1
|
Dütemeyer V, Schaible T, Badr DA, Cordier AG, Weis M, Perez-Ortiz A, Carriere D, Cannie MM, Vuckovic A, Persico N, Cavallaro G, Benachi A, Jani JC. Fetoscopic endoluminal tracheal occlusion vs expectant management for fetuses with severe left-sided congenital diaphragmatic hernia. Am J Obstet Gynecol MFM 2024; 6:101248. [PMID: 38070678 DOI: 10.1016/j.ajogmf.2023.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND The treatment of fetuses with a congenital diaphragmatic hernia is challenging, but there is evidence that fetoscopic endoluminal tracheal occlusion has a benefit over expectant care. In addition, standardization and expertism have a great impact on survival and are probably crucial in centers that rely on expectant management with extracorporeal membrane oxygenation after birth. OBJECTIVE This study aimed to examine the survival and morbidity rates of fetuses with a severe isolated left-sided congenital diaphragmatic hernia who underwent fetoscopic endoluminal tracheal occlusion vs expectant management in high-volume centers. STUDY DESIGN This was a multicenter, retrospective study that included all consecutive fetuses with severe isolated left-sided congenital diaphragmatic hernia who were expectantly managed in a German center or who underwent fetoscopic endoluminal tracheal occlusion in 3 other European centers (Belgium, France, and Italy). Severe congenital diaphragmatic hernia was defined as having an observed to expected total fetal lung volume ≤35% with intrathoracic position of the liver diagnosed with magnetic resonance imaging. All magnetic resonance images were centralized, and lung volumes were measured by 2 experienced operators who were blinded to the pre- and postnatal data. Multiple logistic regression analyses were performed to examine the effect of the management strategy in the 2 groups on the short- and long-term outcomes. RESULTS A total of 147 patients who were managed expectantly and 47 patients who underwent fetoscopic endoluminal tracheal occlusion were analyzed. Fetuses who were managed expectantly had lower observed to expected total fetal lung volumes (20.6%±7.5% vs 23.7%±6.8%; P=.013), higher gestational age at delivery (median weeks of gestation, 37.4; interquartile range, 36.6-38.00 vs 35.1; interquartile range, 33.1-37.2; P<.001), and more frequent use of extracorporeal membrane oxygenation (55.8% vs 4.3%; P<.001) than the fetuses who underwent fetoscopic endoluminal tracheal occlusion. The survival rates at discharge and at 2 years of age in the expectant management group were higher than the survival rates of the fetoscopic endoluminal tracheal occlusion group (74.3% vs 44.7%; P=.001 and 72.8% vs 42.5%; P=.001, respectively). After adjustment for maternal age, gestational age at birth, observed to expected total fetal lung volume, and birth weight Z-score, the odds ratios were 4.65 (95% confidence interval, 1.9-11.9; P=.001) and 4.37 (95% confidence interval, 1.8-11.0; P=.001), respectively. CONCLUSION Fetuses with a severe isolated left-sided congenital diaphragmatic hernia had a higher survival rate when treated in an experienced center in Germany with antenatal expectant management and frequent use of extracorporeal membrane oxygenation during the postnatal period than fetuses who were treated with fetoscopic endoluminal tracheal occlusion in 3 centers in Belgium, France, and Italy.
Collapse
Affiliation(s)
- Vivien Dütemeyer
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium (Drs Dütemeyer, Badr, and Jani); Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany (Drs Dütemeyer)
| | - Thomas Schaible
- Department of Neonatology, Universitätsklinikum Mannheim, Mannheim, Germany (Drs Schaible and Perez-Ortiz)
| | - Dominique A Badr
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium (Drs Dütemeyer, Badr, and Jani)
| | - Anne-Gael Cordier
- Department of Obstetrics and Gynecology, Hospital Antoine Béclère, Université Paris Saclay, Clamart, France (Drs Cordier and Benachi)
| | - Meike Weis
- Department of Radiology, Universitätsklinikum Mannheim, Mannheim, Germany (Dr Weis)
| | - Alba Perez-Ortiz
- Department of Neonatology, Universitätsklinikum Mannheim, Mannheim, Germany (Drs Schaible and Perez-Ortiz)
| | - Diane Carriere
- Service de Réanimation Pédiatrique, Hôpital Bicêtre- AP-HP, Université Paris Saclay, Le Kremlin Bicêtre, France (Dr Carriere)
| | - Mieke M Cannie
- Department of Radiology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium (Dr Cannie)
| | - Aline Vuckovic
- Neonatal Intensive Care Unit, Queen Fabiola Children's Hospital-ULB, Brussels, Belgium (Dr Vuckovic)
| | - Nicola Persico
- Fetal Medicine and Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (Dr Persico); Department of Clinical Science and Community Health, University of Milan, Milan, Italy (Dr Persico)
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy (Dr Cavallaro)
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology, Hospital Antoine Béclère, Université Paris Saclay, Clamart, France (Drs Cordier and Benachi)
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium (Drs Dütemeyer, Badr, and Jani).
