1
|
Moeini S, Mohebbi A, Farahmand B, Mehrbod P, Fotouhi F. Phylogenetic analysis and docking study of neuraminidase gene of influenza A/H1N1 viruses circulating in Iran from 2010 to 2019. Virus Res 2023; 334:199182. [PMID: 37490957 PMCID: PMC10407273 DOI: 10.1016/j.virusres.2023.199182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
Influenza A viruses (H1N1) have been consistently one of the most evolving viruses that escape from vaccine-induced immunity. Although there has been a rapid rise in human influenza virus knowledge since the 2009 pandemic, the molecular information about Iranian strains is still inadequate. The aim of this study was to analyze the neuraminidase (NA) segment of the Iranian isolates in terms of phylogenetic, antiviral resistance, and vaccine efficiency. Ninety-three NA sequences collected among 1758 nasopharyngeal swab samples during the 2015-2016 influenza season were sequenced and submitted to NCBI. Moreover, all the submitted Iranian influenza H1N1 NA sequences since 2010 till 2019 were included in the study. Software including MEGA-X, MODELLER, UCSF ChimeraX, Auto-Dock 4.2, and other online tools were used to analyze the phylogenetic relationship, vaccine efficiency, and binding affinity to sialic acid of the selected NA proteins. Moreover, the information about antiviral drug resistance mutations of NA were gathered and compared to the Iranian NA segments to check the presence of antiviral drug-resistant strains. The phylogenetic study showed that most Iranian NA sequences (between 2015 and 2016) were located in a single clade and following years were located in its subclade by 3 major mutations (G77R/K, V81A, and J188T). Resistant mutations in drug targets of NA including I117M, D151E, I223V, and S247N were ascertained in 10 isolates during the 2015-2016 flu seasons. Investigation of vaccination effect revealed that Iranian isolates in 2017 and 2018 were best matched to A/Brisbane/02/2018 (H1N1), and in 2019 to A/Guangdong-Maonan/SWL1536/2019 (H1N1). Furthermore, we performed an in-silico analysis of NA enzymatic activity of all Iranian sequences by assessment of enzyme stability, ligand affinity, and active site availability. Overall, the enzyme activity of four Iranian strains (AUG84119, AUG84157, AUG84095, and AUG84100) was assumed as the maximum enzyme activity. This study highlighted the evolutionary trend of influenza A virus/H1N1 circulating in Iran, which provides a preliminary viewpoint for a better comprehension of new emerging strains' virulence and thus, more appropriate monitoring of influenza virus A/H1N1 during each outbreak season.
Collapse
Affiliation(s)
- Sina Moeini
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Atefeh Mohebbi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Rigby CV, Sabsay KR, Bisht K, Eggink D, Jalal H, te Velthuis AJW. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. Virus Evol 2023; 9:vead056. [PMID: 37692892 PMCID: PMC10492445 DOI: 10.1093/ve/vead056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consist of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so-called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the influenza B virus genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte V Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Kimberly R Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Carl Icahn Laboratory, Lewis-Sigler Institute, Princeton University, South Drive, Princeton, NJ 08544, USA
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Hamid Jalal
- Addenbrooke’s Hospital, Public Health England, Hills Road, Cambridge CB2 2QQ, UK
| | - Aartjan J W te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven 3721 MA, the Netherlands
| |
Collapse
|
3
|
Rigby C, Sabsay K, Bisht K, Eggink D, Jalal H, te Velthuis AJ. Evolution of transient RNA structure-RNA polymerase interactions in respiratory RNA virus genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542331. [PMID: 37292879 PMCID: PMC10245964 DOI: 10.1101/2023.05.25.542331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA viruses are important human pathogens that cause seasonal epidemics and occasional pandemics. Examples are influenza A viruses (IAV) and coronaviruses (CoV). When emerging IAV and CoV spill over to humans, they adapt to evade immune responses and optimize their replication and spread in human cells. In IAV, adaptation occurs in all viral proteins, including the viral ribonucleoprotein (RNP) complex. RNPs consists of a copy of the viral RNA polymerase, a double-helical coil of nucleoprotein, and one of the eight segments of the IAV RNA genome. The RNA segments and their transcripts are partially structured to coordinate the packaging of the viral genome and modulate viral mRNA translation. In addition, RNA structures can affect the efficiency of viral RNA synthesis and the activation of host innate immune response. Here, we investigated if RNA structures that modulate IAV replication processivity, so called template loops (t-loops), vary during the adaptation of pandemic and emerging IAV to humans. Using cell culture-based replication assays and in silico sequence analyses, we find that the sensitivity of the IAV H3N2 RNA polymerase to t-loops increased between isolates from 1968 and 2017, whereas the total free energy of t-loops in the IAV H3N2 genome was reduced. This reduction is particularly prominent in the PB1 gene. In H1N1 IAV, we find two separate reductions in t-loop free energy, one following the 1918 pandemic and one following the 2009 pandemic. No destabilization of t-loops is observed in the IBV genome, whereas analysis of SARS-CoV-2 isolates reveals destabilization of viral RNA structures. Overall, we propose that a loss of free energy in the RNA genome of emerging respiratory RNA viruses may contribute to the adaption of these viruses to the human population.
