1
|
Walter NM, Yde Ohki CM, Smigielski L, Walitza S, Grünblatt E. Investigating the impact of omega-3 fatty acids on oxidative stress and pro-inflammatory cytokine release in iPSC-derived forebrain cortical neurons from ADHD patients. J Psychiatr Res 2025; 182:257-269. [PMID: 39826376 DOI: 10.1016/j.jpsychires.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Natalie M Walter
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; ZNZ PhD Program, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Cristine M Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Translational Molecular Psychiatry, Psychiatric University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 11, 8057, Zurich, Switzerland.
| |
Collapse
|
2
|
Lee E, Ahn JH, Kang BC, Lee HS. Nrf2-Dependent Adaptation to Oxidative Stress Protects Against Progression of Diabetic Nephropathy. Antioxid Redox Signal 2024. [PMID: 39531219 DOI: 10.1089/ars.2023.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aims: Adaptation to oxidative stress is essential for maintaining protein and redox homeostasis in mammalian cells. Palmitic acid (PA) plays a central role in oxidative stress and immunoproteasome regulation in podocytes and diabetes, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial impact on diabetes. The role of Nrf2 in adaptation to oxidative stress and regulation of immunoproteasome by PA and EPA/DHA in podocytes and diabetic kidneys is not well defined. The present study describes the effect of PA- and EPA/DHA-induced oxidative stress in regulating Nrf2/immuoproteasome pathway in a model system relevant to diabetic nephropathy (DN). Results: Short PA exposure to podocytes promotes the upregulation of antioxidant proteins and immunoproteasome mediated by Nrf2, leading to acute transient oxidative stress adaptation. Both short- and long-term incubation of EPA or DHA in podocytes induced oxidative stress and activation of Nrf2, causing persistent oxidative stress adaptation. Long PA exposure to podocytes decreased the Nrf2 activity, and EPA/DHA attenuated these effects of PA. In db/db mice, feeding of EPA/DHA-rich fish oil increased oxidative stress in kidneys and induced renal cortical Nrf2 nuclear translocation and immunoproteasome overexpression, inhibiting the progression of DN. Innovation and Conclusion: We demonstrate an oxidative stress adaptation mechanism by PA and EPA/DHA regulated by Nrf2 in podocytes and kidneys of type 2 diabetes. This work provides an important insight into the pathogenetic mechanisms of DN by PA-induced oxidative stress. We conclude that activation of Nrf2-immunoproteasome signaling pathway by EPA/DHA plays a crucial role in abrogating the proteotoxic stress in DN. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Eugene Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Research Center, Seoul, Korea
| | - Jae-Hun Ahn
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Soon Lee
- Renal Pathology Lab, Hankook Kidney and Diabetes Research Center, Seoul, Korea
| |
Collapse
|
3
|
Nieman DC, Sakaguchi CA, Williams JC, Mulani FA, Shivprasad Suresh P, Omar AM, Zhang Q. Beet supplementation mitigates post-exercise inflammation. Front Nutr 2024; 11:1408804. [PMID: 38873567 PMCID: PMC11169660 DOI: 10.3389/fnut.2024.1408804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives This study investigated the efficacy of a mixed beet-based supplement (BEET) versus placebo (PL) in countering inflammation during recovery from 2.25 h of intensive cycling in 20 male and female cyclists. A multi-omics approach was used that included untargeted proteomics and a targeted oxylipin panel. Methods A randomized, placebo-controlled, double-blind, crossover design was used with two 2-week supplementation periods and a 2-week washout period. Supplementation periods were followed by a 2.25 h cycling bout at close to 70%VO2max. The BEET supplement provided 212 mg of nitrates per day, 200 mg caffeine from green tea extract, 44 mg vitamin C from Camu Camu berry, B-vitamins from quinoa sprouts (40% Daily Value for thiamin, riboflavin, niacin, and vitamin B6), and 2.5 g of a mushroom blend containing Cordyceps sinensis and Inonotus obliquus. Six blood samples were collected before and after supplementation (overnight fasted state), immediately post-exercise, and at 1.5 h-, 3 h-, and 24 h-post-exercise. Results The 2.25 h cycling bout increased plasma levels of 41 of 67 oxylipins detected. BEET supplementation significantly increased plasma nitrate (NO3 -) and nitrite (NO2 -) (sum, NO3 - + NO2 -) concentrations (interaction effect, p < 0.001) and two anti-inflammatory oxylipins [18-hydroxyeicosapentaenoic acid (18-HEPE) and 4-hydroxy-docosahexanoic acid (4-HDoHE)]. The untargeted proteomics analysis identified 616 proteins (458 across all times points), and 2-way ANOVA revealed a cluster of 45 proteins that were decreased and a cluster of 21 that were increased in the BEET versus PL trials. Functional enrichment supported significant BEET-related reductions in inflammation-related proteins including several proteins related to complement activation, the acute phase response, and immune cell adhesion, migration, and differentiation. Discussion Intake of a BEET-based supplement during a 2-week period was linked to higher plasma levels of NO3 - + NO2 -, elevated post-exercise levels of two anti-inflammatory oxylipins, and a significant decrease in a cluster of proteins involved in complement activation and inflammation. These data support that 2-weeks intake of nitrate from a mixed beet-based supplement moderated protein biomarkers of exercise-induced inflammation in athletes.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - James C. Williams
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Fayaj A. Mulani
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Patil Shivprasad Suresh
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
4
|
Wang C, Han D, Feng X, Hu L, Wu J. Docosahexaenoic acid alleviates LPS-induced cytotoxicity in HL-1 cardiac cells via improving stress-induced mitochondrial fragmentation. Heliyon 2023; 9:e22465. [PMID: 38107281 PMCID: PMC10724566 DOI: 10.1016/j.heliyon.2023.e22465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Sepsis-induced cardiac injury is associated with oxidative stress and mitochondrial dysfunction. Docosahexaenoic acid (DHA), an essential omega-3 fatty acid, protects the injured myocardium by modulating mitochondrial dysfunction. We aimed to confirm whether the cardioprotective effect of DHA is mediated via the alleviation of mitochondrial fragmentation in lipopolysaccharide (LPS)-induced cardiomyopathy in vitro. We found that DHA improved cell viability and alleviated cardiac cell apoptosis by reducing lactate dehydrogenase (LDH) release, expression levels of Cleaved caspase-3, and Caspase 3 activity. DHA attenuated oxidative stress as evidenced by decreased ROS production and increased superoxide dismutase activity. In addition, DHA ameliorated mitochondrial dysfunction by modulating mitochondrial respiratory chain injury and mitochondrial fragmentation, especially decreasing the mitochondrial fission-related protein p-Drp1(ser 616) but no effects on Drp1, p-Drp1(ser 637), and mitochondrial fusion-related protein. Our data suggest that DHA conferred cardioprotection by alleviating oxidative stress-induced apoptosis, which may be associated with alleviation of stress-induced mitochondrial fragmentation.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Pain Management, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Dong Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Xiaojing Feng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Li Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Jing Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| |
Collapse
|
5
|
Xu Q, Zhang Z, Tang M, Xing C, Chen H, Zheng K, Zhao Z, Zhou S, Zhao AZ, Li F, Mu Y. Endogenous production of ω-3 polyunsaturated fatty acids mitigates cisplatin-induced myelosuppression by regulating NRF2-MDM2-p53 signaling pathway. Free Radic Biol Med 2023; 201:14-25. [PMID: 36906190 DOI: 10.1016/j.freeradbiomed.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Cisplatin is a chemotherapy medication used to treat a wide range of cancers. A common side effect of cisplatin is myelosuppression. Research suggests that oxidative damages are strongly and consistently related to myelosuppression during cisplatin treatment. ω-3 polyunsaturated fatty acids (PUFAs) can enhance the antioxidant capacity of cells. Herein, we investigated the protective benefit of endogenous ω-3 PUFAs on cisplatin-induced myelosuppression and the underlying signaling pathways using a transgenic mfat-1 mouse model. The expression of mfat-1 gene can increase endogenous levels of ω-3 PUFAs by enzymatically converting ω-6 PUFAs. Cisplatin treatment reduced peripheral blood cells and bone marrow nucleated cells, induced DNA damage, increased the production of reactive oxygen species, and activated p53-mediated apoptosis in bone marrow (BM) cells of wild-type mice. In the transgenics, the elevated tissue ω-3 PUFAs rendered a robust preventative effect on these cisplatin-induced damages. Importantly, we identified that the activation of NRF2 by ω-3 PUFAs could trigger an antioxidant response and inhibit p53-mediated apoptosis by increasing the expression of MDM2 in BM cells. Thus, endogenous ω-3 PUFAs enrichment can strongly prevent cisplatin-induced myelosuppression by inhibiting oxidative damage and regulating the NRF2-MDM2-p53 signaling pathway. Elevation of tissue ω-3 PUFAs may represent a promising treatment strategy to prevent the side effects of cisplatin.