| |
Collapse
|
2
|
Markel M, Tse WH, DeLeon N, Patel D, Kahnamouizadeh S, Lacher M, Wagner R, Keijzer R. Tenascin C is dysregulated in hypoplastic lungs of miR-200b -/- mice. Pediatr Surg Int 2022; 38:695-700. [PMID: 35235015 DOI: 10.1007/s00383-022-05096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE We previously demonstrated that absence of miR-200b results in abnormal lung development in congenital diaphragmatic hernia due to imbalance between epithelial and mesenchymal cells. Tenascin C is a highly conserved extracellular matrix protein involved in epithelial to mesenchymal transition, tissue regeneration and lung development. Considering the involvement of Tenascin C and miR-200b and their potential interaction, we aimed to study Tenascin C during lung development in the absence of miR-200b. METHODS We collected lungs of miR-200b-/- mice (male, 8 weeks). We performed Western blot (WB) analysis (N = 6) and immunofluorescence (N = 5) for Tenascin C and alpha smooth muscle actin and RT-qPCR for Tenascin C gene expression (N = 4). RESULTS Using WB analysis, we observed a decreased total protein abundance of Tenascin C in miR-200b-/- lungs (miR-200b+/+: 3.8 × 107 ± 1 × 107; miR-200b-/-: 1.9 × 107 ± 5 × 106; p = 0.002). Immunofluorescence confirmed decreased total Tenascin C in miR-200b-/- lungs. Tenascin C was significantly decreased in the mesenchyme but relatively increased in the airways of mutant lungs. Total lung RNA expression of Tenascin C was higher in miR-200b-/- lungs. CONCLUSION We report dysregulation of Tenascin C in lungs of miR-200b-/- mice. This suggests that absence of miR-200b results in abnormal Tenascin C abundance contributing to the lung hypoplasia observed in miR-200b-/- mice.
Collapse
Affiliation(s)
- Moritz Markel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.,Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Wai Hei Tse
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Nolan DeLeon
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Shana Kahnamouizadeh
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Wagner
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Richard Keijzer
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital Research Institute of Manitoba, University of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
3
|
Joshi R, Batie MR, Fan Q, Varisco BM. Mouse lung organoid responses to reduced, increased, and cyclic stretch. Am J Physiol Lung Cell Mol Physiol 2022; 322:L162-L173. [PMID: 34851724 PMCID: PMC8794016 DOI: 10.1152/ajplung.00310.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023] Open
Abstract
Most lung development occurs in the context of cyclic stretch. Alteration of the mechanical microenvironment is a common feature of many pulmonary diseases, with congenital diaphragmatic hernia (CDH) and fetal tracheal occlusion (FETO, a therapy for CDH) being extreme examples with changes in lung structure, cell differentiation, and function. To address limitations in cell culture and in vivo mechanotransductive models, we developed two mouse lung organoid (mLO) mechanotransductive models using postnatal day 5 (PND5) mouse lung CD326-positive cells and fibroblasts subjected to increased, decreased, and cyclic strain. In the first model, mLOs were exposed to forskolin (FSK) and/or disrupted (DIS) and evaluated at 20 h. mLO cross-sectional area changed by +59%, +24%, and -68% in FSK, control, and DIS mLOs, respectively. FSK-treated organoids had twice as many proliferating cells as other organoids. In the second model, 20 h of 10.25% biaxial cyclic strain increased the mRNAs of lung mesenchymal cell lineages compared with static stretch and no stretch. Cyclic stretch increased TGF-β and integrin-mediated signaling, with upstream analysis indicating roles for histone deacetylases, microRNAs, and long noncoding RNAs. Cyclic stretch mLOs increased αSMA-positive and αSMA-PDGFRα-double-positive cells compared with no stretch and static stretch mLOs. In this PND5 mLO mechanotransductive model, cell proliferation is increased by static stretch, and cyclic stretch induces mesenchymal gene expression changes important in postnatal lung development.
