1
|
Oner F, Kantarci A. Periodontal response to nonsurgical accelerated orthodontic tooth movement. Periodontol 2000 2025. [PMID: 39840535 DOI: 10.1111/prd.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Tooth movement is a complex process involving the vascularization of the tissues, remodeling of the bone cells, and periodontal ligament fibroblasts under the hormonal and neuronal regulation mechanisms in response to mechanical force application. Therefore, it will inevitably impact periodontal tissues. Prolonged treatment can lead to adverse effects on teeth and periodontal tissues, prompting the development of various methods to reduce the length of orthodontic treatment. These methods are surgical or nonsurgical interventions applied simultaneously within the orthodontic treatment. The main target of nonsurgical approaches is modulating the response of the periodontal tissues to the orthodontic force. They stimulate osteoclasts and osteoclastic bone resorption in a controlled manner to facilitate tooth movement. Among various nonsurgical methods, the most promising clinical results have been achieved with photobiomodulation (PBM) therapy. Clinical data on electric/magnetic stimulation, pharmacologic administrations, and vibration forces indicate the need for further studies to improve their efficiency. This growing field will lead to a paradigm shift as we understand the biological response to these approaches and their adoption in clinical practice. This review will specifically focus on the impact of nonsurgical methods on periodontal tissues, providing a comprehensive understanding of this significant and understudied aspect of orthodontic care.
Collapse
Affiliation(s)
- Fatma Oner
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Periodontology, Faculty of Dentistry, Istinye University, Istanbul, Turkey
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Pastor FM, de Melo Ocarino N, Silva JF, Reis AMS, Serakides R. Bone development in fetuses with intrauterine growth restriction caused by maternal endocrine-metabolic dysfunctions. Bone 2024; 186:117169. [PMID: 38880170 DOI: 10.1016/j.bone.2024.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Intrauterine growth restriction (IUGR) affects a large proportion of infants, particularly in underdeveloped countries. Among the main causes of IUGR, maternal endocrine-metabolic dysfunction is highlighted, either due to its high incidence or due to the severity of the immediate and mediated changes that these dysfunctions cause in the fetus and the mother. Although the effects of endocrine and metabolic disorders have been widely researched, there are still no reviews that bring together and summarize the effects of these conditions on bone development in cases of IUGR. Therefore, the present literature review was conducted with the aim of discussing bone changes observed in fetuses with IUGR caused by maternal endocrine-metabolic dysfunction. The main endocrine dysfunctions that occur with IUGR include maternal hyperthyroidism, hypothyroidism, and hypoparathyroidism. Diabetes mellitus, hypertensive disorders, and obesity are the most important maternal metabolic dysfunctions that compromise fetal growth. The bone changes reported in the fetus are, for the most part, due to damage to cell proliferation and differentiation, as well as failures in the synthesis and mineralization of the extracellular matrix, which results in shortening and fragility of the bones. Some maternal dysfunctions, such as hyperthyroidism, have been widely studied, whereas conditions such as hypoparathyroidism and gestational hypertensive disorders require further study regarding the mechanisms underlying the development of bone changes. Similarly, there is a gap in the literature regarding changes related to intramembranous ossification, as most published articles only describe changes in endochondral bone formation associated with IUGR. Furthermore, there is a need for more research aimed at elucidating the late postnatal changes that occur in the skeletons of individuals affected by IUGR and their possible relationships with adult diseases, such as osteoarthritis and osteoporosis.
Collapse
Affiliation(s)
- Felipe Martins Pastor
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Natália de Melo Ocarino
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Amanda Maria Sena Reis
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Cínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Kishinchand R, Boyce M, Vyas H, Sewell L, Mohi A, Brengartner L, Miller R, Gorr MW, Wold LE, Cray J. In Utero Exposure to Maternal Electronic Nicotine Delivery System use Demonstrate Alterations to Craniofacial Development. Cleft Palate Craniofac J 2024; 61:1389-1397. [PMID: 36916055 DOI: 10.1177/10556656231163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE Develop a model for the study of Electronic Nicotine Device (ENDS) exposure on craniofacial development. DESIGN Experimental preclinical design followed as pregnant murine dams were randomized and exposed to filtered air exposure, carrier exposure consisting of 50% volume of propylene glycol and vegetable glycine (ENDS Carrier) respectively, or carrier exposure with 20 mg/ml of nicotine added to the liquid vaporizer (ENDS carrier with nicotine). SETTING Preclinical murine model exposure using the SciReq exposure system. PARTICIPANTS C57BL6 adult 8 week old female pregnant mice and exposed in utero litters. INTERVENTIONS Exposure to control filtered air, ENDS carrier or ENDS carrier with nicotine added throughout gestation at 1 puff/minute, 4 h/day, five days a week. MAIN OUTCOME MEASURES Cephalometric measures of post-natal day 15 pups born as exposed litters. RESULTS Data suggests alterations to several facial morphology parameters in the developing offspring, suggesting electronic nicotine device systems may alter facial growth if used during pregnancy. CONCLUSIONS Future research should concentrate on varied formulations and exposure regimens of ENDS to determine timing windows of exposures and ENDS formulations that may be harmful to craniofacial development.