Collapse
Affiliation(s)
- Charlotte Rigby
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- University of Cambridge, Department of Pathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Kimberly Sabsay
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
- Sigler Institute, Princeton University, Princeton, NJ 08544, United States
| | - Karishma Bisht
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hamid Jalal
- Public Health England, Addenbrooke’s Hospital, Cambridge CB2 2QQ, United Kingdom
| | - Aartjan J.W. te Velthuis
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, 08544 New Jersey, United States
| |
Collapse
|
4
|
Fantini J, Azzaz F, Chahinian H, Yahi N. Electrostatic Surface Potential as a Key Parameter in Virus Transmission and Evolution: How to Manage Future Virus Pandemics in the Post-COVID-19 Era. Viruses 2023; 15:284. [PMID: 36851498 PMCID: PMC9964723 DOI: 10.3390/v15020284] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Virus-cell interactions involve fundamental parameters that need to be considered in strategies implemented to control viral outbreaks. Among these, the surface electrostatic potential can give valuable information to deal with new epidemics. In this article, we describe the role of this key parameter in the hemagglutination of red blood cells and in the co-evolution of synaptic receptors and neurotransmitters. We then establish the functional link between lipid rafts and the electrostatic potential of viruses, with special emphasis on gangliosides, which are sialic-acid-containing, electronegatively charged plasma membrane components. We describe the common features of ganglioside binding domains, which include a wide variety of structures with little sequence homology but that possess key amino acids controlling ganglioside recognition. We analyze the role of the electrostatic potential in the transmission and intra-individual evolution of HIV-1 infections, including gatekeeper and co-receptor switch mechanisms. We show how to organize the epidemic surveillance of influenza viruses by focusing on mutations affecting the hemagglutinin surface potential. We demonstrate that the electrostatic surface potential, by modulating spike-ganglioside interactions, controls the hemagglutination properties of coronaviruses (SARS-CoV-1, MERS-CoV, and SARS-CoV-2) as well as the structural dynamics of SARS-CoV-2 evolution. We relate the broad-spectrum antiviral activity of repositioned molecules to their ability to disrupt virus-raft interactions, challenging the old concept that an antibiotic or anti-parasitic cannot also be an antiviral. We propose a new concept based on the analysis of the electrostatic surface potential to develop, in real time, therapeutic and vaccine strategies adapted to each new viral epidemic.
Collapse
Affiliation(s)
- Jacques Fantini
- Department of Biology, Faculty of Medicine, University of Aix-Marseille, INSERM UMR_S 1072, 13015 Marseille, France
| | | | | | | |
Collapse
|
5
|
Yang G, Ojha CR, Russell CJ. Relationship between hemagglutinin stability and influenza virus persistence after exposure to low pH or supraphysiological heating. PLoS Pathog 2021; 17:e1009910. [PMID: 34478484 PMCID: PMC8445419 DOI: 10.1371/journal.ppat.1009910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/16/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
The hemagglutinin (HA) surface glycoprotein is triggered by endosomal low pH to cause membrane fusion during influenza A virus (IAV) entry yet must remain sufficiently stable to avoid premature activation during virion transit between cells and hosts. HA activation pH and/or virion inactivation pH values less than pH 5.6 are thought to be required for IAV airborne transmissibility and human pandemic potential. To enable higher-throughput screening of emerging IAV strains for "humanized" stability, we developed a luciferase reporter assay that measures the threshold pH at which IAVs are inactivated. The reporter assay yielded results similar to TCID50 assay yet required one-fourth the time and one-tenth the virus. For four A/TN/09 (H1N1) HA mutants and 73 IAVs of varying subtype, virion inactivation pH was compared to HA activation pH and the rate of inactivation during 55°C heating. HA stability values correlated highly with virion acid and thermal stability values for isogenic viruses containing HA point mutations. HA stability also correlated with virion acid stability for human isolates but did not correlate with thermal stability at 55°C, raising doubt in the use of supraphysiological heating assays. Some animal isolates had virion inactivation pH values lower than HA activation pH, suggesting factors beyond HA stability can modulate virion stability. The coupling of HA activation pH and virion inactivation pH, and at a value below 5.6, was associated with human adaptation. This suggests that both virologic properties should be considered in risk assessment algorithms for pandemic potential.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Chet R Ojha
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.,Department of Microbiology, Immunology & Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
6
|