Collapse
Affiliation(s)
- Qihua Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Minyi Tang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Hansi Chen
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Kexin Zheng
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Allan Zijian Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Kalkman HO. Potential Suicide Prophylactic Activity by the Fish Oil Metabolite, 4-Hydroxyhexenal. Int J Mol Sci 2022; 23:ijms23136953. [PMID: 35805959 PMCID: PMC9266565 DOI: 10.3390/ijms23136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/05/2023] Open
Abstract
Low levels of n-3 poly-unsaturated fatty acids (n-3 PUFAs) and high levels of n-6 PUFAs in the blood circulation are associated with an increased risk for suicide. Clinical studies indicate that docosahexaenoic acid (DHA, a n-3 PUFA found in fish-oil) displays protective effects against suicide. It has recently been proposed that the activation of the transcription factor NRF2 might be the pharmacological activity that is common to current anti-suicidal medications. Oxidation products from fish oil, including those from DHA, are electrophiles that reversibly bind to a protein ‘KEAP1’, which acts as the molecular inhibitor of NRF2 and so indirectly promotes NRF2-transcriptional activity. In the majority of publications, the NRF2-stimulant effect of DHA is ascribed to the metabolite 4-hydroxyhexenal (4HHE). It is suggested to investigate whether 4HHE will display a therapeutically useful anti-suicidal efficacy.
Collapse
|
8
|
da Silva A, Silveira BKS, Hermsdorff HHM, da Silva W, Bressan J. Effect of omega-3 fatty acid supplementation on telomere length and telomerase activity: A systematic review of clinical trials. Prostaglandins Leukot Essent Fatty Acids 2022; 181:102451. [PMID: 35661999 DOI: 10.1016/j.plefa.2022.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Evidence suggests antioxidant and anti-inflammatory properties of omega-3 polyunsaturated fatty acids (n-3 PUFA). However, the effect of supplementation of this fatty acid profile on the telomere length and the telomerase enzyme activity was not revised yet. The PubMed and Embase® databases were used to search for clinical trials. A total of six clinical trials were revised. Omega-3 PUFA supplementation did not statistically affect telomere length in three out of three studies but affected telomerase activity in two out of four studies. The supplementation increased telomerase enzyme activity in subjects with first-episode schizophrenia. Besides, it decreased telomerase enzyme activity without modulating the effects of Pro12Ala polymorphism on the PPARγ gene in type 2 diabetes subjects. The methodological differences between the studies and the limited number of studies on the theme suggest that further studies are needed to elucidate the effects of n-3 PUFA supplementation on telomere length and telomerase enzyme activity in humans.
Collapse
Affiliation(s)
- Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Brenda Kelly Souza Silveira
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Helen Hermana Miranda Hermsdorff
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Walmir da Silva
- Laboratory of Animal Biotechnology. Animal Science Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition. Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response. Int J Mol Sci 2022; 23:ijms23073561. [PMID: 35408922 PMCID: PMC8998340 DOI: 10.3390/ijms23073561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.
Collapse
|
10
|
Fu Z, Yan W, Chen CT, Nilsson AK, Bull E, Allen W, Yang J, Ko M, SanGiovanni JP, Akula JD, Talukdar S, Hellström A, Smith LEH. Omega-3/Omega-6 Long-Chain Fatty Acid Imbalance in Phase I Retinopathy of Prematurity. Nutrients 2022; 14:1333. [PMID: 35405946 PMCID: PMC9002570 DOI: 10.3390/nu14071333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
There is a gap in understanding the effect of the essential ω-3 and ω-6 long-chain polyunsaturated fatty acids (LCPUFA) on Phase I retinopathy of prematurity (ROP), which precipitates proliferative ROP. Postnatal hyperglycemia contributes to Phase I ROP by delaying retinal vascularization. In mouse neonates with hyperglycemia-associated Phase I retinopathy, dietary ω-3 (vs. ω-6 LCPUFA) supplementation promoted retinal vessel development. However, ω-6 (vs. ω-3 LCPUFA) was also developmentally essential, promoting neuronal growth and metabolism as suggested by a strong metabolic shift in almost all types of retinal neuronal and glial cells identified with single-cell transcriptomics. Loss of adiponectin (APN) in mice (mimicking the low APN levels in Phase I ROP) decreased LCPUFA levels (including ω-3 and ω-6) in retinas under normoglycemic and hyperglycemic conditions. ω-3 (vs. ω-6) LCPUFA activated the APN pathway by increasing the circulating APN levels and inducing expression of the retinal APN receptor. Our findings suggested that both ω-3 and ω-6 LCPUFA are crucial in protecting against retinal neurovascular dysfunction in a Phase I ROP model; adequate ω-6 LCPUFA levels must be maintained in addition to ω-3 supplementation to prevent retinopathy. Activation of the APN pathway may further enhance the ω-3 and ω-6 LCPUFA's protection against ROP.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - Wenjun Yan
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Chuck T. Chen
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20814, USA;
| | - Anders K. Nilsson
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Edward Bull
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - William Allen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - Jay Yang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - Minji Ko
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - John Paul SanGiovanni
- BIO5 Institute, Department of Nutritional Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - James D. Akula
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| | - Saswata Talukdar
- Cardiometabolic Diseases, Merck Research Laboratories, Boston, MA 02115, USA;
| | - Ann Hellström
- Section for Ophthalmology, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden; (A.K.N.); (A.H.)
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (Z.F.); (E.B.); (W.A.); (J.Y.); (M.K.); (J.D.A.)
| |
Collapse
|
11
|
CNS Redox Homeostasis and Dysfunction in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020405. [PMID: 35204286 PMCID: PMC8869494 DOI: 10.3390/antiox11020405] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
Collapse
|
12
|
Shati AA, El-Kott AF. Resolvin D1 protects against cadmium chloride-induced memory loss and hippocampal damage in rats: A comparison with docosahexaenoic acid. Hum Exp Toxicol 2021; 40:S215-S232. [PMID: 34405727 DOI: 10.1177/09603271211038739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Intoxication with cadmium (Cd) ions leads to hippocampal damage and cognitive impairment. However, omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert neuroprotective effects in different animal models of neurodegeneration. PURPOSE This study compared the neuroprotective effect of the n-3 PUFA, docosahexaenoic acid (DHA), and its downstream metabolite, resolvin D1 (RVD1), on hippocampal damage and memory deficits in cadmium chloride (CdCl2)-treated rats. RESEARCH DESIGN Control or CdCl2 (0.5 mg/kg)-treated rats were subdivided into three groups (n = 18/each) and treated for 6 weeks as follows: (1) fed control diet, (2) fed DHA-rich diets (0.7 g/100 g), or (3) treated with RVD1 (0.2 μg/kg, i.p). RESULTS Treatment with a DHA-rich diet or RVD1 significantly increased the levels of docosahexaenoic acid and RVD1, respectively, in the hippocampal of CdCl2-treated rats without affecting the reduction in the expression of the 15-lipooxygenase-1 (ALOX15). These effects were associated with improvements in rats' memory function and hippocampal structure, as well as a redction in the hippocampal levels of reactive oxygen species (ROS), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear localization of the nuclear factor-kappa beta p65 (NF-κB p65), and expression of cleaved caspase-3. Concomitantly, hippocampi of both groups of rats showed significantly higher levels of Bcl-2, superoxide dismutase (SOD), and glutathione (GSH), as well as enhanced nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf-2). The effects of RVD1 on all these markers in the CdCl2-induced rats were more profound than those of DHA. Also, the increase in the nuclear protein levels of Nrf-2 and the decrease in the levels of Bax and nuclear protein levels of NF-κB p65 were only seen in the hippocampal of CdCl2 + RVD1-treated rats. CONCLUSION RVD1 is more powerful than DHA in preventing CdCl2-induced memory loss and hippocampal damage in rats.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
13
|
Díaz M, Mesa-Herrera F, Marín R. DHA and Its Elaborated Modulation of Antioxidant Defenses of the Brain: Implications in Aging and AD Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10060907. [PMID: 34205196 PMCID: PMC8228037 DOI: 10.3390/antiox10060907] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
DHA (docosahexaenoic acid) is perhaps the most pleiotropic molecule in nerve cell biology. This long-chain highly unsaturated fatty acid has evolved to accomplish essential functions ranging from structural components allowing fast events in nerve cell membrane physiology to regulation of neurogenesis and synaptic function. Strikingly, the plethora of DHA effects has to take place within the hostile pro-oxidant environment of the brain parenchyma, which might suggest a molecular suicide. In order to circumvent this paradox, different molecular strategies have evolved during the evolution of brain cells to preserve DHA and to minimize the deleterious effects of its oxidation. In this context, DHA has emerged as a member of the “indirect antioxidants” family, the redox effects of which are not due to direct redox interactions with reactive species, but to modulation of gene expression within thioredoxin and glutathione antioxidant systems and related pathways. Weakening or deregulation of these self-protecting defenses orchestrated by DHA is associated with normal aging but also, more worryingly, with the development of neurodegenerative diseases. In the present review, we elaborate on the essential functions of DHA in the brain, including its role as indirect antioxidant, the selenium connection for proper antioxidant function and their changes during normal aging and in Alzheimer’s disease.
