1
|
Yu T, Chen J, Wu S, Jiang M, Han L, Ma Y. Potential functionality of Cutibacterium acnes extracellular vesicles in atopic dermatitis and acne vulgaris: A comparative proteomic analysis. Proteomics Clin Appl 2024:e2300106. [PMID: 38639920 DOI: 10.1002/prca.202300106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cutibacterium acnes is a commensal bacterium residing in healthy skin and plays a critical role in maintaining skin homeostasis. C. acnes has been considered closely related to acne vulgaris, while recent studies suggest that C. acnes and its metabolites may have a protective role in atopic dermatitis (AD) by modulating the immune system and maintaining skin homeostasis. Extracellular vesicles (EVs) are small membranous vesicles secreted by bacteria that participate in bacteria-host interactions. METHODS This study first compared C. acnes EVs from AD lesions (AD-EVs), acne lesions (Acne-EVs), and healthy skin (NC-EVs), using Label-free quantitative LC-MS/MS and validated differently expressed proteins by parallel reaction monitoring (PRM). Then Normal Human Epidermal Keratinocytes (NHEK) and human primary keratinocytes (KC) were treated with C. acnes EVs isolated from different groups, and the expressions of inflammatory factors were measured by quantitative real-time PCR and Western blotting. RESULTS Compared with the acne group, the AD group showed greater downregulation of proteins related to energy metabolism and carbon source utilization pathway. Differences in protein profile in AD and acne lesion-separated C. acnes EVs correspond to the abnormal sebum secretion pattern in both diseases. C. acnes EVs from different groups affected different expressions of Th1 and Th2 inflammatory factors and epidermal barrier markers in NHEK and KC, indicating different immunomodulatory potentials. CONCLUSIONS This study observed distinct proteomic differences between AD-EVs and Acne-EVs, and provided insights into the functional differences of C. acnes EVs in AD and acne.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Jiang
- Department of Dermatology, SinoUnited Health, Shanghai, China
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
3
|
Pascual MJ, Merwaiss F, Leal E, Quintana ME, Capozzo AV, Cavasotto CN, Bollini M, Alvarez DE. Structure-based drug design for envelope protein E2 uncovers a new class of bovine viral diarrhea inhibitors that block virus entry. Antiviral Res 2018; 149:179-190. [DOI: 10.1016/j.antiviral.2017.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 01/13/2023]
|
4
|
Neira JL, Martínez-Rodríguez S, Hernández-Cifre JG, Cámara-Artigas A, Clemente P, Peralta S, Fernández-Moreno MÁ, Garesse R, García de la Torre J, Rizzuti B. Human COA3 Is an Oligomeric Highly Flexible Protein in Solution. Biochemistry 2016; 55:6209-6220. [PMID: 27791355 DOI: 10.1021/acs.biochem.6b00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The assembly of the protein complex of cytochrome c oxidase (COX), which participates in the mitochondrial respiratory chain, requires a large number of accessory proteins (the so-called assembly factors). Human COX assembly factor 3 (hCOA3), also known as MITRAC12 or coiled-coil domain-containing protein 56 (CCDC56), interacts with the first subunit protein of COX to form its catalytic core and promotes its assemblage with the other units. Therefore, hCOA3 is involved in COX biogenesis in humans and can be exploited as a drug target in patients with mitochondrial dysfunctions. However, to be considered a molecular target, its structure and conformational stability must first be elucidated. We have embarked on the description of such features by using spectroscopic and hydrodynamic techniques, in aqueous solution and in the presence of detergents, together with computational methods. Our results show that hCOA3 is an oligomeric protein, forming aggregates of different molecular masses in aqueous solution. Moreover, on the basis of fluorescence and circular dichroism results, the protein has (i) its unique tryptophan partially shielded from solvent and (ii) a relatively high percentage of secondary structure. However, this structure is highly flexible and does not involve hydrogen bonding. Experiments in the presence of detergents suggest a slightly higher content of nonrigid helical structure. Theoretical results, based on studies of the primary structure of the protein, further support the idea that hCOA3 is a disordered protein. We suggest that the flexibility of hCOA3 is crucial for its interaction with other proteins to favor mitochondrial protein translocation and assembly of proteins involved in the respiratory chain.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández , Elche, Alicante, Spain.,Biocomputation and Complex Systems Physics Institute , Zaragoza, Spain
| | | | | | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería , Agrifood Campus of International Excellence (ceiA3), Almería, Spain
| | - Paula Clemente
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12) , Madrid, Spain
| | - Susana Peralta
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12) , Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12) , Madrid, Spain