Collapse
Affiliation(s)
- Rajiv Kishinchand
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark Boyce
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Heema Vyas
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Leslie Sewell
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amr Mohi
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Lexie Brengartner
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Roy Miller
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew W Gorr
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Loren E Wold
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Lademann F, Rijntjes E, Köhrle J, Tsourdi E, Hofbauer LC, Rauner M. Hyperthyroidism-driven bone loss depends on BMP receptor Bmpr1a expression in osteoblasts. Commun Biol 2024; 7:548. [PMID: 38719881 PMCID: PMC11078941 DOI: 10.1038/s42003-024-06227-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Hyperthyroidism is a well-known trigger of high bone turnover that can lead to the development of secondary osteoporosis. Previously, we have shown that blocking bone morphogenetic protein (BMP) signaling systemically with BMPR1A-Fc can prevent bone loss in hyperthyroid mice. To distinguish between bone cell type-specific effects, conditional knockout mice lacking Bmpr1a in either osteoclast precursors (LysM-Cre) or osteoprogenitors (Osx-Cre) were rendered hyperthyroid and their bone microarchitecture, strength and turnover were analyzed. While hyperthyroidism in osteoclast precursor-specific Bmpr1a knockout mice accelerated bone resorption leading to bone loss just as in wildtype mice, osteoprogenitor-specific Bmpr1a deletion prevented an increase of bone resorption and thus osteoporosis with hyperthyroidism. In vitro, wildtype but not Bmpr1a-deficient osteoblasts responded to thyroid hormone (TH) treatment with increased differentiation and activity. Furthermore, we found an elevated Rankl/Opg ratio with TH excess in osteoblasts and bone tissue from wildtype mice, but not in Bmpr1a knockouts. In line, expression of osteoclast marker genes increased when osteoclasts were treated with supernatants from TH-stimulated wildtype osteoblasts, in contrast to Bmpr1a-deficient cells. In conclusion, we identified the osteoblastic BMP receptor BMPR1A as a main driver of osteoporosis in hyperthyroid mice promoting TH-induced osteoblast activity and potentially its coupling to high osteoclastic resorption.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Eddy Rijntjes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Elena Tsourdi
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III & Center for Healthy Aging, Medical Faculty and University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
5
|
Maykovich T, Hardy S, Hamann MT, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoclast Function. JOURNAL OF NATURAL PRODUCTS 2024; 87:560-566. [PMID: 38383319 PMCID: PMC11173362 DOI: 10.1021/acs.jnatprod.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Manzamine-A is a marine-derived alkaloid that has demonstrated antimalarial and antiproliferative properties and is an emerging drug lead compound as a possible intervention in certain cancers. This compound has been found to modulate SIX1 gene expression, a target that is critical for the proliferation and survival of cells via various developmental pathways. As yet, little research has focused on manzamine-A and how its use may affect tissue systems including bone. Here we hypothesized that manzamine-A, through its interaction with SIX1, would alter precursor cells that give rise to the bone cell responsible for remodeling: the osteoclast. We further hypothesized reduced effects in differentiated osteoclasts, as these cells are generally not mitotic. We interrogated the effects of manzamine-A on preosteoclasts and osteoclasts. qrtPCR, MTS cell viability, Caspase 3/7, and TRAP staining were used as a functional assay. Preosteoclasts show responsiveness to manzamine-A treatment exhibited by decreases in cell viability and an increase in apoptosis. Osteoclasts also proved to be affected by manzamine-A but only at higher concentrations where apoptosis was increased and activation was reduced. In summary, our presented results suggest manzamine-A may have significant effects on bone development and health through multiple cell targets, previously shown in the osteoblast cell lineage, the cell responsible for mineralized tissue formation, and here in the osteoclast, the cell responsible for the removal of mineralized tissue and renewal via precipitation of bone remodeling.
Collapse
Affiliation(s)
- Tyler Maykovich
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Samantha Hardy
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425-1410, United States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid hormone receptor Thra and Thrb knockout differentially affects osteoblast biology and thyroid hormone responsiveness in vitro. J Cell Biochem 2023; 124:1948-1960. [PMID: 37992217 DOI: 10.1002/jcb.30500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Thyroid hormones (TH) are important modulators of bone remodeling and thus, thyroid diseases, in particular hyperthyroidism, are able to compromise bone quality and fracture resistance. TH actions on bone are mediated by the thyroid hormone receptors (TR) TRα1 and TRβ1, encoded by Thra and Thrb, respectively. Skeletal phenotypes of mice lacking Thra (Thra0/0 ) and Thrb (Thrb-/- ) are well-described and suggest that TRα1 is the predominant mediator of TH actions in bone. Considering that bone cells might be affected by systemic TH changes seen in these mutant mice, here we investigated the effects of TR knockout on osteoblasts exclusively at the cellular level. Primary osteoblasts obtained from Thra0/0 , Thrb-/- , and respective wildtype (WT) mice were analyzed regarding their differentiation potential, activity and TH responsiveness in vitro. Thra, but not Thrb knockout promoted differentiation and activity of early, mature and late osteoblasts as compared to respective WT cells. Interestingly, while mineralization capacity and expression of osteoblast marker genes and TH target gene Klf9 was increased by TH in WT and Thra-deficient osteoblasts, Thrb knockout mitigated the responsiveness of osteoblasts to short (48 h) and long term (10 d) TH treatment. Further, we found a low ratio of Rankl, a potent osteoclast stimulator, over osteoprotegerin, an osteoclast inhibitor, in Thrb-deficient osteoblasts and in line, supernatants obtained from Thrb-/- osteoblasts reduced numbers of primary osteoclasts in vitro. In accordance to the increased Rankl/Opg ratio in TH-treated WT osteoblasts only, supernatants from these cells, but not from TH-treated Thrb-/- osteoblasts increased the expression of Trap and Ctsk in osteoclasts, suggesting that osteoclasts are indirectly stimulated by TH via TRβ1 in osteoblasts. In conclusion, our study shows that both Thra and Thrb differentially affect activity, differentiation and TH response of osteoblasts in vitro and emphasizes the importance of TRβ1 to mediate TH actions in bone.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and University Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
7
|
Durham EL, Grey ZJ, Black L, Howie RN, Barth JL, Lee BS, Cray JJ. Sfrp4 expression in thyroxine treated calvarial cells. Life Sci 2022; 311:121158. [PMID: 36370870 PMCID: PMC9719041 DOI: 10.1016/j.lfs.2022.121158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
AIMS Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zachary J Grey
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Beth S Lee
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH, USA; Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
He L, Ma C, Cai S, Hou R, Xu H, Liu J, Liu X, Huang Q. Study on the Mechanism of Treating Femoral Head Necrosis with Drynariae Rhizoma Based on Network Pharmacology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3631722. [PMID: 35707043 PMCID: PMC9192254 DOI: 10.1155/2022/3631722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Through the network pharmacology thought, the action target of the active ingredients of Drynariae Rhizoma was predicted, and the mapping was combined with the related targets of ONFH, and the key nodes of interaction were identified for enrichment analysis, so as to comprehensively explore the pharmacological mechanism of Drynariae Rhizoma against ONFH. The main active ingredients of Drynariae Rhizoma were screened based on pharmacokinetic characteristics in pharmacokinetic database and analysis platform of TCM system (TCMSP). We used the organic small molecule bioactivity database (PubChem) and Swiss target prediction database to predict related targets based on 2D or 3D structural similarity and then mined the known ONFH therapeutic targets through the Human Mendelian Genetic Database (OMIM) and Pubmed texts. Combined with the predicted targets, String database was imported to construct the OP target interaction network diagram of bone fracture therapy. CytoNCA software was used to topology the key nodes of interaction according to relevant node parameters, and String was imported again to construct the protein interaction network diagram. Finally, biological functions and metabolic pathways of key nodes were analyzed through DAVID database. It was revealed that Drynariae Rhizoma may regulate stem cells, osteoblasts, osteoclasts, and immune cells through multiple pathways, including proliferation, differentiation, immunity, and oxidative stress. Conclusion: Pharmacological studies based on network indicate that Drynariae Rhizoma may participate in the regulation of several major signaling pathways through direct or indirect action targets and affect the proliferation and differentiation of multiple types of cells, thus playing an anti-ONFH role, which provides a scientific basis for explaining the material basis and mechanism of its anti- ONFH.