Collapse
Affiliation(s)
- Mario Díaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), Universidad de La Laguna, 38206 Tenerife, Spain
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Correspondence:
| | - Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, School of Biology, Universidad de La Laguna, 38206 Tenerife, Spain;
| | - Raquel Marín
- Unidad Asociada ULL-CSIC “Fisiología y Biofísica de la Membrana Celular en Enfermedades Neurodegenerativas y Tumorales”, 38206 Tenerife, Spain;
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Medicine, Universidad de La Laguna, 38206 Tenerife, Spain
| |
Collapse
|
14
|
Iuchi K, Takai T, Hisatomi H. Cell Death via Lipid Peroxidation and Protein Aggregation Diseases. BIOLOGY 2021; 10:399. [PMID: 34064409 PMCID: PMC8147787 DOI: 10.3390/biology10050399] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids are detected under pathological conditions. Pathological protein aggregation is the general cause of these diseases. The cellular response to misfolded proteins is well-known as the unfolded protein response (UPR) and it is partially concomitant with the response to lipid peroxidation. Moreover, the association between protein aggregation and non-apoptotic cell death by lipid peroxidation is attracting attention. The link between lipid peroxidation and protein aggregation is a matter of concern in biomedical fields. Here, we focus on lethal protein aggregation in non-apoptotic cell death via lipid peroxidation. We reviewed the roles of protein aggregation in the initiation and execution of non-apoptotic cell death. We also considered the relationship between protein aggregation and oxidized lipid production. We provide an overview of non-apoptotic cell death with a focus on lipid peroxidation for therapeutic targeting during protein aggregation diseases.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; (T.T.); (H.H.)
| | | | | |
Collapse
|
15
|
Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients 2021; 13:986. [PMID: 33803760 PMCID: PMC8003191 DOI: 10.3390/nu13030986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
The role of docosahexaenoic acid (DHA) and arachidonic acid (AA) in neurogenesis and brain development throughout the life cycle is fundamental. DHA and AA are long-chain polyunsaturated fatty acids (LCPUFA) vital for many human physiological processes, such as signaling pathways, gene expression, structure and function of membranes, among others. DHA and AA are deposited into the lipids of cell membranes that form the gray matter representing approximately 25% of the total content of brain fatty acids. Both fatty acids have effects on neuronal growth and differentiation through the modulation of the physical properties of neuronal membranes, signal transduction associated with G proteins, and gene expression. DHA and AA have a relevant role in neuroprotection against neurodegenerative pathologies such as Alzheimer's disease and Parkinson's disease, which are associated with characteristic pathological expressions as mitochondrial dysfunction, neuroinflammation, and oxidative stress. The present review analyzes the neuroprotective role of DHA and AA in the extreme stages of life, emphasizing the importance of these LCPUFA during the first year of life and in the developing/prevention of neurodegenerative diseases associated with aging.
Collapse
Affiliation(s)
- Verónica Sambra
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Francisca Echeverria
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
| | - Alfonso Valenzuela
- Faculty of Medicine, School of Nutrition, Universidad de Los Andes, Santiago 8380000, Chile;
| | - Raphaël Chouinard-Watkins
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (V.S.); (F.E.)
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada;
| |
Collapse
|
16
|
Moine E, Boukhallat M, Cia D, Jacquemot N, Guillou L, Durand T, Vercauteren J, Brabet P, Crauste C. New lipophenols prevent carbonyl and oxidative stresses involved in macular degeneration. Free Radic Biol Med 2021; 162:367-382. [PMID: 33129975 DOI: 10.1016/j.freeradbiomed.2020.10.316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Dry age-related macular degeneration and Stargardt disease undergo a known toxic mechanism caused by carbonyl and oxidative stresses (COS). This is responsible for accumulation in the retinal pigment epithelium (RPE) of A2E, a main toxic pyridinium bis-retinoid lipofuscin component. Previous studies have shown that carbonyl stress in retinal cells could be reduced by an alkyl-phloroglucinol-DHA conjugate (lipophenol). Here, we performed a rational design of different families of lipophenols to conserve anti-carbonyl stress activities and improve antioxidant properties. Five synthetic pathways leading to alkyl-(poly)phenol derivatives, with phloroglucinol, resveratrol, catechin and quercetin as the main backbone, linked to poly-unsaturated fatty acid, are presented. These lipophenols were evaluated in ARPE-19 cell line for their anti-COS properties and a structure-activity relationship study is proposed. Protection of ARPE-19 cells against A2E toxicity was assessed for the four best candidates. Finally, interesting anti-COS properties of the most promising quercetin lipophenol were confirmed in primary RPE cells.
Collapse
Affiliation(s)
- Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| | - Manel Boukhallat
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - David Cia
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Nathalie Jacquemot
- Laboratoire de Biophysique Neurosensorielle, UMR INSERM 1107, Facultés de Médecine et de Pharmacie, Clermont-Ferrand, 63000, France
| | - Laurent Guillou
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France
| | - Philippe Brabet
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, Montpellier, 34091, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM, Montpellier, 34093, France.
| |
Collapse
|
17
|
Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6627144. [PMID: 33456670 PMCID: PMC7785350 DOI: 10.1155/2020/6627144] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
One of the novel interesting topics in the study of cardiovascular disease is the role of the oxidation system, since inflammation and oxidative stress are known to lead to cardiovascular diseases, their progression and complications. During decades of research, many complex interactions between agents of oxidative stress, oxidation, and antioxidant systems have been elucidated, and numerous important pathophysiological links to na number of disorders and diseases have been established. This review article will present the most relevant knowledge linking oxidative stress to vascular dysfunction and disease. The review will focus on the role of oxidative stress in endotheleial dysfunction, atherosclerosis, and other pathogenetic processes and mechanisms that contribute to the development of ischemic heart disease.
Collapse
Affiliation(s)
- Aleksandar Kibel
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Ana Marija Lukinac
- Department of Rheumatology and Clinical Immunology, Osijek University Hospital, Osijek, Croatia
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Vedran Dambic
- Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
- Department for Emergency Medical Services of the Osijek-Baranja county, Osijek, Croatia
| | - Iva Juric
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatic
- Department for Heart and Vascular Diseases, Osijek University Hospital, Osijek, Croatia
- Department of Internal Medicine, Faculty of Medicine, University J.J. Strossmayer in Osijek, Osijek, Croatia
| |
Collapse
|
18
|
Ahn YJ, Lim JW, Kim H. Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2020; 9:antiox9111084. [PMID: 33158207 PMCID: PMC7694300 DOI: 10.3390/antiox9111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)—an omega-3 fatty acid—exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10−8 M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
19
|
Lee YY, Galano J, Leung HH, Balas L, Oger C, Durand T, Lee JC. Nonenzymatic oxygenated metabolite of docosahexaenoic acid, 4(RS)‐4‐F4t‐neuroprostane, acts as a bioactive lipid molecule in neuronal cells. FEBS Lett 2020; 594:1797-1808. [DOI: 10.1002/1873-3468.13774] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Yiu Yiu Lee
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Jean‐Marie Galano
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Ho Hang Leung
- School of Biological Sciences The University of Hong Kong Hong Kong
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM Université de Montpellier CNRS ENSCM Faculté de Pharmacie Montpellier France
| | | |
Collapse
|
20
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
21
|
Effects of Docosahexaenoic Acid and Its Peroxidation Product on Amyloid-β Peptide-Stimulated Microglia. Mol Neurobiol 2019; 57:1085-1098. [PMID: 31677009 DOI: 10.1007/s12035-019-01805-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
Abstract
Growing evidence suggests that docosahexaenoic acid (DHA) exerts neuroprotective effects, although the mechanism(s) underlying these beneficial effects are not fully understood. Here we demonstrate that DHA, but not arachidonic acid (ARA), suppressed oligomeric amyloid-β peptide (oAβ)-induced reactive oxygen species (ROS) production in primary mouse microglia and immortalized mouse microglia (BV2). Similarly, DHA but not ARA suppressed oAβ-induced increases in phosphorylated cytosolic phospholipase A2 (p-cPLA2), inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α) in BV2 cells. LC-MS/MS assay indicated the ability for DHA to cause an increase in 4-hydroxyhexenal (4-HHE) and suppress oAβ-induced increase in 4-hydroxynonenal (4-HNE). Although oAβ did not alter the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, exogenous DHA, ARA as well as low concentrations of 4-HHE and 4-HNE upregulated this pathway and increased production of heme oxygenase-1 (HO-1) in microglial cells. These results suggest that DHA modulates ARA metabolism in oAβ-stimulated microglia through suppressing oxidative and inflammatory pathways and upregulating the antioxidative stress pathway involving Nrf2/HO-1. Understanding the mechanism(s) underlying the beneficial effects of DHA on microglia should shed light into nutraceutical therapy for the prevention and treatment of Alzheimer's disease (AD).