Collapse
Affiliation(s)
- Rashika Joshi
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew R Batie
- Biomedical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qiang Fan
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brian M Varisco
- Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
Mund SI, Schittny JC. Tenascin-C deficiency impairs alveolarization and microvascular maturation during postnatal lung development. J Appl Physiol (1985) 2020; 128:1287-1298. [PMID: 32078464 PMCID: PMC7272747 DOI: 10.1152/japplphysiol.00258.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
After the airways have been formed by branching morphogenesis the gas exchange area of the developing lung is enlarged by the formation of new alveolar septa (alveolarization). The septa themselves mature by a reduction of their double-layered capillary networks to single-layered ones (microvascular maturation). Alveolarization in mice is subdivided into a first phase (postnatal days 4-21, classical alveolarization), where new septa are lifted off from immature preexisting septa, and a second phase (day 14 to adulthood, continued alveolarization), where new septa are formed from mature septa. Tenascin-C (TNC) is a multidomain extracellular matrix protein contributing to organogenesis and tumorigenesis. It is highly expressed during classical alveolarization, but afterward its expression is markedly reduced. To study the effect of TNC deficiency on postnatal lung development, the formation and maturation of the alveolar septa were followed stereologically. Furthermore, the number of proliferating (Ki-67-positive) and TUNEL-positive cells was estimated. In TNC-deficient mice for both phases of alveolarization a delay and catch-up were observed. Cell proliferation was increased at days 4 and 6; at day 7, thick septa with an accumulation of capillaries and cells were observed; and the number of TUNEL-positive cells (dying cells or DNA repair) was increased at day 10. Whereas at days 15 and 21 premature microvascular maturation was detected, the microvasculature was less mature at day 60 compared with wild type. No differences were observed in adulthood. We conclude that TNC contributes to the formation of new septa, to microvascular maturation, and to cell proliferation and migration during postnatal lung development.NEW & NOTEWORTHY Previously, we showed that the extracellular matrix protein tenascin-C takes part in prenatal lung development by controlling branching morphogenesis. Now we report that tenascin-C is also important during postnatal lung development, because tenascin-C deficiency delays the formation and maturation of the alveolar septa during not only classical but also continued alveolarization. Adult lungs are indistinguishable from wild type because of a catch-up formation of new septa.
Collapse
Affiliation(s)
- Sonja I Mund
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | |
Collapse
|
5
|
Wagner R, Montalva L, Zani A, Keijzer R. Basic and translational science advances in congenital diaphragmatic hernia. Semin Perinatol 2020; 44:151170. [PMID: 31427115 DOI: 10.1053/j.semperi.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a birth defect that is characterized by lung hypoplasia, pulmonary hypertension and a diaphragmatic defect that allows herniation of abdominal organs into the thoracic cavity. Although widely unknown to the public, it occurs as frequently as cystic fibrosis (1:2500). There is no monogenetic cause, but different animal models revealed various biological processes and epigenetic factors involved in the pathogenesis. However, the pathobiology of CDH is not sufficiently understood and its mortality still ranges between 30 and 50%. Future collaborative initiatives are required to improve our basic knowledge and advance novel strategies to (prenatally) treat the abnormal lung development. This review focusses on the genetic, epigenetic and protein background and the latest advances in basic and translational aspects of CDH research.
Collapse
Affiliation(s)
- Richard Wagner
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatric Surgery, Hospital Robert Debré, Paris, France
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2019; 54:937-944. [PMID: 30792093 DOI: 10.1016/j.jpedsurg.2019.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Tracheal occlusion (TO) reverses pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. Wnt signaling plays a critical role in lung development, but few studies exist. The purpose of our study was to a) confirm that our CDH rabbit model produced PH which was reversed by TO and b) determine the effects of CDH +/- TO on Wnt signaling. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days, and lung collection at 31 days. Lung body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. mRNA and miRNA expression was determined in the left lower lobe using RT-qPCR. RESULTS Fifteen CDH, 15 CDH + TO, 6 sham CDH, and 15 controls survived and were included in the study. LBWR was low in CDH, while CDH + TO was similar to controls (p = 0.003). MTBD was higher in CDH fetuses and restored to control levels in CDH + TO (p < 0.001). Reference genes TOP1, SDHA, and ACTB were consistently expressed within and between treatment groups. miR-33 and MKI67 were increased, and Lgl1 was decreased in CDH + TO. CONCLUSION TO reversed pulmonary hypoplasia and stimulated early Wnt signaling in CDH fetal rabbits. TYPE OF STUDY Basic science, prospective. LEVEL OF EVIDENCE II.