Collapse
Affiliation(s)
- Luqing He
- Central Laboratory of Traditional Chinese Medicine Orthopaedics, Third People's Hospital of Cixi, China
| | - Chenyu Ma
- Department of Critical Care Medicine, Third People's Hospital of Cixi, China
| | - Shuiqi Cai
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Third People's Hospital of Cixi, China
| | - Ruolin Hou
- Department of Pharmacy, Third People's Hospital of Cixi, China
| | - Hongfeng Xu
- Department of General Surgery, Third People's Hospital of Cixi, China
| | - Jianqiang Liu
- Department of Rehabilitation, Third People's Hospital of Cixi, China
| | - Xin Liu
- Department of Pharmacy, Third People's Hospital of Cixi, China
| | - Qun Huang
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Third People's Hospital of Cixi, China
| |
Collapse
|
9
|
Block BR, Collins JJ, Rios JC, Mazzola CA. Maternal Levothyroxine Treatment as an Etiologic Factor in the Development of Infantile Craniosynostosis. JOURNAL OF FETAL MEDICINE 2022. [DOI: 10.1007/s40556-022-00337-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Anti-Osteoporotic Effects of n-trans-Hibiscusamide and Its Derivative Alleviate Ovariectomy-Induced Bone Loss in Mice by Regulating RANKL-Induced Signaling. Molecules 2021; 26:molecules26226820. [PMID: 34833909 PMCID: PMC8623072 DOI: 10.3390/molecules26226820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoporosis is characterized by the deterioration of bone structures and decreased bone mass, leading to an increased risk of fracture. Estrogen deficiency in postmenopausal women and aging are major factors of osteoporosis and are some of the reasons for reduced quality of life. In this study, we investigated the effects of n-trans-hibiscusamide (NHA) and its derivative 4-O-(E)-feruloyl-N-(E)-hibiscusamide (HAD) on receptor activator of nuclear factor kappa-Β (NF-κB) ligand (RANKL)-induced osteoclast differentiation and an ovariectomized osteoporosis mouse model. NHA and HAD significantly inhibited the differentiation of osteoclasts from bone marrow-derived macrophages (BMMs) and the expression of osteoclast differentiation-related genes. At the molecular level, NHA and HAD significantly downregulated the phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules. However, Akt and NF-κB phosphorylation was inhibited only after NHA or HAD treatment. In the ovariectomy (OVX)-induced osteoporosis model, both NHA and HAD effectively improved trabecular bone structure. C-terminal telopeptide (CTX), a bone resorption marker, and RANKL, an osteoclast stimulation factor, were significantly reduced by NHA and HAD. The tartrate-resistant acid phosphatase (TRAP)-stained area, which indicates the osteoclast area, was also decreased by these compounds. These results show the potential of NHA and HAD as therapeutic agents for osteoporosis.
Collapse
|
11
|
Ji W, Hou LE, Yuan X, Gu T, Chen Z, Zhang Y, Zhang Y, Chen G, Xu Q, Zhao W. Identifying molecular pathways and candidate genes associated with knob traits by transcriptome analysis in the goose (Anser cygnoides). Sci Rep 2021; 11:11978. [PMID: 34099774 PMCID: PMC8184827 DOI: 10.1038/s41598-021-91269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 11/09/2022] Open
Abstract
Anser cygnoides has a spherical crest on the beak roof, which is described as knob. However, the mechanisms affecting knob morphology are unclear. Here, we investigated the phenotypic characteristics and molecular basis of knob-size differences in Yangzhou geese. Anatomically, the knob was identified as frontal hump in the frontal area of the skull, rather than hump of upper beak. Although the frontal hump length, and height varied greatly in geese with different knob phenotypes, little was changed in the width. Histologically, knob skin in large-size knobs geese have a greater length in the stratum corneum, stratum spinosum, and stratum reticular than that in small-size knobs geese. Moveover, the 415 differentially expressed genes were found between the large knobs and small ones through transcriptome profiling. In addition, GO enrichment and KEGG pathway analysis revealed 455 significant GO terms and 210 KEGG pathways were enriched, respectively. Among these, TGF-β signaling and thyroid hormone synthesis-signaling pathways were identified to determine knob-size phenotype. Furthermore, BMP5, DCN, TSHR and ADCY3 were recognized to involve in the growth and development of knob. Our data provide comprehensive molecular determinants of knob size phenotype, which can potentially promote the genetic improvement of goose knobs.
Collapse
Affiliation(s)
- Wangyang Ji
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Li E Hou
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - ZhuoYu Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | - Yang Zhang
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China
| | | | - Qi Xu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| | - Wenming Zhao
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Barqué A, Jan K, De La Fuente E, Nicholas CL, Hynes RO, Naba A. Knockout of the gene encoding the extracellular matrix protein SNED1 results in early neonatal lethality and craniofacial malformations. Dev Dyn 2020; 250:274-294. [PMID: 33012048 DOI: 10.1002/dvdy.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The extracellular matrix (ECM) is a fundamental component of multicellular organisms that orchestrates developmental processes and controls cell and tissue organization. We previously identified the novel ECM protein SNED1 as a promoter of breast cancer metastasis and showed that its level of expression negatively correlated with breast cancer patient survival. Here, we sought to identify the roles of SNED1 during murine development. RESULTS We generated two novel Sned1 knockout mouse strains and showed that Sned1 is essential since homozygous ablation of the gene led to early neonatal lethality. Phenotypic analysis of the surviving knockout mice revealed a role for SNED1 in the development of craniofacial and skeletal structures since Sned1 knockout resulted in growth defects, nasal cavity occlusion, and craniofacial malformations. Sned1 is widely expressed in embryos, notably by cell populations undergoing epithelial-to-mesenchymal transition, such as the neural crest cells. We further show that mice with a neural-crest-cell-specific deletion of Sned1 survive, but display facial anomalies partly phenocopying the global knockout mice. CONCLUSIONS Our results demonstrate requisite roles for SNED1 during development and neonatal survival. Importantly, the deletion of 2q37.3 in humans, a region that includes the SNED1 locus, has been associated with facial dysmorphism and short stature.