Collapse
|
22
|
Van Hecke T, Goethals S, Vossen E, De Smet S. Long‐Chain
n
‐3 PUFA Content and
n
‐6/
n
‐3 PUFA Ratio in Mammal, Poultry, and Fish Muscles Largely Explain Differential Protein and Lipid Oxidation Profiles Following In Vitro Gastrointestinal Digestion. Mol Nutr Food Res 2019; 63:e1900404. [DOI: 10.1002/mnfr.201900404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/27/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Sophie Goethals
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product QualityDepartment of Animal Sciences and Aquatic EcologyGhent University Coupure Links 653 B‐9000 Ghent Belgium
| |
Collapse
|
23
|
Meital LT, Windsor MT, Perissiou M, Schulze K, Magee R, Kuballa A, Golledge J, Bailey TG, Askew CD, Russell FD. Omega-3 fatty acids decrease oxidative stress and inflammation in macrophages from patients with small abdominal aortic aneurysm. Sci Rep 2019; 9:12978. [PMID: 31506475 PMCID: PMC6736886 DOI: 10.1038/s41598-019-49362-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is associated with inflammation and oxidative stress, the latter of which contributes to activation of macrophages, a prominent cell type in AAA. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported to limit oxidative stress in animal models of AAA. The aim of this study was to evaluate the effect of the n-3 PUFA docosahexaenoic acid (DHA) on antioxidant defence in macrophages from patients with AAA. Cells were obtained from men with small AAA (diameter 3.0–4.5 cm, 75 ± 6 yr, n = 19) and age- matched male controls (72 ± 5 yr, n = 41) and incubated with DHA for 1 h before exposure to 0.1 µg/mL lipopolysaccharide (LPS) for 24 h. DHA supplementation decreased the concentration of tumour necrosis factor-α (TNF-α; control, 42.1 ± 13.6 to 5.1 ± 2.1 pg/ml, p < 0.01; AAA, 25.2 ± 9.8 to 1.9 ± 0.9 pg/ml, p < 0.01) and interleukin-6 (IL-6; control, 44.9 ± 7.7 to 5.9 ± 2.0 pg/ml, p < 0.001; AAA, 24.3 ± 5.2 to 0.5 ± 0.3 pg/ml, p < 0.001) in macrophage supernatants. DHA increased glutathione peroxidase activity (control, 3.2 ± 0.3 to 4.1 ± 0.2 nmol/min/ml/μg protein, p = 0.004; AAA, 2.3 ± 0.5 to 3.4 ± 0.5 nmol/min/ml/μg protein, p = 0.008) and heme oxygenase-1 mRNA expression (control, 1.5-fold increase, p < 0.001). The improvements in macrophage oxidative stress status serve as a stimulus for further investigation of DHA in patients with AAA.
Collapse
Affiliation(s)
- Lara T Meital
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.,VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Mark T Windsor
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Maria Perissiou
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | | | - Rebecca Magee
- Sunshine Coast University Hospital, Birtinya, Qld, Australia
| | - Anna Kuballa
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,Department of Vascular and Endovascular Surgery, Townsville Hospital, Townsville, Australia
| | - Tom G Bailey
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Christopher D Askew
- VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia
| | - Fraser D Russell
- Centre for Genetics, Ecology & Physiology, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia. .,VasoActive Group, School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, Qld, Australia.
| |
Collapse
|
24
|
Leung KS, Leung HH, Wu CY, Galano JM, Durand T, Lee JCY. Limited Antioxidant Effect of Rosemary in Lipid Oxidation of Pan-Fried Salmon. Biomolecules 2019; 9:biom9080313. [PMID: 31357709 PMCID: PMC6723415 DOI: 10.3390/biom9080313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) rich fatty fish is known to provide an array of health benefits. However, high temperature in food preparation, such as pan-frying, potentially degrades eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of the n-3 PUFAs by heat oxidation. The addition of antioxidant condiments, and herbs in particular, may retard PUFA peroxidation and preserve EPA and DHA during pan-frying. In this study, different types of antioxidant condiments (sage, rosemary, black peppercorn, thyme, basil, and garlic) were tested for antioxidant capacity, and the condiment with the highest capacity was selected for its effect on lipid oxidation of salmon. The changes in fatty acids and lipid peroxidation of salmon, during pan-frying with the selected condiment (olive oil infused with rosemary, RO(infused)), were compared with salmon prepared in extra virgin olive oil, olive oil, or without oil. The total saturated fatty acid was found to be less in pan fried salmon with RO(infused). None of the oil type conserved EPA- and DHA-content in salmon. However, RO(infused) lowered lipid peroxidation by lessening hydroperoxide and 4-HNE formation, but not the other related products (HDHA, HETE, isoprostanes). Our observation indicates that the antioxidant capacity of RO(infused), when it is incorporated with food, becomes limited.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ching Yu Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM Faculté de Pharmacie, Université de Montpellier, 15 Av. Ch. Flahault, BP 14491, F-34093 Montpellier CEDEX 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM Faculté de Pharmacie, Université de Montpellier, 15 Av. Ch. Flahault, BP 14491, F-34093 Montpellier CEDEX 05, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
25
|
Yang B, Fritsche KL, Beversdorf DQ, Gu Z, Lee JC, Folk WR, Greenlief CM, Sun GY. Yin-Yang Mechanisms Regulating Lipid Peroxidation of Docosahexaenoic Acid and Arachidonic Acid in the Central Nervous System. Front Neurol 2019; 10:642. [PMID: 31275232 PMCID: PMC6591372 DOI: 10.3389/fneur.2019.00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Phospholipids in the central nervous system (CNS) are rich in polyunsaturated fatty acids (PUFAs), particularly arachidonic acid (ARA) and docosahexaenoic acid (DHA). Besides providing physical properties to cell membranes, these PUFAs are metabolically active and undergo turnover through the “deacylation-reacylation (Land's) cycle”. Recent studies suggest a Yin-Yang mechanism for metabolism of ARA and DHA, largely due to different phospholipases A2 (PLA2s) mediating their release. ARA and DHA are substrates of cyclooxygenases and lipoxygenases resulting in an array of lipid mediators, which are pro-inflammatory and pro-resolving. The PUFAs are susceptible to peroxidation by oxygen free radicals, resulting in the production of 4-hydroxynonenal (4-HNE) from ARA and 4-hydroxyhexenal (4-HHE) from DHA. These alkenal electrophiles are reactive and capable of forming adducts with proteins, phospholipids and nucleic acids. The perceived cytotoxic and hormetic effects of these hydroxyl-alkenals have impacted cell signaling pathways, glucose metabolism and mitochondrial functions in chronic and inflammatory diseases. Due to the high levels of DHA and ARA in brain phospholipids, this review is aimed at providing information on the Yin-Yang mechanisms for regulating these PUFAs and their lipid peroxidation products in the CNS, and implications of their roles in neurological disorders.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - William R Folk
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, MO, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| |
Collapse
|
26
|
Tatsumi Y, Kato A, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K. Omega-3 polyunsaturated fatty acids exert anti-oxidant effects through the nuclear factor (erythroid-derived 2)-related factor 2 pathway in immortalized mouse Schwann cells. J Diabetes Investig 2019; 10:602-612. [PMID: 30216708 PMCID: PMC6497605 DOI: 10.1111/jdi.12931] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 08/09/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION Recent studies advocate that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have direct anti-oxidative and anti-inflammatory effects in the vasculature; however, the role of ω-3 PUFAs in Schwann cells remains undetermined. MATERIALS AND METHODS Immortalized mouse Schwann (IMS32) cells were incubated with the ω-3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). The messenger ribonucleic acid levels of several anti-oxidant enzymes (heme oxygenase-1 [Ho-1], nicotinamide adenine dinucleotide [phosphate] H quinone oxidoreductase 1, catalase, superoxide dismutase and glutathione peroxidase) were identified using real-time reverse transcription polymerase chain reaction. Ho-1 and nicotinamide adenine dinucleotide [phosphate] H quinone oxidoreductase 1 protein levels were evaluated using Western blotting. Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) of the nuclear fraction was also quantified using western blotting. Catalase activity and glutathione content were determined by colorimetric assay kits. Nrf2 promoter-luciferase activity was evaluated by a dual luciferase assay system. RESULTS Treatment with tert-butyl hydroperoxide decreased cell viability dose-dependently. DHA or EPA pretreatment significantly alleviated tert-butyl hydroperoxide-induced cytotoxicity. DHA or EPA increased the messenger ribonucleic acid levels of Ho-1, nicotinamide adenine dinucleotide (phosphate) H quinone oxidoreductase 1 and catalase dose-dependently. Ho-1 protein level, catalase activity, Nrf2 promoter-luciferase activity and intracellular glutathione content were significantly increased by DHA and EPA. CONCLUSIONS These findings show that DHA and EPA can induce Ho-1 and catalase through Nrf2, thus protecting Schwann cells against oxidative stress. ω-3 PUFAs appear to exert their neuroprotective effect by increasing defense mechanisms against oxidative stress in diabetic neuropathies.