Collapse
|
7
|
Mudri M, Smith SA, Vander Tuin C, Davidson J, Regnault TRH, Bütter A. Surgical technique for developing a rabbit model of congenital diaphragmatic hernia and tracheal occlusion. MethodsX 2019; 6:594-600. [PMID: 30976533 PMCID: PMC6441759 DOI: 10.1016/j.mex.2019.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/03/2019] [Indexed: 11/17/2022] Open
Abstract
The surgical model of congenital diaphragmatic hernia (CDH) has been utilized in exploring treatments and innovative therapies, such as tracheal occlusion (TO). The rabbit is an excellent surgical model compared to others due to lower cost, ease of care, short gestational period, and large litter size. This model is also ideal in studying lung hypoplasia of CDH because rabbit lung development is most similar to humans as alveolarization begins prior to birth and continues post-natally. However, the surgical technique in creating a rabbit model of CDH is quite difficult and information is lacking on how to establish this model. Therefore, the aim of this paper is to describe: Surgical technique in establishing a rabbit model of CDH and TO Perioperative care for pregnant rabbit does
Collapse
Affiliation(s)
- M Mudri
- Division of General Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - S A Smith
- Division of General Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - C Vander Tuin
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
| | - J Davidson
- Division of Paediatric General Surgery, Children's Hospital London Health Science Centre, Schulich School of Medicine, Western University, London, ON, Canada
| | - T R H Regnault
- Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Schulich School of Medicine, Western University, London, ON, Canada
| | - A Bütter
- Division of Paediatric General Surgery, Children's Hospital London Health Science Centre, Schulich School of Medicine, Western University, London, ON, Canada
| |
Collapse
|
8
|
Delabaere A, Blanchon L, Coste K, Clairefond G, Belville C, Blanc P, Marceau G, Sapin V, Gallot D. Retinoic acid and tracheal occlusion for diaphragmatic hernia treatment in rabbit fetuses. Prenat Diagn 2018; 38:482-492. [DOI: 10.1002/pd.5256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 02/06/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Amélie Delabaere
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Fetal Maternal Medicine Unit, Obstetrics and Gynecology Department; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Loïc Blanchon
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Karen Coste
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Pediatrics; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Gael Clairefond
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Corinne Belville
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
| | - Pierre Blanc
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- EA7281-“Translational approach to epithelial injury and repair”; Auvergne University; 63000 Clermont-Ferrand France
| | - Geoffroy Marceau
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Biochemistry and Molecular Biology; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Vincent Sapin
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Department of Biochemistry and Molecular Biology; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| | - Denis Gallot
- “Translational approach to epithelial injury and repair” team, Université Clermont Auvergne, CNRS, Inserm, GReD; 63000 Clermont-Ferrand France
- Fetal Maternal Medicine Unit, Obstetrics and Gynecology Department; Clermont-Ferrand University Hospital; 63000 Clermont-Ferrand France
| |
Collapse
|
9
|
Marwan AI, Shabeka U, Reisz JA, Zheng C, Serkova NJ, Dobrinskikh E. Unique Heterogeneous Topological Pattern of the Metabolic Landscape in Rabbit Fetal Lungs following Tracheal Occlusion. Fetal Diagn Ther 2018; 45:145-154. [PMID: 29669344 PMCID: PMC6314905 DOI: 10.1159/000487752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Fetal tracheal occlusion (TO) is currently an experimental approach to drive accelerated lung growth. It is stimulated by mechanotransduction that results in increased cellular proliferation and growth. However, it is currently unknown how TO affects the metabolic landscape of fetal lungs. MATERIALS AND METHODS TO or sham was performed on fetal rabbits at 26 days followed by lung harvest on day 30. Mass spectrometry was performed to evaluate global metabolic changes. Fluorescence lifetime intensity microscopy (FLIM) was performed to estimate local free/bound NADH relative ratio as an indicator of aerobic glycolysis versus oxidative phosphorylation (glycolysis/OXPHOS). RESULTS TO results in a metabolic shift from tricarboxylic acid cycle towards glycolysis. FLIM reveals uniform structures in control lungs characterized by similar ratios of free/bound NADH indicating a homogenous topological pattern. Similar uniform structures are observed in shams with some variability in the glycolysis/OXPHOS ratio. In contrast, lungs following TO demonstrate different types of unique distinct topological zones: one with enlarged alveoli and a shift towards glycolysis; the other maintains balance between glycolysis/OXPHOS similar to control lungs. CONCLUSION We demonstrate for the first time a unique variable topological pattern of metabolism in fetal lungs following TO with a wide variation of metabolism between zones.