Collapse
Affiliation(s)
- Anna Barqué
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyleen Jan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Emanuel De La Fuente
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Christina L Nicholas
- Department of Orthodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Anthropology, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
13
|
Yi L, Zhong T, Huang Y, Huang S. Triiodothyronine promotes the osteoblast formation by activating autophagy. Biophys Chem 2020; 267:106483. [PMID: 33010728 DOI: 10.1016/j.bpc.2020.106483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/08/2020] [Accepted: 09/20/2020] [Indexed: 11/24/2022]
Abstract
Based on the osteogenic effect, triiodothyronine (T3) plays an important role in bone growth and development. Autophagy contributes to osteoblast formation and subsequent osteogenesis. Our study aims to explore the relationship among T3, autophagy and osteogenesis. In this study, cranial primary osteoblasts were obtained from 2 to 3 weeks-old Sprague Dawley (SD) rat fetuses. Osteoblasts were treated with T3, and then the autophagic parameters of Osteoblasts (including autophagic proteins, LC3 conversion rate and autophagosome formation) were observed through Western Blotting and Transmission Electron Microscopy. Next, after using autophagic pharmacological inhibitors (3-MA and chloroquine) and silencing vectors of autophagic genes (BECN1, Atg5 and Atg7) to downregulate autophagic activity, osteoblast proliferation and osteoblastic gene expression were detected using cell counting kit-8 (CCK-8) and quantitative real-time PCR (qRT-PCR) assays, respectively. Ultimately, the mice treated with partial thyroidectomy (PTx mice) were used to further observe the effect of T3 on the formation and autophagy of osteoblasts in trabecular bone in vivo. Our results show that T3 enhances osteoblast autophagy. Autophagy suppression with 3-MA, chloroquine or autophagy-genes knockdown reverses T3-promoted osteoblast formation. In vivo assays showed that the formation and autophagy of osteoblasts in bone tissue were reduced in T3-deficient young mice. Overall, T3 can promote osteoblast formation by activation of autophagy.
Collapse
Affiliation(s)
- Ling Yi
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Tao Zhong
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yubo Huang
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Shuping Huang
- Department of Pediatrics, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
14
|
Lademann F, Weidner H, Tsourdi E, Kumar R, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Disruption of BMP Signaling Prevents Hyperthyroidism-Induced Bone Loss in Male Mice. J Bone Miner Res 2020; 35:2058-2069. [PMID: 32453466 DOI: 10.1002/jbmr.4092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (TH) are key regulators of bone health, and TH excess in mice causes high bone turnover-mediated bone loss. However, the underlying molecular mechanisms of TH actions on bone remain poorly defined. Here, we tested the hypothesis whether TH mediate their effects via the pro-osteogenic bone morphogenetic protein (BMP) signaling pathway in vitro and in vivo. Primary murine osteoblasts treated with 3,3',5-triiodo-L-thyronine (T3 ) showed an enhanced differentiation potential, which was associated with activated canonical BMP/SMAD signaling reflected by SMAD1/5/8 phosphorylation. Blocking BMP signaling at the receptor (LDN193189) and ligand level (noggin, anti-BMP2/BMP4 neutralizing antibodies) inhibited T3 -induced osteogenic differentiation. In vivo, TH excess over 4 weeks in male C57BL/6JRj mice led to severe trabecular bone loss with a high bone turnover that was completely prevented by treatment with the BMP ligand scavenger ALK3-Fc. Thus, TH activate the canonical BMP pathway in osteoblasts to promote their differentiation and function. Importantly, this study indicates that blocking the BMP pathway may be an effective strategy to treat hyperthyroidism-induced bone loss. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ravi Kumar
- Acceleron Pharma, Inc, Cambridge, MA, USA
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Leitch VD, Bassett JHD, Williams GR. Role of thyroid hormones in craniofacial development. Nat Rev Endocrinol 2020; 16:147-164. [PMID: 31974498 DOI: 10.1038/s41574-019-0304-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
Abstract
The development of the craniofacial skeleton relies on complex temporospatial organization of diverse cell types by key signalling molecules. Even minor disruptions to these processes can result in deleterious consequences for the structure and function of the skull. Thyroid hormone deficiency causes delayed craniofacial and tooth development, dysplastic facial features and delayed development of the ossicles in the middle ear. Thyroid hormone excess, by contrast, accelerates development of the skull and, in severe cases, might lead to craniosynostosis with neurological sequelae and facial hypoplasia. The pathogenesis of these important abnormalities remains poorly understood and underinvestigated. The orchestration of craniofacial development and regulation of suture and synchondrosis growth is dependent on several critical signalling pathways. The underlying mechanisms by which these key pathways regulate craniofacial growth and maturation are largely unclear, but studies of single-gene disorders resulting in craniofacial malformations have identified a number of critical signalling molecules and receptors. The craniofacial consequences resulting from gain-of-function and loss-of-function mutations affecting insulin-like growth factor 1, fibroblast growth factor receptor and WNT signalling are similar to the effects of altered thyroid status and mutations affecting thyroid hormone action, suggesting that these critical pathways interact in the regulation of craniofacial development.