Collapse
Affiliation(s)
- Yasuaki Tatsumi
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| | - Ayako Kato
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| | - Kazunori Sango
- Diabetic Neuropathy ProjectDepartment of Sensory and Motor SystemsTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Tatsuhito Himeno
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Masaki Kondo
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Yoshiro Kato
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Hideki Kamiya
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Jiro Nakamura
- Department of Internal MedicineDivision of DiabetesAichi Medical University School of MedicineNagakuteAichiJapan
| | - Koichi Kato
- Laboratory of MedicineAichi Gakuin University School of PharmacyNagoyaAichiJapan
| |
Collapse
|
27
|
Lipoxidation in cardiovascular diseases. Redox Biol 2019; 23:101119. [PMID: 30833142 PMCID: PMC6859589 DOI: 10.1016/j.redox.2019.101119] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Lipids can go through lipid peroxidation, an endogenous chain reaction that consists in the oxidative degradation of lipids leading to the generation of a wide variety of highly reactive carbonyl species (RCS), such as short-chain carbonyl derivatives and oxidized truncated phospholipids. RCS exert a wide range of biological effects due to their ability to interact and covalently bind to nucleophilic groups on other macromolecules, such as nucleic acids, phospholipids, and proteins, forming reversible and/or irreversible modifications and generating the so-called advanced lipoxidation end-products (ALEs). Lipoxidation plays a relevant role in the onset of cardiovascular diseases (CVD), mainly in the atherosclerosis-based diseases in which oxidized lipids and their adducts have been extensively characterized and associated with several processes responsible for the onset and development of atherosclerosis, such as endothelial dysfunction and inflammation. Herein we will review the current knowledge on the sources of lipids that undergo oxidation in the context of cardiovascular diseases, both from the bloodstream and tissues, and the methods for detection, characterization, and quantitation of their oxidative products and protein adducts. Moreover, lipoxidation and ALEs have been associated with many oxidative-based diseases, including CVD, not only as potential biomarkers but also as therapeutic targets. Indeed, several therapeutic strategies, acting at different levels of the ALEs cascade, have been proposed, essentially blocking ALEs formation, but also their catabolism or the resulting biological responses they induce. However, a deeper understanding of the mechanisms of formation and targets of ALEs could expand the available therapeutic strategies.
Collapse
|
28
|
Quercetin Potentiates Docosahexaenoic Acid to Suppress Lipopolysaccharide-induced Oxidative/Inflammatory Responses, Alter Lipid Peroxidation Products, and Enhance the Adaptive Stress Pathways in BV-2 Microglial Cells. Int J Mol Sci 2019; 20:ijms20040932. [PMID: 30795510 PMCID: PMC6413212 DOI: 10.3390/ijms20040932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
High levels of docosahexaenoic acid (DHA) in the phospholipids of mammalian brain have generated increasing interest in the search for its role in regulating brain functions. Recent studies have provided evidence for enhanced protective effects when DHA is administered in combination with phytochemicals, such as quercetin. DHA and quercetin can individually suppress lipopolysaccharide (LPS)–induced oxidative/inflammatory responses and enhance the antioxidative stress pathway involving nuclear factor erythroid-2 related factor 2 (Nrf2). However, studies with BV-2 microglial cells indicated rather high concentrations of DHA (IC50 in the range of 60–80 µM) were needed to produce protective effects. To determine whether quercetin combined with DHA can lower the levels of DHA needed to produce protective effects in these cells is the goal for this study. Results showed that low concentrations of quercetin (2.5 µM), in combination with DHA (10 µM), could more effectively enhance the expression of Nrf2 and heme oxygenase 1 (HO-1), and suppress LPS–induced nitric oxide, tumor necrosis factor-α, phospho-cytosolic phospholipase A2, reactive oxygen species, and 4-hydroxynonenal, as compared to the same levels of DHA or quercetin alone. These results provide evidence for the beneficial effects of quercetin in combination with DHA, and further suggest their potential as nutraceuticals for improving health.
Collapse
|
29
|
Zhang Y, Zhang B, Dong L, Chang P. Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Adv Nutr 2019; 10:133-147. [PMID: 30566596 PMCID: PMC6370266 DOI: 10.1093/advances/nmy076] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy- or radiotherapy-related intestinal microbial dysbiosis is one of the main causes of intestinal mucositis. Cases of bacterial translocation into peripheral blood and subsequent sepsis occur as a result of dysfunction in the intestinal barrier. Evidence from recent studies depicts the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis, which creates an imbalance between beneficial and harmful bacteria in the gut. Decreases in beneficial bacteria can lead to a weakening of the resistance of the gut to harmful bacteria, resulting in robust activation of proinflammatory signaling pathways. For example, lipopolysaccharide (LPS)-producing bacteria activate the nuclear transcription factor-κB signaling pathway through binding with Toll-like receptor 4 on stressed epithelial cells, subsequently leading to secretion of proinflammatory cytokines. Nevertheless, various studies have found that the omega-3 (n-3) polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid and eicosapentaenoic acid can reverse intestinal microbial dysbiosis by increasing beneficial bacteria species, including Lactobacillus, Bifidobacterium, and butyrate-producing bacteria, such as Roseburia and Coprococcus. In addition, the n-3 PUFAs decrease the proportions of LPS-producing and mucolytic bacteria in the gut, and they can reduce inflammation as well as oxidative stress. Importantly, the n-3 PUFAs also exert anticancer effects in colorectal cancers. In this review, we summarize the characteristics of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis and introduce the contributions of dysbiosis to the pathogenesis of intestinal mucositis. Next, we discuss how n-3 PUFAs could alleviate chemotherapy- or radiotherapy-related intestinal microbial dysbiosis. This review provides new insights into the clinical administration of n-3 PUFAs for the management of chemotherapy- or radiotherapy-related intestinal microbial dysbiosis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China
| | - Boyan Zhang
- Orthopedic Medical Center, The Second Hospital of Jilin University, ChangChun, China
| | - Lihua Dong
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to LD (e-mail: )
| | - Pengyu Chang
- Department of Radiation Oncology, First Bethune Hospital of Jilin University, ChangChun, China,Address correspondence to PC (e-mail: )
| |
Collapse
|
30
|
Narayanankutty A, Gopinath MK, Vakayil M, Ramavarma SK, Babu TD, Raghavamenon AC. Non-enzymatic conversion of primary oxidation products of Docosahexaenoic acid into less toxic acid molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:222-228. [PMID: 29870906 DOI: 10.1016/j.saa.2018.05.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
Docosahexaenoic acid (DHA) is long chain omega-3 fatty acid with known health benefits and clinical significance. However, 4-hydroxy hexenal (HHE), an enzymatic oxidation product of DHA has recently been reported to have health-damaging effects. This conflict raises major concern on the long-term clinical use of these fatty acids. Even though the enzymatic and non-enzymatic conversion of HHE to nontoxic acid molecules is possible by the aldehyde detoxification systems, it has not yet studied. To address this, primary oxidation products of DHA in lipoxidase system were subjected to non-enzymatic conversion at physiological temperature over a period of 1 week. The reaction was monitored using HPLC, IR spectroscopy and biochemical assays (based on the loss of conjugated dienes, lipid peroxides aldehydes). Short term and long term cytotoxicity of the compounds generated at various time points were analyzed. IR and HPLC spectra revealed that the level of aldehydes in the primary oxidation products reduced over time, generating acids and acid derivatives within a week period. In short term and long term cytotoxicity analysis, initial decomposition products were found more toxic than the 1-week decomposition products. Further, when primary oxidation products were subjected to aldehyde dehydrogenase mediated oxidation, it generated products that are also less toxic. The study suggests the possible non-enzymatic conversion of primary oxidation products of DHA to less cytotoxic acid molecules. Exploration of the physiological roles of these acid molecules may explain the biological potential of omega-3 fatty acids.
Collapse
Affiliation(s)
- Arunaksharan Narayanankutty
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India
| | - Midhun K Gopinath
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India
| | - Muneera Vakayil
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India
| | - Smitha K Ramavarma
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India
| | - Thekkekara Devassy Babu
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India
| | - Achuthan C Raghavamenon
- Amala Cancer Research Centre (Recognized Centre of University of Calicut), Amala Nagar, Thrissur, 680 555, Kerala, India.