Collapse
Affiliation(s)
- Ahmed I Marwan
- Division of Pediatric Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado,
| | - Uladzimir Shabeka
- Division of Pediatric Surgery, Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Connie Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Natalie J Serkova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
10
|
Mižíková I, Palumbo F, Tábi T, Herold S, Vadász I, Mayer K, Seeger W, Morty RE. Perturbations to lysyl oxidase expression broadly influence the transcriptome of lung fibroblasts. Physiol Genomics 2017; 49:416-429. [DOI: 10.1152/physiolgenomics.00026.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/26/2017] [Accepted: 06/29/2017] [Indexed: 01/05/2023] Open
Abstract
Lysyl oxidases are credited with pathogenic roles in lung diseases, including cancer, fibrosis, pulmonary hypertension, congenital diaphragmatic hernia, and bronchopulmonary dysplasia (BPD). Lysyl oxidases facilitate the covalent intra- and intermolecular cross-linking of collagen and elastin fibers, thereby imparting tensile strength to the extracellular matrix (ECM). Alternative ECM-independent roles have recently been proposed for lysyl oxidases, including regulation of growth factor signaling, chromatin remodeling, and transcriptional regulation, all of which impact cell phenotype. We demonstrate here that three of the five lysyl oxidase family members, Lox, Loxl1, and Loxl2, are highly expressed in primary mouse lung fibroblasts compared with other constituent cell types of the lung. Microarray analyses revealed that small interfering RNA knockdown of Lox, Loxl1, and Loxl2 was associated with apparent changes in the expression of 134, 3,761, and 3,554 genes, respectively, in primary mouse lung fibroblasts. The impact of lysyl oxidase expression on steady-state Mmp3, Mmp9, Eln, Rarres1, Gdf10, Ifnb1, Csf2, and Cxcl9 mRNA levels was validated, which is interesting, since the corresponding gene products are relevant to lung development and BPD, where lysyl oxidases play a functional role. In vivo, the expression of these genes broadly correlated with Lox, Loxl1, and Loxl2 expression in a mouse model of BPD. Furthermore, β-aminopropionitrile (BAPN), a selective lysyl oxidase inhibitor, did not affect the steady-state mRNA levels of lysyl oxidase target genes, in vitro in lung fibroblasts or in vivo in BAPN-treated mice. This study is the first to report that lysyl oxidases broadly influence the cell transcriptome.
Collapse
Affiliation(s)
- Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - Konstantin Mayer
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany; and
| |
Collapse
|
11
|
Abstract
To fulfill the task of gas exchange, the lung possesses a huge inner surface and a tree-like system of conducting airways ventilating the gas exchange area. During lung development, the conducting airways are formed first, followed by the formation and enlargement of the gas exchange area. The latter (alveolarization) continues until young adulthood. During organogenesis, the left and right lungs have their own anlage, an outpouching of the foregut. Each lung bud starts a repetitive process of outgrowth and branching (branching morphogenesis) that forms all of the future airways mainly during the pseudoglandular stage. During the canalicular stage, the differentiation of the epithelia becomes visible and the bronchioalveolar duct junction is formed. The location of this junction stays constant throughout life. Towards the end of the canalicular stage, the first gas exchange may take place and survival of prematurely born babies becomes possible. Ninety percent of the gas exchange surface area will be formed by alveolarization, a process where existing airspaces are subdivided by the formation of new walls (septa). This process requires a double-layered capillary network at the basis of the newly forming septum. However, in parallel to alveolarization, the double-layered capillary network of the immature septa fuses to a single-layered network resulting in an optimized setup for gas exchange. Alveolarization still continues, because, at sites where new septa are lifting off preexisting mature septa, the required second capillary layer will be formed instantly by angiogenesis. The latter confirms a lifelong ability of alveolarization, which is important for any kind of lung regeneration.