Collapse
Affiliation(s)
- Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Royal Melbourne Institute of Technology (RMIT) Centre for Additive Manufacturing, RMIT University, Melbourne, VIC, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
16
|
Lademann F, Tsourdi E, Rijntjes E, Köhrle J, Hofbauer LC, Heuer H, Rauner M. Lack of the Thyroid Hormone Transporter Mct8 in Osteoblast and Osteoclast Progenitors Increases Trabecular Bone in Male Mice. Thyroid 2020; 30:329-342. [PMID: 31910109 DOI: 10.1089/thy.2019.0271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Bone is an important target of thyroid hormones (THs), which require transport into target cells to exert their actions. Recently, the TH-specific monocarboxylate transporter 8 (Mct8) was reported as a regulator of bone mass in male mice. However, its global deletion leads to high 3,3',5-L-triiodothyronine (T3) serum concentrations that may mask direct effects of Mct8-deficiency on bone. In this study, we assessed the bone cell intrinsic function of Mct8 ex vivo and in vivo using conditional Mct8-knockout lines specifically targeting osteoclast and osteoblast progenitors, as well as mature osteoblasts and osteocytes. Materials and Methods: Twelve-week-old male mice with a global Mct8-deficiency or a conditional Mct8-knockout in osteoclast precursors, osteoprogenitors, or mature osteoblasts/osteocytes were analyzed regarding their bone microarchitecture, turnover, and strength. Furthermore, ex vivo studies were conducted to investigate the role of Mct8 in bone cell differentiation and functionality, as well as TH uptake. Results: Global Mct8-knockout mice demonstrated 1.7-fold higher T3 serum concentrations and trabecular bone loss (-28%) likely due to an increased bone turnover as shown by increased osteoblast (+45%) and osteoclast numbers (+41%). However, cortical bone mineral density was increased. Ex vivo cultures of bone marrow-derived osteoblasts and osteoclasts revealed highest expression of Mct8 in mature bone cells. In addition, Mct8-deficiency resulted in a lower mRNA expression of osteoblast and osteoclast differentiation markers, as well as a reduced mineralization capacity and osteoclast numbers, respectively, indicating a bone cell intrinsic role of Mct8. In fact, conditional Mct8-knockout and inhibition of Mct8 in osteoblasts led to an attenuated T3 uptake ex vivo. In vivo, osteoprogenitor-specific Mct8-knockout enhanced trabecular bone volume (+16%) with osteoblast numbers being increased 3.7 fold. Interestingly, Mct8-deficiency in osteoprogenitors and late osteoblasts/osteocytes both resulted in cortical bone loss. Finally, Mct8-deletion in osteoclast progenitors increased trabecular bone volume (+20%) due to reduced osteoclast numbers (-32%), whereas osteoblast numbers were enhanced (+25%). Conclusions: This study confirms that high systemic T3 in global Mct8-knockout mice masks the direct effect of Mct8. Moreover, it identifies Mct8 as a critical regulator of trabecular vs. cortical bone by regulating T3 uptake and highlights its cell intrinsic role in osteoclast and osteoblast progenitors.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| | - Heike Heuer
- Klinik für Endokrinologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Dresden, Germany
- Center for Healthy Aging, Universitätsklinikum Dresden, Dresden, Germany
| |
Collapse
|
17
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid Hormone Actions and Bone Remodeling – The Role of the
Wnt Signaling Pathway. Exp Clin Endocrinol Diabetes 2020; 128:450-454. [DOI: 10.1055/a-1088-1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractThyroid hormones are indispensable for bone development and growth. Also in
adults, bone mass maintenance is under the control of thyroid hormones.
Preclinical and clinical studies established untreated hyperthyroidism as a
cause for secondary osteoporosis with increased fracture risk. Thus, normal
thyroid function is essential for bone health. Mechanistically, thyroid hormone
excess accelerates bone turnover with predominant bone resorption. How thyroid
hormones affect osteoblast and osteoclast functions, however, still remains
ill-defined. The Wnt signaling pathway is a major determinant of bone mass and
strength as it promotes osteoblastogenesis and bone formation, while inhibiting
bone resorption. So far, only few studies investigated a possible link between
thyroid hormones, bone metabolism and the Wnt pathway. In this review, we
summarize the literature linking thyroid hormones to bone homeostasis through
Wnt signaling and discuss its potential as a therapeutic approach to treat
hyperthyroidism-induced bone loss.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| |
Collapse
|
18
|
Pharmacological exposures may precipitate craniosynostosis through targeted stem cell depletion. Stem Cell Res 2019; 40:101528. [PMID: 31415959 PMCID: PMC6915957 DOI: 10.1016/j.scr.2019.101528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023] Open
Abstract
The Centers for Disease Control and Prevention, National Birth Defects Study suggests that environmental exposures including maternal thyroid diseases, maternal nicotine use, and use of selective serotonin reuptake inhibitors (SSRIs) may exacerbate incidence and or severity of craniofacial abnormalities including craniosynostosis. Premature fusion of a suture(s) of the skull defines the birth defect craniosynostosis which occurs in 1:1800–2500 births. A proposed mechanism of craniosynostosis is the disruption of proliferation and differentiation of cells in the perisutural area. Here, we hypothesize that pharmacological exposures including excess thyroid hormone, nicotine, and SSRIs lead to an alteration of stem cells within the sutures resulting in premature fusion. In utero exposure to nicotine and citalopram (SSRI) increased the risk of premature suture fusion in a wild-type murine model. Gli1+ stem cells were reduced, stem cell populations were depleted, and homeostasis of the suture mesenchyme was altered with exposure. Thus, although these pharmacological exposures can deplete calvarial stem cell populations leading to craniosynostosis, depletion of stem cells is not a unifying mechanism for pharmacological exposure associated craniosynostosis.
Collapse
|
19
|
Gan D, Xu X, Chen D, Feng P, Xu Z. Network Pharmacology-Based Pharmacological Mechanism of the Chinese Medicine Rhizoma drynariae Against Osteoporosis. Med Sci Monit 2019; 25:5700-5716. [PMID: 31368456 PMCID: PMC6688518 DOI: 10.12659/msm.915170] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rhizoma drynariae is the main traditional Chinese medicine used for the treatment of osteoporosis, but its anti-osteoporotic targeting mechanism has not been fully elucidated due to the complexity of its active ingredients. In this study, the pharmacological mechanism of action of Rhizoma drynariae against osteoporosis was studied by integrating pharmacological concepts. The pharmacokinetic characteristics of selected major active constituents of Rhizoma drynariae and the SMILES structural similarity were used to predict related targets. A literature search was conducted to identify known osteoporosis treatment targets, which were then combined with the predicted targets to construct the direct or indirect target interaction network map of Rhizoma drynariae against osteoporosis. Finally, data on the key targets of the interactions, ranked according to relevant node parameters obtained through pathway enrichment analysis and screening of key targets and active ingredients of Rhizoma drynariae, were used to perform molecular docking simulation. We screened 16 active ingredients of Rhizoma drynariae, and 7 key targets with direct or indirect effects with a high frequency were obtained. These main pathways were found to play important roles in the PI3k-akt signaling pathway, osteoclast differentiation, Wnt signaling pathway, and estrogen signaling pathway. Molecular docking showed that most active ingredients of Rhizoma drynariae had strong binding efficiency with key targets. Based on network pharmacology, we conclude that Rhizoma drynariae plays an anti-osteoporotic role by directly or indirectly targeting multiple major signaling pathways and influencing the proliferation and differentiation of multiple types of cells.
