP5, ZNF648, CASP8, and HSP27 as hubs in HCC. In HCC, these include A2M that are corresponding to platelet degranulation, humoral immune response, and negative regulation of immune effector process. CLU belong to the reverse cholesterol transport, platelet degranulation and human immune response. APOA1 corresponds to the reverse cholesterol transport, platelet degranulation and humoral immune response, as well as negative regulation of immune effector process pathway. CONCLUSION In conclusion, this study suggests that there is a common molecular relationship between cirrhosis and hepatocellular cancer that may help with identification of target molecules for early treatment that is essential in cancer therapy.
Collapse
Affiliation(s)
- Mohammad Javad Ehsani Ardakani
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Safaei
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Arefi Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hesam Haghparast
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterologyand Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Haghazali
- Behbood Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Mohaghegh Shalmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterologyand Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Peyvandi
- Hearing Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nosratollah Naderi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterologyand Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Schrödl W, Büchler R, Wendler S, Reinhold P, Muckova P, Reindl J, Rhode H. Acute phase proteins as promising biomarkers: Perspectives and limitations for human and veterinary medicine. Proteomics Clin Appl 2016; 10:1077-1092. [PMID: 27274000 DOI: 10.1002/prca.201600028] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 12/23/2022]
Abstract
Acute phase proteins (APPs) are highly conserved plasma proteins that are increasingly secreted by the liver in response to a variety of injuries, independently of their location and cause. APPs favor the systemic regulation of defense, coagulation, proteolysis, and tissue repair. Various APPs have been applied as general diagnostic parameters for a long time. Through proteomic techniques, more and more APPs have been discovered to be differentially altered. Since they are not consistently explainable by a stereotypic hepatic expression of sets of APPs, most of these results have unfortunately been neglected or attributed to the nonspecificity of the acute phase reaction. Moreover, it appears that various extrahepatic tissues are also able to express APPs. These extrahepatic APPs show focally specific roles in tissue homeostasis and repair and are released primarily into interstitial and distal fluids. Since these focal proteins might leak into the circulatory system, mixtures of hepatic and extrahepatic APP species can be expected in blood. Hence, a selective alteration of parts of APPs might be expected. There are several hints on multiple molecular forms and fragments of tissue-derived APPs. These differences offer the chance for multiple selective determinations. Thus, specific proteoforms might indeed serve as tissue-specific disease indicators.
Collapse
Affiliation(s)
- Wieland Schrödl
- Institute of Bacteriology and Mycology, Veterinary Faculty, University Leipzig, Germany
| | - Rita Büchler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at 'Friedrich Loeffler Institut', Federal Research Institute for Animal Health, Jena, Germany
| | - Petra Muckova
- Institute of Biochemistry I, University Hospital Jena, Germany.,Clinic of Neurology, University Hospital Jena, Germany
| | - Johanna Reindl
- Institute of Biochemistry I, University Hospital Jena, Germany
| | - Heidrun Rhode
- Institute of Biochemistry I, University Hospital Jena, Germany
| |
Collapse
|
10
|
Tsai TH, Song E, Zhu R, Di Poto C, Wang M, Luo Y, Varghese RS, Tadesse MG, Ziada DH, Desai CS, Shetty K, Mechref Y, Ressom HW. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics 2015; 15:2369-81. [PMID: 25778709 DOI: 10.1002/pmic.201400364] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/28/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the United States and Egypt for biomarker discovery using label-free proteomic analysis by LC-MS/MS. We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by MRM on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the United States and Egyptian cohorts. Among the 21 candidates, ten were previously reported as HCC-associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals upregulation of the complement and coagulation cascades pathway and downregulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers. All MS data have been deposited in the ProteomeXchange with identifier PXD001171 (http://proteomecentral.proteomexchange.org/dataset/PXD001171).
Collapse
Affiliation(s)
- Tsung-Heng Tsai
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Rui Zhu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Cristina Di Poto
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Minkun Wang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Yue Luo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Rency S Varghese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA
| | - Dina Hazem Ziada
- Department of Tropical Medicine and Infectious Diseases, Tanta University, Tanta, Egypt
| | - Chirag S Desai
- MedStar Georgetown University Hospital and Georgetown University Medical Center, Washington, DC, USA
| | - Kirti Shetty
- Johns Hopkins University, Gastroenterology & Hepatology at Sibley, Washington, DC, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Habtom W Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Proteomic and metabonomic biomarkers for hepatocellular carcinoma: a comprehensive review. Br J Cancer 2015; 112:1141-56. [PMID: 25826224 PMCID: PMC4385954 DOI: 10.1038/bjc.2015.38] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/04/2014] [Accepted: 12/20/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in overall global cancer-related mortality. Symptomatic presentation often means advanced disease where potentially curative treatment options become very limited. Numerous international guidelines propose the routine monitoring of those with the highest risk factors for the condition in order to diagnose potential tumourigenesis early. To aid this, the fields of metabonomic- and proteomic-based biomarker discovery have applied advanced tools to identify early changes in protein and metabolite expression in HCC patients vs controls. With robust validation, it is anticipated that from these candidates will rise a high-performance non-invasive test able to diagnose early HCC and related conditions. This review gathers the numerous markers proposed by studies using mass spectrometry and proton nuclear magnetic resonance spectroscopy and evaluates areas of consistency as well as discordance.