| | - Rafael Garesse
- Departamento de Bioquímica-Instituto de Investigaciones Biomédicas "Alberto Sols", Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) , Madrid, Spain.,Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12) , Madrid, Spain
| | | | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria , 87036 Rende, Italy
| |
Collapse
|
5
|
Neira JL, Medina-Carmona E, Hernández-Cifre JG, Montoliu-Gaya L, Cámara-Artigás A, Seffouh I, Gonnet F, Daniel R, Villegas S, de la Torre JG, Pey AL, Li F. The chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from marine bacterium Vibrio sp FC509 is a dimeric species: Biophysical characterization of an endosulfatase. Biochimie 2016; 131:85-95. [PMID: 27687161 DOI: 10.1016/j.biochi.2016.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/24/2016] [Indexed: 02/07/2023]
Abstract
Sulfatases catalyze hydrolysis of sulfate groups. They have a key role in regulating the sulfation states that determine the function of several scaffold molecules. Currently, there are no studies of the conformational stability of endosulfatases. In this work, we describe the structural features and conformational stability of a 4-O-endosulfatase (EndoV) from a marine bacterium, which removes specifically the 4-O-sulfate from chondroitin sulfate/dermatan sulfate. For that purpose, we have used several biophysical techniques, namely, fluorescence, circular dichroism (CD), FTIR spectroscopy, analytical ultracentrifugation (AUC), differential scanning calorimetry (DSC), mass spectrometry (MS), dynamic light scattering (DLS) and size exclusion chromatography (SEC). The protein was a dimer with an elongated shape. EndoV acquired a native-like structure in a narrow pH range (7.0-9.0); it is within this range where the protein shows the maximum of enzymatic activity. The dimerization did not involve the presence of disulphide-bridges as suggested by AUC, SEC and DLS experiments in the presence of β-mercaptoethanol (β-ME). EndoV secondary structure is formed by a mixture of α and β-sheet topology, as judged by deconvolution of CD and FTIR spectra. Thermal and chemical denaturations showed irreversibility and the former indicates that protein did not unfold completely during heating.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain; Biocomputation and Complex Systems Physics Institute, Zaragoza, Spain.
| | | | | | - Laia Montoliu-Gaya
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallés, Barcelona, Spain
| | - Ana Cámara-Artigás
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, University of Almería, Agrifood Campus of International Excellence (ceiA3), Almería, Spain
| | - Ilham Seffouh
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Florence Gonnet
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Régis Daniel
- CNRS UMR 8587, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France; Université Evry-Val-d'Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, Evry, France
| | - Sandra Villegas
- Departament de Bioquímica i Biologia Molecular, Unitat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallés, Barcelona, Spain
| | | | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
| | - Fuchuan Li
- National Glyco-engineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan, China
| |
Collapse
|
6
|
Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation. PLoS One 2014; 9:e113224. [PMID: 25490095 PMCID: PMC4260792 DOI: 10.1371/journal.pone.0113224] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
The SH3 domain of the c-Src tyrosine kinase (c-Src-SH3) aggregates to form intertwined dimers and amyloid fibrils at mild acid pHs. In this work, we show that a single mutation of residue Gln128 of this SH3 domain has a significant effect on: (i) its thermal stability; and (ii) its propensity to form amyloid fibrils. The Gln128Glu mutant forms amyloid fibrils at neutral pH but not at mild acid pH, while Gln128Lys and Gln128Arg mutants do not form these aggregates under any of the conditions assayed. We have also solved the crystallographic structures of the wild-type (WT) and Gln128Glu, Gln128Lys and Gln128Arg mutants from crystals obtained at different pHs. At pH 5.0, crystals belong to the hexagonal space group P6522 and the asymmetric unit is formed by one chain of the protomer of the c-Src-SH3 domain in an open conformation. At pH 7.0, crystals belong to the orthorhombic space group P212121, with two molecules at the asymmetric unit showing the characteristic fold of the SH3 domain. Analysis of these crystallographic structures shows that the residue at position 128 is connected to Glu106 at the diverging β-turn through a cluster of water molecules. Changes in this hydrogen-bond network lead to the displacement of the c-Src-SH3 distal loop, resulting also in conformational changes of Leu100 that might be related to the binding of proline rich motifs. Our findings show that electrostatic interactions and solvation of residues close to the folding nucleation site of the c-Src-SH3 domain might play an important role during the folding reaction and the amyloid fibril formation.