Collapse
Affiliation(s)
- Donghao Gan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Xiaowei Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Deqiang Chen
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Peng Feng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Orthopaedics, Affilited Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| |
Collapse
|
20
|
Kesterke MJ, Judd MA, Mooney MP, Siegel MI, Elsalanty M, Howie RN, Weinberg SM, Cray JJ. Maternal environment and craniofacial growth: geometric morphometric analysis of mandibular shape changes with in utero thyroxine overexposure in mice. J Anat 2018; 233:46-54. [PMID: 29611183 DOI: 10.1111/joa.12810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
An estimated 3% of US pregnancies are affected by maternal thyroid dysfunction, with between one and three of every 1000 pregnancies being complicated by overactive maternal thyroid levels. Excess thyroid hormones are linked to neurological impairment and excessive craniofacial variation, affecting both endochondral and intramembranous bone. Using a geometric morphometric approach, this study evaluates the role of in utero thyroxine overexposure on the growth of offspring mandibles in a sample of 241 mice. Canonical variate analysis utilized 16 unilateral mandibular landmarks obtained from 3D micro-computed tomography to assess shape changes between unexposed controls (n = 63) and exposed mice (n = 178). By evaluating shape changes in the mandible among three age groups (15, 20 and 25 days postnatal) and different dosage levels (low, medium and high), this study found that excess maternal thyroxine alters offspring mandibular shape in both age- and dosage-dependent manners. Group differences in overall shape were significant (P < 0.001), and showed major changes in regions of the mandible associated with muscle attachment (coronoid process, gonial angle) and regions of growth largely governed by articulation with the cranial base (condyle) and occlusion (alveolus). These results compliment recent studies demonstrating that maternal thyroxine levels can alter the cranial base and cranial vault of offspring, contributing to a better understanding of both normal and abnormal mandibular development, as well as the medical implications of craniofacial growth and development.
Collapse
Affiliation(s)
| | - Margaret A Judd
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark P Mooney
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael I Siegel
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthodontics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Seth M Weinberg
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
21
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Vucic S, Korevaar TIM, Dhamo B, Jaddoe VWV, Peeters RP, Wolvius EB, Ongkosuwito EM. Thyroid Function during Early Life and Dental Development. J Dent Res 2017; 96:1020-1026. [PMID: 28489513 DOI: 10.1177/0022034517708551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Children with low levels of thyroid hormones (hypothyroidism) have delayed tooth eruption, enamel hypoplasia, micrognathia, and anterior open bite, whereas children with hyperthyroidism may suffer from accelerated tooth eruption, maxillary, and mandibular osteoporosis. However, it is still unknown whether thyroid function variations within the normal or subclinical range also have an impact on hard dental tissues in healthy children. The objective of this study was, therefore, to investigate the association between thyroid function from the fetal period until early childhood and dental development at school age. This study is embedded in the Generation R Study, a population-based cohort study established in Rotterdam, the Netherlands. Maternal thyroid function (thyroid-stimulating hormone [TSH], free thyroxine [FT4], and thyroid peroxidase antibody [TPOAb] concentrations) was measured during early pregnancy, and thyroid function of the offspring (TSH and FT4) was measured in cord blood at birth and in early childhood (6 y). Dental development was assessed from panoramic radiographs of children of school-going age (9 y). In total, 2,387 to 2,706 subjects were available for the multivariable linear regression analysis, depending on the point in time of thyroid function measurement. There was an inverse association between cord blood and early childhood TSH concentrations with dental development, with a -0.06 lower standard deviation (SD) per 1 mU/L of TSH (95% confidence interval [CI], -0.11 to -0.01) and a -0.06 lower SD per 1 mU/L of TSH (95% CI, -0.11 to 0.00), respectively. There was no association between the maternal thyroid function during pregnancy and the dental development score of the child. However, TPOAb-positive mothers had children with a -0.20 SD (adjusted 95% CI, -0.35 to -0.04) lower dental development score compared with TPOAb-negative mothers. The findings of this study suggest that the thyroid hormone is involved in the maturation of teeth from the early stages of life onward.
Collapse
Affiliation(s)
- S Vucic
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,2 Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - T I M Korevaar
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,3 Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - B Dhamo
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,2 Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - V W V Jaddoe
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,4 Department of Epidemiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - R P Peeters
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,3 Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - E B Wolvius
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,2 Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - E M Ongkosuwito
- 1 The Generation R Study Group, Erasmus University Medical Centre, Rotterdam, the Netherlands.,2 Department of Oral & Maxillofacial Surgery, Special Dental Care, and Orthodontics, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Jin YQ, Li JL, Chen JD, Xu CL, Li H. Dalbergioidin (DAL) protects MC3T3-E1 osteoblastic cells against H 2O 2-induced cell damage through activation of the PI3K/AKT/SMAD1 pathway. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:711-720. [PMID: 28374099 DOI: 10.1007/s00210-017-1365-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/05/2017] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species (ROS) is a pivotal pathogenic factor in the development of osteoporosis. Dalbergioidin (DAL) can be isolated from Uraria crinite, an edible herb used as a natural food for childhood skeletal dysplasia. Recent research has implicated DAL as having an antiosteoporosis effect, although the mechanism of this is unclear. We used an effective oxidative stress model, induced by hydrogen peroxide (H2O2) in osteoblastic MC3T3-E1 cells, to investigate the protective effects of DAL in osteoporosis and the underlying molecular mechanisms. The results indicated that treatment with DAL maintained redox balance, reduced MC3T3-E1 cell apoptosis, improved alkaline phosphatase activity, and elevated the osteogenic-related protein expression of Runx2, Osterix, and BMP2 against oxidative damage induced by H2O2. The potential molecular mechanism involved in the protective effect of DAL against H2O2-induced cell death in MC3T3-E1 cells may lie in the activation of the PI3K/AKT/SMAD1 cell signal pathway. Taken together, the results indicated that the potential protective effects of DAL against osteoporosis were linked to a reduction in oxidative damage, suggesting that DAL may be useful in bone metabolism diseases, particularly osteoporosis.