Collapse
|
12
|
Ferrín G, Rodríguez-Perálvarez M, Aguilar-Melero P, Ranchal I, Llamoza C, Linares CI, González-Rubio S, Muntané J, Briceño J, López-Cillero P, Montero-Álvarez JL, de la Mata M. Plasma protein biomarkers of hepatocellular carcinoma in HCV-infected alcoholic patients with cirrhosis. PLoS One 2015; 10:e0118527. [PMID: 25789864 PMCID: PMC4366144 DOI: 10.1371/journal.pone.0118527] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers in the world, with limited options for treatment unless timely diagnosed. Chronic hepatitis C virus (HCV) infection and persistent heavy alcohol consumption are independent risk factors for HCC development, which may induce a specific protein expression pattern different from those caused separately. The aim of the study was to identify protein biomarkers for the detection of HCC in HCV-infected alcoholic patients with cirrhosis in order to improve survival. We compared protein expression profiles of plasma samples from 52 HCV-infected alcoholic patients with and without HCC, using 2-D DIGE coupled with MALDI-TOF/TOF mass spectrometry. The 2-D DIGE results were analyzed statistically using Decyder software, and verified by western-blot and ELISA. In plasma samples from HCV-infected alcoholic patients, we found significantly differential expression profiles of carboxypeptidase-N, ceruloplasmin (CP), complement component 4a (C4a), fibrinogen-alpha (FGA), immunoglobulin mu chain C region, serum albumin, and serum paraoxonase/arylesterase 1 (PON1). Deregulation of plasma/serum levels of the identified proteins was associated to HCV, ethanol consumption, and/or HCC progression. In the validation through ELISA, C4a serum concentration was increased in HCC patients (2.4±1 ng/mg vs 1.8±0.6 ng/mg; p = 0.029), being the only independent predictor of HCC in the multivariate analysis (OR = 2.15; p = 0.015), with an AUROC = 0.70. The combination of C4a, FGA, CP and PON1 improved slightly the predictive ability of C4a alone (AUROC 0.81). In conclusion, we identified proteins related to acute-phase response, oxidative stress, or immune response, whose differential expression in plasma may be attributed to the presence of HCC. Among them, C4a, and its combination with CP, FGA and PON1, could be considered as potentially reliable biomarkers for the detection of HCC in HCV-infected alcoholic patients.
Collapse
Affiliation(s)
- Gustavo Ferrín
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- * E-mail:
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Patricia Aguilar-Melero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Isidora Ranchal
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Camilo Llamoza
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Clara I. Linares
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Sandra González-Rubio
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Jordi Muntané
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
| | - Javier Briceño
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro López-Cillero
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - José Luis Montero-Álvarez
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Manuel de la Mata
- Maimónides Institute for Biomedical Research in Córdoba (IMBIC), Reina Sofía University Hospital, Córdoba, Spain
- Biomedical Research Centre Network, Digestive and Liver Diseases (CIBERehd), Córdoba, Spain
- Hepatology and Liver Transplantation Unit, Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
13
|
Gonçalves LDR, Campanhon IB, Domingues RR, Paes Leme AF, Soares da Silva MR. Comparative salivary proteome of hepatitis B- and C-infected patients. PLoS One 2014; 9:e113683. [PMID: 25423034 PMCID: PMC4244100 DOI: 10.1371/journal.pone.0113683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B and C virus (HBV and HCV) infections are an important cause of cirrhosis and hepatocellular carcinoma. The natural history has a prominent latent phase, and infected patients may remain undiagnosed; this situation may lead to the continuing spread of these infections in the community. Compelling reasons exist for using saliva as a diagnostic fluid because it meets the demands of being an inexpensive, noninvasive and easy-to-use diagnostic method. Indeed, comparative analysis of the salivary proteome using mass spectrometry is a promising new strategy for identifying biomarkers. Our goal is to apply an Orbitrap-based quantitative approach to explore the salivary proteome profile in HBV- and HCV-infected patients. In the present study, whole saliva was obtained from 20 healthy, (control) 20 HBV-infected and 20 HCV-infected subjects. Two distinct pools containing saliva from 10 subjects of each group were obtained. The samples were ultracentrifuged and fractionated, and all fractions were hydrolyzed (trypsin) and injected into an LTQ-VELOS ORBITRAP. The identification and analyses of peptides were performed using Proteome Discoverer1.3 and ScaffoldQ + v.3.3.1. From a total of 362 distinct proteins identified, 344 proteins were identified in the HBV, 326 in the HCV and 303 in the control groups. Some blood proteins, such as flavin reductase (which converts biliverdin to bilirubin), were detected only in the HCV group. The data showed a reduced presence of complement C3, ceruloplasmin, alpha(1)-acid glycoprotein and alpha(2)-acid glycoprotein in the hepatitis-infected patients. Peptides of serotransferrin and haptoglobin were less detected in the HCV group. This study provides an integrated perspective of the salivary proteome, which should be further explored in future studies targeting specific disease markers for HBV and HCV infection.
Collapse
Affiliation(s)
- Lorena Da Rós Gonçalves
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabele Batista Campanhon
- Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
14
|
Megger DA, Naboulsi W, Meyer HE, Sitek B. Proteome Analyses of Hepatocellular Carcinoma. J Clin Transl Hepatol 2014; 2:23-30. [PMID: 26357614 PMCID: PMC4521250 DOI: 10.14218/jcth.2013.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/06/2013] [Accepted: 12/07/2013] [Indexed: 12/16/2022] Open
Abstract
Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids.
Collapse
Affiliation(s)
- Dominik A. Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Contributed equally
- Correspondence to: Dominik A. Megger, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum 44801, Germany. Tel: +49-234/32-26119. E-mail: ; Barbara Sitek, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum 44801, Germany. Tel: +49-234/32-24362. E-mail:
| | - Wael Naboulsi
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Contributed equally
| | - Helmut E. Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Correspondence to: Dominik A. Megger, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum 44801, Germany. Tel: +49-234/32-26119. E-mail: ; Barbara Sitek, Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum 44801, Germany. Tel: +49-234/32-24362. E-mail:
| |
Collapse
|