Collapse
|
12
|
Gonçalves FLL, Figueira RL, Gallindo RM, Simões ALB, Coleman A, Peiró JL, Sbragia L. Tracheal occlusion and ventilation changes the nitric oxide pathway in congenital diaphragmatic hernia model. J Surg Res 2016; 203:466-75. [DOI: 10.1016/j.jss.2016.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/12/2016] [Accepted: 04/15/2016] [Indexed: 01/30/2023]
|
13
|
Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model. Sci Rep 2016; 6:26476. [PMID: 27210246 PMCID: PMC4876477 DOI: 10.1038/srep26476] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate.
Collapse
Affiliation(s)
| | - Anushi E Rajapaksa
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Regina Oakley
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia
| | - David G Tingay
- Neonatal Research Group, Murdoch Childrens Research Institute, Parkville, Australia.,Department of Neonatology, Royal Children's Hospital, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| |
Collapse
|
14
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Strizek B, Engels AC, Jani JC. Antenatal BAY 41-2272 reduces pulmonary hypertension in the rabbit model of congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L658-69. [PMID: 26873974 DOI: 10.1152/ajplung.00178.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/03/2016] [Indexed: 01/05/2023] Open
Abstract
Infants with congenital diaphragmatic hernia (CDH) fail to adapt at birth because of persistent pulmonary hypertension (PH), a condition characterized by excessive muscularization and abnormal vasoreactivity of pulmonary vessels. Activation of soluble guanylate cyclase by BAY 41-2272 prevents pulmonary vascular remodeling in neonatal rats with hypoxia-induced PH. By analogy, we hypothesized that prenatal administration of BAY 41-2272 would improve features of PH in the rabbit CDH model. Rabbit fetuses with surgically induced CDH at day 23 of gestation were randomized at day 28 for an intratracheal injection of BAY 41-2272 or vehicle. After term delivery (day 31), lung mechanics, right ventricular pressure, and serum NH2-terminal-pro-brain natriuretic peptide (NT-proBNP) levels were measured. After euthanasia, lungs were processed for biological or histological analyses. Compared with untouched fetuses, the surgical creation of CDH reduced the lung-to-body weight ratio, increased mean terminal bronchial density, and impaired lung mechanics. Typical characteristics of PH were found in the hypoplastic lungs, including increased right ventricular pressure, higher serum NT-proBNP levels, thickened adventitial and medial layers of pulmonary arteries, reduced capillary density, and lower levels of endothelial nitric oxide synthase. A single antenatal instillation of BAY 41-2272 reduced mean right ventricular pressure and medial thickness of small resistive arteries in CDH fetuses. Capillary density, endothelial cell proliferation, and transcripts of endothelial nitric oxide synthase increased, whereas airway morphometry, lung growth, and mechanics remained unchanged. These results suggest that pharmacological activation of soluble guanylate cyclase may provide a new approach to the prenatal treatment of PH associated with CDH.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Andreas W Flemmer
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Brigitte Strizek
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander C Engels
- Division of Neonatology, Dr. von Hauner Children's Hospital, Perinatal Center Grosshadern, Ludwig-Maximilian-University, Munich, Germany; and
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Engels AC, Brady PD, Kammoun M, Finalet Ferreiro J, DeKoninck P, Endo M, Toelen J, Vermeesch JR, Deprest J. Pulmonary transcriptome analysis in the surgically induced rabbit model of diaphragmatic hernia treated with fetal tracheal occlusion. Dis Model Mech 2016; 9:221-8. [PMID: 26744354 PMCID: PMC4770142 DOI: 10.1242/dmm.021626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/29/2015] [Indexed: 01/25/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a malformation leading to pulmonary hypoplasia, which can be treated in utero by fetal tracheal occlusion (TO). However, the changes of gene expression induced by TO remain largely unknown but could be used to further improve the clinically used prenatal treatment of this devastating malformation. Therefore, we aimed to investigate the pulmonary transcriptome changes caused by surgical induction of diaphragmatic hernia (DH) and additional TO in the fetal rabbit model. Induction of DH was associated with 378 upregulated genes compared to controls when allowing a false-discovery rate (FDR) of 0.1 and a fold change (FC) of 2. Those genes were again downregulated by consecutive TO. But DH+TO was associated with an upregulation of 157 genes compared to DH and controls. When being compared to control lungs, 106 genes were downregulated in the DH group and were not changed by TO. Therefore, the overall pattern of gene expression in DH+TO is more similar to the control group than to the DH group. In this study, we further provide a database of gene expression changes induced by surgical creation of DH and consecutive TO in the rabbit model. Future treatment strategies could be developed using this dataset. We also discuss the most relevant genes that are involved in CDH. Summary: Rabbit fetuses with induced diaphragmatic hernia and treated with prenatal tracheal occlusion have a similar pulmonary transcriptome as unaffected controls. This study describes a valuable database of gene expressions in this model.