Collapse
Affiliation(s)
- Yu-Qin Jin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.,Center Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jia-Ling Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jin-Dong Chen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Chang-Liang Xu
- Key Laboratory of SATCM for Empirical Formulae Evaluation and Achievements Transformation, The No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
24
|
Effects of In Utero Thyroxine Exposure on Murine Cranial Suture Growth. PLoS One 2016; 11:e0167805. [PMID: 27959899 PMCID: PMC5154521 DOI: 10.1371/journal.pone.0167805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
Large scale surveillance studies, case studies, as well as cohort studies have identified the influence of thyroid hormones on calvarial growth and development. Surveillance data suggests maternal thyroid disorders (hyperthyroidism, hypothyroidism with pharmacological replacement, and Maternal Graves Disease) are linked to as much as a 2.5 fold increased risk for craniosynostosis. Craniosynostosis is the premature fusion of one or more calvarial growth sites (sutures) prior to the completion of brain expansion. Thyroid hormones maintain proper bone mineral densities by interacting with growth hormone and aiding in the regulation of insulin like growth factors (IGFs). Disruption of this hormonal control of bone physiology may lead to altered bone dynamics thereby increasing the risk for craniosynostosis. In order to elucidate the effect of exogenous thyroxine exposure on cranial suture growth and morphology, wild type C57BL6 mouse litters were exposed to thyroxine in utero (control = no treatment; low ~167 ng per day; high ~667 ng per day). Thyroxine exposed mice demonstrated craniofacial dysmorphology (brachycranic). High dose exposed mice showed diminished area of the coronal and widening of the sagittal sutures indicative of premature fusion and compensatory growth. Presence of thyroid receptors was confirmed for the murine cranial suture and markers of proliferation and osteogenesis were increased in sutures from exposed mice. Increased Htra1 and Igf1 gene expression were found in sutures from high dose exposed individuals. Pathways related to the HTRA1/IGF axis, specifically Akt and Wnt, demonstrated evidence of increased activity. Overall our data suggest that maternal exogenous thyroxine exposure can drive calvarial growth alterations and altered suture morphology.
Collapse
|
25
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
26
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
27
|
Cruz Grecco Teixeira MB, Martins GM, Miranda-Rodrigues M, De Araújo IF, Oliveira R, Brum PC, Azevedo Gouveia CH. Lack of α2C-Adrenoceptor Results in Contrasting Phenotypes of Long Bones and Vertebra and Prevents the Thyrotoxicosis-Induced Osteopenia. PLoS One 2016; 11:e0146795. [PMID: 26815679 PMCID: PMC4729682 DOI: 10.1371/journal.pone.0146795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/21/2015] [Indexed: 12/26/2022] Open
Abstract
A series of studies have demonstrated that activation of the sympathetic nervous system (SNS) causes osteopenia via β2-adrenoceptor (β2-AR) signaling. However, in a recent study, we found an unexpected and generalized phenotype of high bone mass in female mice with chronic sympathetic hyperactivity, due to double gene inactivation of adrenoceptors that negatively regulate norepinephrine release, α2A-and α2C-AR (α2A/2C-AR-/-). These findings suggest that β2-AR is not the single adrenoceptor involved in bone turnover regulation and show that α2-AR signaling may also mediate the SNS actions in the skeleton. In addition, we found that α2A/2C-AR-/- animals are resistant to the thyrotoxicosis-induced osteopenia, suggesting that thyroid hormone (TH), when in supraphysiological levels, interacts with the SNS to control bone mass and structure, and that this interaction may also involve α2-AR signaling. In the present study, to further investigate these hypotheses and to discriminate the roles of α2-AR subtypes, we have evaluated the bone phenotype of mice with the single gene inactivation of α2C-AR subtype, which mRNA expression was previously shown to be down regulated by triiodothyronine (T3). A cohort of 30 day-old female α2CAR-/- mice and their wild-type (WT) controls were treated with a supraphysiological dose of T3 for 30 or 90 days, which induced a thyrotoxic state in both mouse lineages. The micro-computed tomographic (μCT) analysis showed that α2C-AR-/- mice present lower trabecular bone volume (BV/TV) and number (Tb.N), and increased trabecular separation (Tb.Sp) in the femur compared with WT mice; which was accompanied by decreased bone strength (determined by the three-point bending test) in the femur and tibia. The opposite was observed in the vertebra, where α2C-AR-/- mice show increased BV/TV, Tb.N and trabecular thickness (Tb.Th), and decreased Tb.Sp, compared with WT animals. In spite of the contrasting bone phenotypes of the femur and L5, thyrotoxicosis negatively regulated most of the micro architectural features of the trabecular bone in both skeletal sites of WT, but not of α2C-AR-/- mice. T3 treatment also decreased biomechanical properties (maximum load and ultimate load) in the femur and tibia of WT, but not of knockout mice. The mRNA expression of osteocalcin, a marker of mature osteoblasts, and tartrate-resistant acid phosphatase, which is expressed by osteoclasts and is involved in collagen degradation, was increased by T3 treatment only in WT, and not in α2C-AR-/- mice. Altogether, these findings suggest that α2C-AR subtype mediates the effects of the SNS in the bone in a skeletal site-dependent manner, and that thyrotoxicosis depends on α2C-AR signaling to promote bone loss, which sustains the hypothesis of a TH-SNS interaction to modulate bone remodeling and structure.