| |
Collapse
|
31
|
Sun GY, Simonyi A, Fritsche KL, Chuang DY, Hannink M, Gu Z, Greenlief CM, Yao JK, Lee JC, Beversdorf DQ. Docosahexaenoic acid (DHA): An essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fatty Acids 2018; 136:3-13. [PMID: 28314621 PMCID: PMC9087135 DOI: 10.1016/j.plefa.2017.03.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
Abstract
Docosahexaenoic acid (DHA), a polyunsaturated fatty acid (PUFA) enriched in phospholipids in the brain and retina, is known to play multi-functional roles in brain health and diseases. While arachidonic acid (AA) is released from membrane phospholipids by cytosolic phospholipase A2 (cPLA2), DHA is linked to action of the Ca2+-independent iPLA2. DHA undergoes enzymatic conversion by 15-lipoxygenase (Alox 15) to form oxylipins including resolvins and neuroprotectins, which are powerful lipid mediators. DHA can also undergo non-enzymatic conversion by reacting with oxygen free radicals (ROS), which cause the production of 4-hydoxyhexenal (4-HHE), an aldehyde derivative which can form adducts with DNA, proteins and lipids. In studies with both animal models and humans, there is evidence that inadequate intake of maternal n-3 PUFA may lead to aberrant development and function of the central nervous system (CNS). What is less certain is whether consumption of n-3 PUFA is important in maintaining brain health throughout one's life span. Evidence mostly from non-human studies suggests that DHA intake above normal nutritional requirements might modify the risk/course of a number of diseases of the brain. This concept has fueled much of the present interest in DHA research, in particular, in attempts to delineate mechanisms whereby DHA may serve as a nutraceutical and confer neuroprotective effects. Current studies have revealed ability for the oxylipins to regulation of cell redox homeostasis through the Nuclear factor (erythroid-derived 2)-like 2/Antioxidant response element (Nrf2/ARE) anti-oxidant pathway, and impact signaling pathways associated with neurotransmitters, and modulation of neuronal functions involving brain-derived neurotropic factor (BDNF). This review is aimed at describing recent studies elaborating these mechanisms with special regard to aging and Alzheimer's disease, autism spectrum disorder, schizophrenia, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Dennis Y Chuang
- Department of Neurology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, United States
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
| | | | - Jeffrey K Yao
- Medical Research Service, VA Pittsburgh Healthcare System, and Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - David Q Beversdorf
- Department of Radiology, Neurology, and Psychological Sciences, and the Thompson Center, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
32
|
Leung KS, Galano JM, Durand T, Lee JCY. Profiling of Omega-Polyunsaturated Fatty Acids and Their Oxidized Products in Salmon after Different Cooking Methods. Antioxidants (Basel) 2018; 7:antiox7080096. [PMID: 30042286 PMCID: PMC6116150 DOI: 10.3390/antiox7080096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/15/2023] Open
Abstract
Consumption of food containing n-3 PUFAs, namely EPA and DHA, are known to benefit health and protect against chronic diseases. Both are richly found in marine-based food such as fatty fish and seafood that are commonly cooked prior to consumption. However, the elevated temperature during cooking potentially degrades the EPA and DHA through oxidation. To understand the changes during different cooking methods, lipid profiles of raw, boiled, pan-fried and baked salmon were determined by LC-MS/MS. Our results showed that pan-frying and baking elevated the concentration of peroxides in salmon, whereas only pan-frying increased the MDA concentration, indicating it to be the most severe procedure to cause oxidation among the cooking methods. Pan-frying augmented oxidized products of n-3 and n-6 PUFAs, while only those of n-3 PUFA were elevated in baked salmon. Notably, pan-frying and baking increased bioactive oxidized n-3 PUFA products, in particular F-4t-neuroprostanes derived from DHA. The results of this study provided a new insight into the application of heat and its effect on PUFAs and the release of its oxidized products in salmon.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS Université de Montpellier, ENSCM, F-34093 Montpellier, France.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS Université de Montpellier, ENSCM, F-34093 Montpellier, France.
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
33
|
Yang B, Li R, Michael Greenlief C, Fritsche KL, Gu Z, Cui J, Lee JC, Beversdorf DQ, Sun GY. Unveiling anti-oxidative and anti-inflammatory effects of docosahexaenoic acid and its lipid peroxidation product on lipopolysaccharide-stimulated BV-2 microglial cells. J Neuroinflammation 2018; 15:202. [PMID: 29986724 PMCID: PMC6038194 DOI: 10.1186/s12974-018-1232-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Phospholipids in the central nervous system are enriched in n-3 and n-6 polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA) and arachidonic acid (ARA). These PUFA can undergo enzymatic reactions to produce lipid mediators, as well as reaction with oxygen free radicals to produce 4-hydroxyhexenal (4-HHE) from DHA and 4-hydroxynonenal (4-HNE) from ARA. Recent studies demonstrated pleiotropic properties of these peroxidation products through interaction with oxidative and anti-oxidant response pathways. In this study, BV-2 microglial cells were used to investigate ability for DHA, 4-HHE, and 4-HNE to stimulate the anti-oxidant stress responses involving the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and synthesis of heme oxygenase (HO-1), as well as to mitigate lipopolysaccharide (LPS)-induced nitric oxide (NO), reactive oxygen species (ROS), and cytosolic phospholipase A2 (cPLA2). In addition, LC-MS/MS analysis was carried out to examine effects of exogenous DHA and LPS stimulation on endogenous 4-HHE and 4-HNE levels in BV-2 microglial cells. METHODS Effects of DHA, 4-HHE, and 4-HNE on LPS-induced NO production was determined using the Griess reagent. LPS-induced ROS production was measured using CM-H2DCFDA. Western blots were used to analyze expression of p-cPLA2, Nrf2, and HO-1. Cell viability and cytotoxicity were measured using the WST-1 assay, and cell protein concentrations were measured using the BCA protein assay kit. An ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to determine levels of free 4-HHE and 4-HNE in cells. RESULTS DHA (12.5-100 μM), 4-HHE (1.25-10 μM), and 4-HNE (1.25-10 μM) dose dependently suppressed LPS-induced production of NO, ROS, and as p-cPLA2 in BV-2 microglial cells. With the same concentrations, these compounds could enhance Nrf2 and HO-1 expression in these cells. Based on the estimated IC50 values, 4-HHE and 4-HNE were five- to tenfold more potent than DHA in inhibiting LPS-induced NO, ROS, and p-cPLA2. LC-MS/MS analysis indicated ability for DHA (10-50 μM) to increase levels of 4-HHE and attenuate levels of 4-HNE in BV-2 microglial cells. Stimulation of cells with LPS caused an increase in 4-HNE which could be abrogated by cPLA2 inhibitor. In contrast, bromoenol lactone (BEL), a specific inhibitor for the Ca2+-independent phospholipase A2 (iPLA2), could only partially suppress levels of 4-HHE induced by DHA or DHA + LPS. CONCLUSIONS This study demonstrated the ability of DHA and its lipid peroxidation products, namely, 4-HHE and 4-HNE at 1.25-10 μM, to enhance Nrf2/HO-1 and mitigate LPS-induced NO, ROS, and p-cPLA2 in BV-2 microglial cells. In addition, LC-MS/MS analysis of the levels of 4-HHE and 4-HNE in microglial cells demonstrates that increases in production of 4-HHE from DHA and 4-HNE from LPS are mediated by different mechanisms.
Collapse
Affiliation(s)
- Bo Yang
- Chemistry Department, University of Missouri, Columbia, MO, USA
| | - Runting Li
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA
| | | | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA. .,Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
34
|
Hu X, Ge X, Liang W, Shao Y, Jing J, Wang C, Zeng R, Yao B. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis. Syst Biol Reprod Med 2018; 64:368-380. [PMID: 29798686 DOI: 10.1080/19396368.2018.1471554] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. ABBREVIATIONS FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.
Collapse
Affiliation(s)
- Xuechun Hu
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Xie Ge
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Wei Liang
- b Traditional Chinese Medicine Department , Nanjing No. 454 Hospital , Nanjing , PR China
| | - Yong Shao
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Jun Jing
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Cencen Wang
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Rong Zeng
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| | - Bing Yao
- a Jinling Hospital, School of Medicine , Nanjing University , Nanjing , PR China
| |
Collapse
|
35
|
Sottero B, Leonarduzzi G, Testa G, Gargiulo S, Poli G, Biasi F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700047] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| | - Fiorella Biasi
- Department of Clinical and Biological Sciences, San Luigi Hospital, University of Torino; Regione Gonzole 10 10043 Orbassano (Torino) Italy
| |
Collapse
|
36
|
Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 2017; 341:154-175. [PMID: 29289598 DOI: 10.1016/j.bbr.2017.12.036] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a unique form of programmed death, characterised by cytosolic accumulation of iron, lipid hydroperoxides and their metabolites, and effected by the fatal peroxidation of polyunsaturated fatty acids in the plasma membrane. It is a major driver of cell death in neurodegenerative neurological diseases. Moreover, cascades underpinning ferroptosis could be active drivers of neuropathology in major psychiatric disorders. Oxidative and nitrosative stress can adversely affect mechanisms and proteins governing cellular iron homeostasis, such as the iron regulatory protein/iron response element system, and can ultimately be a source of abnormally high levels of iron and a source of lethal levels of lipid membrane peroxidation. Furthermore, neuroinflammation leads to the upregulation of divalent metal transporter1 on the surface of astrocytes, microglia and neurones, making them highly sensitive to iron overload in the presence of high levels of non-transferrin-bound iron, thereby affording such levels a dominant role in respect of the induction of iron-mediated neuropathology. Mechanisms governing systemic and cellular iron homeostasis, and the related roles of ferritin and mitochondria are detailed, as are mechanisms explaining the negative regulation of ferroptosis by glutathione, glutathione peroxidase 4, the cysteine/glutamate antiporter system, heat shock protein 27 and nuclear factor erythroid 2-related factor 2. The potential role of DJ-1 inactivation in the precipitation of ferroptosis and the assessment of lipid peroxidation are described. Finally, a rational approach to therapy is considered, with a discussion on the roles of coenzyme Q10, iron chelation therapy, in the form of deferiprone, deferoxamine (desferrioxamine) and deferasirox, and N-acetylcysteine.