Collapse
Affiliation(s)
- Alexander C Engels
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Paul D Brady
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Molka Kammoun
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Julio Finalet Ferreiro
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Philip DeKoninck
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Masayuki Endo
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Jaan Toelen
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Pediatrics, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Department of Human Genetics, Centre for Human Genetics, University Hospitals KU Leuven, 3000 Leuven, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Organ System Cluster, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium Clinical Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
16
|
Vuckovic A, Herber-Jonat S, Flemmer AW, Ruehl IM, Votino C, Segers V, Benachi A, Martinovic J, Nowakowska D, Dzieniecka M, Jani JC. Increased TGF-β: a drawback of tracheal occlusion in human and experimental congenital diaphragmatic hernia? Am J Physiol Lung Cell Mol Physiol 2015; 310:L311-27. [PMID: 26637634 DOI: 10.1152/ajplung.00122.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Survivors of severe congenital diaphragmatic hernia (CDH) present significant respiratory morbidity despite lung growth induced by fetal tracheal occlusion (TO). We hypothesized that the underlying mechanisms would involve changes in lung extracellular matrix and dysregulated transforming growth factor (TGF)-β pathway, a key player in lung development and repair. Pulmonary expression of TGF-β signaling components, downstream effectors, and extracellular matrix targets were evaluated in CDH neonates who died between birth and the first few weeks of life after prenatal conservative management or TO, and in rabbit pups that were prenatally randomized for surgical CDH and TO vs. sham operation. Before tissue harvesting, lung tissue mechanics in rabbits was measured using the constant-phase model during the first 30 min of life. Human CDH and control fetal lungs were also collected from midterm onwards. Human and experimental CDH did not affect TGF-β/Smad2/3 expression and activity. In human and rabbit CDH lungs, TO upregulated TGF-β transcripts. Analysis of downstream pathways indicated increased Rho-associated kinases to the detriment of Smad2/3 activation. After TO, subtle accumulation of collagen and α-smooth muscle actin within alveolar walls was detected in rabbit pups and human CDH lungs with short-term mechanical ventilation. Despite TO-induced lung growth, mediocre lung tissue mechanics in the rabbit model was associated with increased transcription of extracellular matrix components. These results suggest that prenatal TO increases TGF-β/Rho kinase pathway, myofibroblast differentiation, and matrix deposition in neonatal rabbit and human CDH lungs. Whether this might influence postnatal development of sustainably ventilated lungs remains to be determined.
Collapse
Affiliation(s)
- Aline Vuckovic
- Laboratory of Physiology and Pathophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium;
| | - Susanne Herber-Jonat
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Andreas W Flemmer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ina M Ruehl
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Carmela Votino
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Valérie Segers
- Unit of Pediatric Pathology, Pathology Department, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandra Benachi
- Department of Obstetrics and Gynecology and Centre de Maladie Rare: Hernie de Coupole Diaphragmatique, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hôpital Antoine Béclère, Assistance Publique Hôpitaux de Paris (APHP), Université Paris Sud, Paris, France
| | - Dorota Nowakowska
- Department of Fetal-Maternal Medicine and Gynecology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland; and
| | - Monika Dzieniecka
- Department of Clinical Pathology, Medical University and the Research Institute Polish Mother's Memorial Hospital, Lodz, Poland
| | - Jacques C Jani
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, University Hospital Brugmann, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
17
|