Collapse
Affiliation(s)
| | - Gisele Miyamura Martins
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Patrícia Chakur Brum
- Departament of Biodinamic of Human Body Moviment, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
28
|
Durham E, Jen S, Wang L, Nasworthy J, Elsalanty M, Weinberg S, Yu J, Cray J. Effects of Citalopram on Sutural and Calvarial Cell Processes. PLoS One 2015; 10:e0139719. [PMID: 26431045 PMCID: PMC4592261 DOI: 10.1371/journal.pone.0139719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/15/2015] [Indexed: 12/31/2022] Open
Abstract
The use of selective serotonin reuptake inhibitors (SSRIs) for the treatment of depression during pregnancy is suggested to increase the incidence of craniofacial abnormalities including craniosynostosis. Little is known about this mechanism, however based on previous data we propose a mechanism that affects cell cycle. Excessive proliferation, and reduction in apoptosis may lead to hyperplasia within the suture that may allow for differentiation, bony infiltration, and fusion. Here we utilized in vivo and in vitro analysis to investigate this proposed phenomenon. For in vivo analysis we used C57BL–6 wild-type breeders treated with a clinical dose of citalopram during the third trimester of pregnancy to produce litters exposed to the SSRI citalopram in utero. At post-natal day 15 sutures were harvested from resulting pups and subjected to histomorphometric analysis for proliferation (PCNA) and apoptosis (TUNEL). For in vitro studies, we used mouse calvarial pre-osteoblast cells (MC3T3-E1) to assess proliferation (MTS), apoptosis (Caspase 3/7-activity), and gene expression after exposure to titrated doses of citalopram. In vivo analysis for PCNA suggested segregation of effect by location, with the sagittal suture, showing a statistically significant increase in proliferative response. The coronal suture was not similarly affected, however there was a decrease in apoptotic activity at the dural edge as compared to the periosteal edge. No differences in apoptosis by suture or area due to SSRI exposure were observed. In vitro results suggest citalopram exposure increased proliferation and proliferative gene expression, and decreased apoptosis of the MC3T3-E1 cells. Decreased apoptosis was not confirmed in vivo however, an increase in proliferation without a concomitant increase in apoptosis is still defined as hyperplasia. Thus prenatal SSRI exposure may exert a negative effect on post-natal growth through a hyperplasia effect at the cranial growth sites perhaps leading to clinically significant craniofacial abnormalities.
Collapse
Affiliation(s)
- Emily Durham
- Departments of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Serena Jen
- School of Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Lin Wang
- Institute for Plastic Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Joseph Nasworthy
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Mohammed Elsalanty
- Department of Oral Biology, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Oral Maxillofacial Surgery, Georgia Regents University, Augusta, Georgia, United States of America
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Seth Weinberg
- Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jack Yu
- Institute for Regenerative and Reparative Medicine, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Surgery, Division of Plastic Surgery, Georgia Regents University, Augusta, Georgia, United States of America
| | - James Cray
- Departments of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tao D, Zhao J, Deng G, Jiao J. Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red deer (Cervus elaphus). ACTA ACUST UNITED AC 2015; 323:696-703. [PMID: 26351085 DOI: 10.1002/jez.1962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Ossification degree is one of the primary variables affecting the medicinal value of velvet antler. Multiple factors regulate the calcification of velvet antler. We studied the relationship between the ossification of velvet antlers and the serum levels of parathyroid hormone (PTH) and androgen (ADG) in Tarim red deer. Enzyme-linked immunosorbent assays (ELISA) and atomic absorption spectrometry demonstrated that the changes in serum PTH and ADG levels nearly paralleled antler ossification during Tarim red deer antler mineralization. These results suggest that regulating the levels of serum PTH and ADG could decrease the calcification rate of velvet antlers in Tarim red deer. We conclude that PTH might increase antler ossification via the cAMP signaling pathway, and ADG possesses the dual roles of promoting both antler ossification and growth in Tarim red deer. This study suggests that we might be able to artificially control antler ossification to improve its medical value via the PTH or/and ADG pathway. J. Exp. Zool. 323A: 696-703, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dayong Tao
- AnimalMedical College, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Animal Science, Tarim University, Alar, Xinjiang, China
| | - Jinxiang Zhao
- College of Animal Science, Tarim University, Alar, Xinjiang, China.,Yingkou Institute of Technology
| | - Ganzhen Deng
- AnimalMedical College, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jifeng Jiao
- College of Animal Science, Tarim University, Alar, Xinjiang, China.,Yingkou Institute of Technology
| |
Collapse
|
30
|
|
31
|
Selective serotonin reuptake inhibitor exposure alters osteoblast gene expression and craniofacial development in mice. ACTA ACUST UNITED AC 2014; 100:912-23. [DOI: 10.1002/bdra.23323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Herberg S, Kondrikova G, Periyasamy-Thandavan S, Howie RN, Elsalanty ME, Weiss L, Campbell P, Hill WD, Cray JJ. Inkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice. Bone 2014; 67:95-103. [PMID: 25016095 PMCID: PMC4149833 DOI: 10.1016/j.bone.2014.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/08/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND A major problem in craniofacial surgery is non-healing bone defects. Autologous reconstruction remains the standard of care for these cases. Bone morphogenetic protein-2 (BMP-2) therapy has proven its clinical utility, although non-targeted adverse events occur due to the high milligram-level doses used. Ongoing efforts explore the use of different growth factors, cytokines, or chemokines, as well as co-therapy to augment healing. METHODS Here we utilize inkjet-based biopatterning to load acellular DermaMatrix delivery matrices with nanogram-level doses of BMP-2, stromal cell-derived factor-1β (SDF-1β), transforming growth factor-β1 (TGF-β1), or co-therapies thereof. We tested the hypothesis that bioprinted SDF-1β co-delivery enhances BMP-2 and TGF-β1-driven osteogenesis both in-vitro and in-vivo using a mouse calvarial critical size defect (CSD) model. RESULTS Our data showed that BMP-2 bioprinted in low-doses induced significant new bone formation by four weeks post-operation. TGF-β1 was less effective compared to BMP-2, and SDF-1β therapy did not enhance osteogenesis above control levels. However, co-delivery of BMP-2+SDF-1β was shown to augment BMP-2-induced bone formation compared to BMP-2 alone. In contrast, co-delivery of TGF-β1+SDF-1β decreased bone healing compared to TGF-β1 alone. This was further confirmed in vitro by osteogenic differentiation studies using MC3T3-E1 pre-osteoblasts. CONCLUSIONS Our data indicates that sustained release delivery of a low-dose growth factor therapy using biopatterning technology can aid in healing CSD injuries. SDF-1β augments the ability for BMP-2 to drive healing, a result confirmed in vivo and in vitro; however, because SDF-1β is detrimental to TGF-β1-driven osteogenesis, its effect on osteogenesis is not universal.
Collapse
Affiliation(s)
- Samuel Herberg
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Galina Kondrikova
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | | | - R Nicole Howie
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Mohammed E Elsalanty
- Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA
| | - Lee Weiss
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - Phil Campbell
- The Institute for Complex Engineered Systems, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Pittsburgh, PA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - James J Cray
- Department of Cellular Biology and Anatomy, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Oral Biology, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA; Department of Orthopaedic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; Department of Orthodontics and Surgery, Division of Plastic Surgery, Georgia Regents University, 1120 15th St., Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Georgia Regents University, 1459 Laney Walker Blvd., Augusta, GA, USA.
| |
Collapse
|