Collapse
|
37
|
Sakai C, Ishida M, Ohba H, Yamashita H, Uchida H, Yoshizumi M, Ishida T. Fish oil omega-3 polyunsaturated fatty acids attenuate oxidative stress-induced DNA damage in vascular endothelial cells. PLoS One 2017; 12:e0187934. [PMID: 29121093 PMCID: PMC5679535 DOI: 10.1371/journal.pone.0187934] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
Objective Omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), likely prevent cardiovascular disease, however their mechanisms remain unclear. Recently, the role of DNA damage in atherogenesis has been receiving considerable attention. Here, we investigated the effects of EPA and DHA on DNA damage in vascular endothelial cells to clarify their antiatherogenic mechanisms. Methods and results We determined the effect of EPA and DHA on H2O2-induced DNA damage response in human aortic endothelial cells. Immunofluorescence staining showed that γ-H2AX foci formation, a prominent marker of DNA damage, was significantly reduced in the cells treated with EPA and DHA (by 47% and 48%, respectively). H2O2-induced activation of ATM, a major kinase orchestrating DNA damage response, was significantly reduced with EPA and DHA treatment (by 31% and 33%, respectively). These results indicated EPA and DHA attenuated DNA damage independently of the DNA damage response. Thus the effects of EPA and DHA on a source of DNA damage were examined. EPA and DHA significantly reduced intracellular reactive oxygen species under both basal condition and H2O2 stimulation. In addition, the mRNA levels of antioxidant molecules, such as heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain and manganese superoxide dismutase, were significantly increased with EPA and DHA. Silencing nuclear factor erythroid 2-related factor 2 (NRF2) remarkably abrogated the increases in mRNA levels of antioxidant molecules and the decrease in intracellular reactive oxygen species. Furthermore, EPA and DHA significantly reduced H2O2-induced senescence-associated β-galactosidase activity in the cells (by 31% and 22%, respectively), which was revoked by NRF2 silencing. Conclusions Our results suggested that EPA and DHA attenuate oxidative stress-induced DNA damage in vascular endothelial cells through upregulation of NRF2-mediated antioxidant response. Therefore omega-3 fatty acids likely help prevent cardiovascular disease, at least in part, by their genome protective properties.
Collapse
Affiliation(s)
- Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| | - Hideo Ohba
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiromitsu Yamashita
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitomi Uchida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masao Yoshizumi
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
38
|
Tullberg C, Vegarud G, Undeland I, Scheers N. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells. Nutrients 2017; 9:nu9111213. [PMID: 29113061 PMCID: PMC5707685 DOI: 10.3390/nu9111213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE)). We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0-90 μM). Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05). The oxidoreductase thioredoxin-1 (Trx-1) involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001). The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively), whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM), indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.
Collapse
Affiliation(s)
- Cecilia Tullberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | - Gerd Vegarud
- Division of Food Proteins, Structure and Biological Function, Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr. M. Falsens vei 1, 1432 Ås, Norway.
| | - Ingrid Undeland
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| | - Nathalie Scheers
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering,Chalmers University of Technology, Kemigården 4, 412 96 Gothenburg, Sweden.
| |
Collapse
|
39
|
Tsai CH, Shen YC, Chen HW, Liu KL, Chang JW, Chen PY, Lin CY, Yao HT, Li CC. Docosahexaenoic acid increases the expression of oxidative stress-induced growth inhibitor 1 through the PI3K/Akt/Nrf2 signaling pathway in breast cancer cells. Food Chem Toxicol 2017; 108:276-288. [DOI: 10.1016/j.fct.2017.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
|
40
|
Nagahora N, Yamada H, Kikuchi S, Hakozaki M, Yano A. Nrf2 Activation by 5-lipoxygenase Metabolites in Human Umbilical Vascular Endothelial Cells. Nutrients 2017; 9:nu9091001. [PMID: 28892009 PMCID: PMC5622761 DOI: 10.3390/nu9091001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
5-hydroxyeicosatetraenoic acid (5-HETE) and 5-hydroxyeicosapentaenoic acid (5-HEPE) are major metabolites produced by 5-lipoxygenase (5-LOX) from arachidonic acid (AA) and eicosapentaenoic acid (EPA). Effects of hydroxides on endothelial cells are unclear, although 5-LOX is known to increase at arteriosclerotic lesions. To investigate the effects of hydroxides on human umbilical vein endothelial cells (HUVECs), the cells were treated with 50 μM each of AA, EPA, 5-HETE, and 5-HEPE. Treatment of HUVECs with 5-HETE and 5-HEPE, rather than with AA and EPA, increased the nuclear translocation of NF-E2 related factor 2 (Nrf2) and upregulated the expression of heme oxygenase-1 and cystine/glutamate transporter regulated by Nrf2. Reactive oxygen species (ROS) generation was markedly elevated in HUVECs after treatment with 5-HETE and 5-HEPE, and the pretreatment with α-tocopherol abrogated ROS levels similar to those in the vehicle control. However, ROS generation was independent of Nrf2 activation induced by 5-HETE and 5-HEPE. 5-HETE was converted to 5-oxo-eicosatetraenoic acid (5-oxo-ETE) in HUVECs, and 5-oxo-ETE increased Nrf2 activation. These results suggest that 5-HETE works as an Nrf2 activator through the metabolite 5-oxo-ETE in HUVECs. Similarly, 5-HEPE works in the same way, because 5-HEPE is metabolized to 5-oxo-eicosapentaenoic acid through the same pathway as that for 5-HETE.
Collapse
Affiliation(s)
- Nozomi Nagahora
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| | - Hidetoshi Yamada
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| | - Sayaka Kikuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| | - Mayuka Hakozaki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| | - Akira Yano
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
| |
Collapse
|
41
|
Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat 2017; 132:84-91. [DOI: 10.1016/j.prostaglandins.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
|
42
|
N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells. Nutrients 2017; 9:nu9070654. [PMID: 28672788 PMCID: PMC5537774 DOI: 10.3390/nu9070654] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 12/26/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n-3 PUFAs, increased in n-3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n-3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n-3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n-3 PUFAs may contribute to their cardio-protective effect.
Collapse
|
43
|
Docosahexaenoic Acid Induces Expression of Heme Oxygenase-1 and NAD(P)H:quinone Oxidoreductase through Activation of Nrf2 in Human Mammary Epithelial Cells. Molecules 2017; 22:molecules22060969. [PMID: 28604588 PMCID: PMC6152628 DOI: 10.3390/molecules22060969] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Docosahexaenoic acid (DHA), an ω-3 fatty acid abundant in fish oils, has diverse health beneficial effects, such as anti-oxidative, anti-inflammatory, neuroprotective, and chemopreventive activities. In this study, we found that DHA induced expression of two representative antioxidant/cytoprotective enzymes, heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1), in human mammary epithealial (MCF-10A) cells. DHA-induced upregulation of these enzymes was accompanied by enhanced translocation of the redox-sensitive transcription factor Nrf2 into the nucleus and its binding to antioxidant response element. Nrf2 gene silencing by siRNA abolished the DHA-induced expression of HO-1 and NQO1 proteins. When MCF-10A cells were transfected with mutant constructs in which the cysteine 151 or 288 residue of Keap1 was replaced by serine, DHA-induced expression of HO-1 and NQO1 was markedly reduced. Moreover, DHA activated protein kinase C (PKC)δ and induced Nrf2 phosphorylation. DHA-induced phosphorylation of Nrf2 was abrogated by the pharmacological PKCδ inhibitor rottlerin or siRNA knockdown of its gene expression. The antioxidants N-acetyl-l-cysteine and Trolox attenuated DHA-induced activation of PKCδ, phosphorylation of Nrf2, and and its target protein expression. In conclusion, DHA activates Nrf2, possibly through modification of critical Keap1 cysteine 288 residue and PKCδ-mediated phosphorylation of Nrf2, leading to upregulation of HO-1 and NQO1 expression.
Collapse
|
44
|
Mutagenicity of ω-3 fatty acid peroxidation products in the Ames test. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017. [PMID: 28622825 DOI: 10.1016/j.mrgentox.2017.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyunsaturated fatty acids (PUFA) represent one of the main building blocks of cellular membranes and their varying composition impacts lifespan as well as susceptibility to cancer and other degenerative diseases. Increased intake of ω-3 PUFA is taught to compensate for the abundance of ω-6 PUFA in modern human diet and prevent cardiocirculatory diseases. However, highly unsaturated PUFA of marine and seed origin easily oxidize to aldehydic products which form DNA adducts. With increased PUFA consumption it is prudent to re-evaluate ω-3 PUFA safety and the genotoxic hazards of their metabolites. We have used the standard Ames test to examine the mutagenicity of 2 hexenals derived from lipid peroxidation of the common ω-3 PUFA in human diet and tissues. Both 4-hydroxyhexenal and 2-hexenal derived from the ω-3 docosahexaenoic and α-linolenic acid, respectively, induced base substitutions in the TA104 and TA100 Ames strains in a dose dependent manner. Their mutagenicity was dependent on the Y-family DNA polymerase RI and they did not induce other types of mutations such as the -2 and -1 frameshifts in the TA98 and TA97 strains. Our results expand previous findings about the mutagenicity of related ω-3 peroxidation product 4-oxohexenal and raise alert that overuse of ω-3 rich oils may have adverse effect on genome stability.