Collapse
|
7
|
Martínez-Gómez AI, Villegas S, Aguado-Llera D, Bacarizo J, Cámara-Artigas A, Vidal M, Neira JL. The isolated N terminus of Ring1B is a well-folded, monomeric fragment with native-like structure. Protein Eng Des Sel 2013; 27:1-11. [PMID: 24284202 DOI: 10.1093/protein/gzt056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Polycomb group (PcG) proteins assemble into Polycomb repressive complexes (PRCs), PRC1 and PRC2, which act as general transcriptional repressors. PRC1 comprises a variety of biochemical entities endowed with histone H2A monoubiquitylation activity conferred by really interesting new gene (RING) finger E3 ubiquitin ligases Ring1A and Ring1B. All PRC1 complexes contain Ring1 proteins which are essential for Polycomb epigenetic regulation. We have been able to express the isolated N-terminal region of Ring1B, N-Ring1B, comprising the first 221 residues of the 334-residue-long Ring1B. This fragment contains the 41-residue-long RING finger motif, and flanking sequences that form an interacting platform for PcG and non-PcG proteins. We found that the N-Ring1B is a well-folded, monomeric fragment, with native-like structure which unfolds irreversibly. The protein is capable of binding to an ubiquitin-conjugase protein (with an 85% of sequence similarity to the Ring1B physiological partner) with moderate affinity.
Collapse
Affiliation(s)
- Ana Isabel Martínez-Gómez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Agrifood Campus of International Excellence (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Mastering tricyclic ring systems for desirable functional cannabinoid activity. Eur J Med Chem 2013; 69:881-907. [PMID: 24125850 DOI: 10.1016/j.ejmech.2013.09.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 11/23/2022]
Abstract
There is growing interest in using cannabinoid receptor 2 (CB2) agonists for the treatment of neuropathic pain and other indications. In continuation of our ongoing program aiming for the development of new small molecule cannabinoid ligands, we have synthesized a novel series of carbazole and γ-carboline derivatives. The affinities of the newly synthesized compounds were determined by a competitive radioligand displacement assay for human CB2 cannabinoid receptor and rat CB1 cannabinoid receptor. Functional activity and selectivity at human CB1 and CB2 receptors were characterized using receptor internalization and [(35)S]GTP-γ-S assays. The structure-activity relationship and optimization studies of the carbazole series have led to the discovery of a non-selective CB1 and CB2 agonist, compound 4. Our subsequent research efforts to increase CB2 selectivity of this lead compound have led to the discovery of CB2 selective compound 64, which robustly internalized CB2 receptors. Compound 64 had potent inhibitory effects on pain hypersensitivity in a rat model of neuropathic pain. Other potent and CB2 receptor-selective compounds, including compounds 63 and 68, and a selective CB1 agonist, compound 74 were also discovered. In addition, we identified the CB2 ligand 35 which failed to promote CB2 receptor internalization and inhibited compound CP55,940-induced CB2 internalization despite a high CB2 receptor affinity. The present study provides novel tricyclic series as a starting point for further investigations of CB2 pharmacology and pain treatment.
Collapse
|