DeKoninck P, Toelen J, Roubliova X, Carter S, Pozzobon M, Russo FM, Richter J, Vandersloten PJ, Verbeken E, De Coppi P, Deprest J. The use of human amniotic fluid stem cells as an adjunct to promote pulmonary development in a rabbit model for congenital diaphragmatic hernia. Prenat Diagn 2015; 35:833-40. [PMID: 25976324 DOI: 10.1002/pd.4621] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE This study aimed to evaluate the potential benefit of intra-tracheal injection of human amniotic fluid stem cells (hAFSC) on pulmonary development combined with TO in a rabbit model for CDH. METHODS In time-mated pregnant does a left diaphragmatic defect was created at d23 (term = 31). At d28, previously operated fetuses were assigned to either TO and injection with 70 μL of phosphate buffered saline (PBS) or 1.0 × 10(6) c-Kit positive hAFSC expressing LacZ or were left untouched (CDH). Harvesting was done at d31 to obtain their lung-to-body weight ratio (LBWR), airway and vascular lung morphometry, X-gal staining and immunohistochemistry for Ki67 and surfactant protein-B (SP-B). RESULTS CDH-induced pulmonary hypoplasia is countered by TO + PBS, this reverses LBWR, mean terminal bronchiole density (MTBD) and medial thickness to normal. The additional injection of hAFSC decreases MTBD and results in a non-significant decrease in muscularization of intra-acinary vessels. There were no inflammatory changes and LacZ positive hAFSC were dispersed throughout the lung parenchyma 4 days after injection. CONCLUSION HAFSC exert an additional effect on TO leading to a decrease in MTBD, a measure of alveolar number surrounding the terminal bronchioles, without signs of toxicity. © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Philip DeKoninck
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Xenia Roubliova
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Shea Carter
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Francesca Maria Russo
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jute Richter
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Pieter-Jan Vandersloten
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Pathology, Group Biomedical Sciences, University Hospitals Leuven, Belgium
| | - Paolo De Coppi
- Department of Pediatric Surgery, UCL Institute of Child Health and Great Ormond St Hospital, London, United Kingdom
| | - Jan Deprest
- Organ systems cluster, Department of Development and Regeneration, and Center for Surgical Technologies, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Intrapulmonary instillation of perflurooctylbromide improves lung growth, alveolarization, and lung mechanics in a fetal rabbit model of diaphragmatic hernia. Pediatr Crit Care Med 2014; 15:e379-88. [PMID: 25370070 DOI: 10.1097/pcc.0000000000000271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Fetal tracheal occlusion of hypoplastic rabbit lungs results in lung growth and alveolarization although the surfactant protein messenger RNA expression is decreased and the transforming growth factor-β pathway induced. The prenatal filling of healthy rabbit lungs with perfluorooctylbromide augments lung growth without suppression of surfactant protein synthesis. We hypothesizes that Intratracheal perfluorooctylbromide instillation improves lung growth, mechanics, and extracellular matrix synthesis in a fetal rabbit model of lung hypoplasia induced by diaphragmatic hernia. SETTING AND INTERVENTIONS On day 23 of gestation, DH was induced by fetal surgery in healthy rabbit fetuses. Five days later, 0.8ml of perfluorooctylbromide (diaphragmatic hernia-perfluorooctylbromide) or saline (diaphragmatic hernia-saline) was randomly administered into the lungs of previously operated fetuses. After term delivery (day 31), lung mechanics, lung to body weight ratio, messenger RNA levels of target genes, assessment of lung histology, and morphological distribution of elastin and collagen were determined. Nonoperated fetuses served as controls. MEASUREMENTS AND MAIN RESULTS Fetal instillation of perfluorooctylbromide in hypoplastic lungs resulted in an improvement of lung-to-body weight ratio (0.016 vs 0.013 g/g; p = 0.05), total lung capacity (23.4 vs 15.4 μL/g; p = 0.03), and compliance (2.4 vs 1.2 mL/cm H2O; p = 0.007) as compared to diaphragmatic hernia-saline. In accordance with the results from lung function analysis, elastin staining of pulmonary tissue revealed a physiological distribution of elastic fiber to the tips of the secondary crests in the diaphragmatic hernia-perfluorooctylbromide group. Likewise, messenger RNA expression was induced in genes associated with extracellular matrix remodeling (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2). Surfactant protein expression was similar in the diaphragmatic hernia-perfluorooctylbromide and diaphragmatic hernia-saline groups. Distal airway size, mean linear intercept, as well as airspace and tissue fractions were similar in diaphragmatic hernia-perfluorooctylbromide, diaphragmatic hernia-saline, and control groups. CONCLUSIONS Fetal perfluorooctylbromide treatment improves lung growth, lung mechanics, and extracellular matrix remodeling in hypoplastic lungs, most probably due to transient pulmonary stretch, preserved fetal breathing movements, and its physical characteristics. Perfluorooctylbromide instillation is a promising approach for prenatal therapy of lung hypoplasia.
Collapse
|