Collapse
|
45
|
Rosell M, Villa M, Durand T, Galano JM, Vercauteren J, Crauste C. Total Syntheses of Two bis-Allylic-Deuterated DHA Analogues. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201600565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mélissa Rosell
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| | - Maxime Villa
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron; IBMM, UMR5247 CNRS-UM-ENSCM; Faculté de Pharmacie; 15 avenue C. Flahault, BP 14491 34093 Montpellier Cedex 5 France), Fax: (+33) 4-11-75-95-66
| |
Collapse
|
46
|
Narayanankutty A, Kottekkat A, Mathew SE, Illam SP, Suseela IM, Raghavamenon AC. Vitamin E supplementation modulates the biological effects of omega-3 fatty acids in naturally aged rats. Toxicol Mech Methods 2017; 27:207-214. [DOI: 10.1080/15376516.2016.1273431] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arunaksharan Narayanankutty
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| | - Anagha Kottekkat
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| | - Shaji E. Mathew
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| | - Soorya P. Illam
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| | - Indu M. Suseela
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| | - Achuthan C. Raghavamenon
- Department of Biochemistry, Amala Cancer Research Centre (recognized by University of Calicut), Thrissur, Kerala, India
| |
Collapse
|
47
|
Asada D, Itoi T, Nakamura A, Hamaoka K. Tolerance to ischemia reperfusion injury in a congenital heart disease model. Pediatr Int 2016; 58:1266-1273. [PMID: 27097979 DOI: 10.1111/ped.13022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Open heart surgery-associated ischemia/reperfusion (I/R) injury affects postoperative outcome, and a leading cause of this is lipid peroxidation. Congenital heart disease (CHD) patients, however, are less sensitive to I/R injury. Although little is known about the underlying molecular mechanisms, CHD-associated hypoxia alters the polyunsaturated fatty acid (PUFA) composition of membranes, which are the preferential targets for reactive oxygen species (ROS) generated during I/R. Here, using an animal model, we investigated the molecular mechanisms underlying I/R tolerance in CHD. METHODS In order to reproduce I/R injury in vitro, we used a working heart perfusion model, isolated from juvenile control and CHD model rats (CHD rats), and examined the recovery of cardiac function during a period of I/R. PUFA composition of the plasma membrane was determined on gas chromatography/mass spectrometry. Oxidative stress-related cellular responses were investigated on immunoblotting, using antibodies against nuclear factor erythroid 2-related factor (Nrf-2), hemeoxygenase-1 (HO-1), and 4-hydroxy-2-hexanal (4-HHE)-modified protein. RESULTS Ischemia/reperfusion-induced cardiac dysfunction was markedly suppressed in CHD rats, compared with the control rats. n-3/n-6 PUFA ratio was significantly increased in both the pre- and post-I/R phase in CHD rats, but not in the controls. Four-HHE-modified protein, Nrf-2, and HO-1 were significantly increased in CHD rats as well, compared with the controls. CONCLUSIONS Following open heart surgery in CHD patients, the increased n-3/n-6 PUFA ratio may lead to the upregulation of cellular antioxidative system components through the oxidation product, 4-HHE, resulting in an increased tolerance to I/R injury.
Collapse
Affiliation(s)
- Dai Asada
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Itoi
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
48
|
Yum HW, Na HK, Surh YJ. Anti-inflammatory effects of docosahexaenoic acid: Implications for its cancer chemopreventive potential. Semin Cancer Biol 2016; 40-41:141-159. [PMID: 27546289 DOI: 10.1016/j.semcancer.2016.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/07/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022]
Abstract
The implication of inflammatory tissue damage in pathophysiology of human cancer as well as some metabolic disorders has been under intense investigation. Numerous studies have identified a series of critical signaling molecules involved in cellular responses to inflammatory stimuli. These include nuclear factor κB, peroxisome proliferator-activated receptor γ, nuclear factor erythroid 2 p45-related factor 2 and sterol regulatory element-binding protein 1. The proper regulation of these transcription factors mediating pro- and anti-inflammatory signaling hence provides an important strategy for the chemoprevention of inflammation-associated cancer. There is compelling evidence supporting that dietary supplementation with fish oil-derived ω-3 polyunsaturated fatty acids including docosahexaenoic acid (DHA) ameliorates symptomatic inflammation associated with cancer as well as other divergent human disorders. Acute or physiologic inflammation is an essential body's first line of defence to microbial infection and tissue injuries, but it must be properly completed by a process termed 'resolution'. Failure of resolution mechanisms can result in persistence of inflammation, leading to chronic inflammatory conditions and related malignancies. The phagocytic engulfment of apoptotic neutrophils and clearance of their potentially histotoxic contents by macrophages, called efferocytosis is an essential component in resolving inflammation. Of note, DHA is a precursor of endogenous proresolving lipid mediators which regulate the leukocyte trafficking and recruitment and thereby facilitate efferocytosis. Therefore, DHA and its metabolites may have a preventive potential in the management of human cancer which arises as a consequence of impaired resolution of inflammation as well as chronic inflammation.
Collapse
Affiliation(s)
- Hye-Won Yum
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Human Ecology, Sungshin Women's University, Seoul, 01133, South Korea.
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea; Cancer Research Institute, Seoul National University, Seoul, 110-744, South Korea.
| |
Collapse
|
49
|
Suzuki-Kemuriyama N, Matsuzaka T, Kuba M, Ohno H, Han SI, Takeuchi Y, Isaka M, Kobayashi K, Iwasaki H, Yatoh S, Suzuki H, Miyajima K, Nakae D, Yahagi N, Nakagawa Y, Sone H, Yamada N, Shimano H. Different Effects of Eicosapentaenoic and Docosahexaenoic Acids on Atherogenic High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice. PLoS One 2016; 11:e0157580. [PMID: 27333187 PMCID: PMC4917109 DOI: 10.1371/journal.pone.0157580] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver damage, such as that from liver cirrhosis and cancer. Recent studies have shown the benefits of consuming n-3 polyunsaturated fatty acids (PUFAs) for the treatment of NAFLD. In the present study, we investigated and compared the effects of the major n-3 PUFAs—eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6)—in preventing atherogenic high-fat (AHF) diet-induced NAFLD. Mice were fed the AHF diet supplemented with or without EPA or DHA for four weeks. Both EPA and DHA reduced the pathological features of AHF diet-induced NASH pathologies such as hepatic lobular inflammation and elevated serum transaminase activity. Intriguingly, EPA had a greater hepatic triacylglycerol (TG)-reducing effect than DHA. In contrast, DHA had a greater suppressive effect than EPA on AHF diet-induced hepatic inflammation and ROS generation, but no difference in fibrosis. Both EPA and DHA could be effective for treatment of NAFLD and NASH. Meanwhile, the two major n-3 polyunsaturated fatty acids might differ in a relative contribution to pathological intermediate steps towards liver fibrosis.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Motoko Kuba
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Song-iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Masaaki Isaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1–754 Asahimachi, Niigata 951–8510, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), 1-7-1, Ohte-machi, Chiyoda-ku, Tokyo, 100–0004, Japan
- * E-mail:
| |
Collapse
|
50
|
Larsson K, Istenič K, Wulff T, Jónsdóttir R, Kristinsson H, Freysdottir J, Undeland I, Jamnik P. Effect of in vitro digested cod liver oil of different quality on oxidative, proteomic and inflammatory responses in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:3096-3106. [PMID: 25504560 DOI: 10.1002/jsfa.7046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Upon oxidation of the polyunsaturated fatty acids in fish oil, either before ingestion or, as recently shown, during the gastro-intestinal passage, a cascade of potentially cytotoxic peroxidation products, such as malondialdehyde and 4-hydroxy-2-hexenal, can form. In this study, we digested fresh and oxidised cod liver oils in vitro, monitored the levels of lipid peroxidation products and evaluated oxidative, proteomic and inflammatory responses to the two types of digests in the yeast Saccharomyces cerevisiae and human monocyte-derived dendritic cells. RESULTS Digests of cod liver oil with 22-53 µmol L(-1) malondialdehyde and 0.26-3.7 µmol L(-1) 4-hydroxy-2-hexenal increased intracellular oxidation and cell energy metabolic activity compared to a digested blank in yeast cells and the influence of digests on mitochondrial protein expression was more pronounced for oxidised cod liver oil than fresh cod liver oil. The four differentially expressed and identified proteins were related to energy metabolism and oxidative stress response. Maturation of dendritic cells was affected in the presence of digested fresh cod liver oil compared to the digested blank, measured as lower CD86 expression. The ratio of secreted cytokines, IL-12p40/IL-10, suggested a pro-inflammatory effect of the digested oils in relation to the blank (1.47-1.67 vs. 1.07). CONCLUSION Gastro-intestinal digestion of cod liver oil increases the amount of oxidation products and resulting digests affect oxidation in yeast and immunomodulation of dendritic cells.
Collapse
Affiliation(s)
- Karin Larsson
- Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katja Istenič
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tune Wulff
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Jona Freysdottir
- Department of Immunology and Centre for Rheumatology Research, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Ingrid Undeland
- Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Polona Jamnik
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|