Russell CJ. Hemagglutinin Stability and Its Impact on Influenza A Virus Infectivity, Pathogenicity, and Transmissibility in Avians, Mice, Swine, Seals, Ferrets, and Humans. Viruses 2021; 13:746. [PMID: 33923198 PMCID: PMC8145662 DOI: 10.3390/v13050746] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Genetically diverse influenza A viruses (IAVs) circulate in wild aquatic birds. From this reservoir, IAVs sporadically cause outbreaks, epidemics, and pandemics in wild and domestic avians, wild land and sea mammals, horses, canines, felines, swine, humans, and other species. One molecular trait shown to modulate IAV host range is the stability of the hemagglutinin (HA) surface glycoprotein. The HA protein is the major antigen and during virus entry, this trimeric envelope glycoprotein binds sialic acid-containing receptors before being triggered by endosomal low pH to undergo irreversible structural changes that cause membrane fusion. The HA proteins from different IAV isolates can vary in the pH at which HA protein structural changes are triggered, the protein causes membrane fusion, or outside the cell the virion becomes inactivated. HA activation pH values generally range from pH 4.8 to 6.2. Human-adapted HA proteins tend to have relatively stable HA proteins activated at pH 5.5 or below. Here, studies are reviewed that report HA stability values and investigate the biological impact of variations in HA stability on replication, pathogenicity, and transmissibility in experimental animal models. Overall, a stabilized HA protein appears to be necessary for human pandemic potential and should be considered when assessing human pandemic risk.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| |
Collapse
|
7
|
Escalera-Zamudio M, Golden M, Gutiérrez B, Thézé J, Keown JR, Carrique L, Bowden TA, Pybus OG. Parallel evolution in the emergence of highly pathogenic avian influenza A viruses. Nat Commun 2020; 11:5511. [PMID: 33139731 PMCID: PMC7608645 DOI: 10.1038/s41467-020-19364-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/12/2020] [Indexed: 01/30/2023] Open
Abstract
Parallel molecular evolution and adaptation are important phenomena commonly observed in viruses. Here, we exploit parallel molecular evolution to understand virulence evolution in avian influenza viruses (AIV). Highly-pathogenic AIVs evolve independently from low-pathogenic ancestors via acquisition of polybasic cleavage sites. Why some AIV lineages but not others evolve in this way is unknown. We hypothesise that the parallel emergence of highly-pathogenic AIV may be facilitated by permissive or compensatory mutations occurring across the viral genome. We combine phylogenetic, statistical and structural approaches to discover parallel mutations in AIV genomes associated with the highly-pathogenic phenotype. Parallel mutations were screened using a statistical test of mutation-phenotype association and further evaluated in the contexts of positive selection and protein structure. Our resulting mutational panel may help to reveal new links between virulence evolution and other traits, and raises the possibility of predicting aspects of AIV evolution.
Collapse
Affiliation(s)
| | - Michael Golden
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | | | - Julien Thézé
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK
| | - Jeremy Russell Keown
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, Oxford, OX3 7BN, UK
| | - Oliver G Pybus
- Department of Zoology, Oxford University, Parks Rd, Oxford, OX1 3PS, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
8
|
Mohebbi A, Fotouhi F, Jamali A, Yaghobi R, Farahmand B, Mohebbi R. Molecular epidemiology of the hemagglutinin gene of prevalent influenza virus A/H1N1/pdm09 among patient in Iran. Virus Res 2018; 259:38-45. [PMID: 30336188 DOI: 10.1016/j.virusres.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
In 2015, the influenza virus A/H1N1/pdm09 strain outbreak became prevalent throughout the different provinces of Iran. There are relatively limited complete genetic sequences available for this virus from Asian countries. Diagnosis and virological surveillance of influenza is essential for detecting novel genetic variants causing epidemic potential. This study describes the genetic properties of HA genome of influenza A/H1N1 pdm09 viruses circulating in Iran during the 2015/2016 season. In order to investigate the genetic pattern of influenza A/H1N1 pdm09, a total of 1758 nasopharyngeal swabs were screened by real-time RT-PCR. Of those, 510 cases were found to be positive for A/H1N1/pdm09 virus. Evolution of the approximately 100 positive specimens with high virus load was conducted via genomic phylogeny. Phylogenetic analysis of the HA genes of the A/H1N1pdm09 viruses revealed the circulation of clade 6B1, characterized by amino acid substitutions S84N, S162N and I216T, where position 162 became glycosylated. The N-glycosylation of HA protein is post or co-translational modification that affect the evolution of influenza viruses. For influenza A(H1N1) pdm09 viruses, we found more mutations in the antigenic sites than in the stem region. The results of this study confirmed the necessity of constant regular antigenic and molecular surveillance of circulating seasonal influenza viruses.
Collapse
Affiliation(s)
- Atefeh Mohebbi
- Department of Microbiology, College of Science Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Fatemeh Fotouhi
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| | - Abbas Jamali
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Behrokh Farahmand
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Abstract
This chapter makes the case against performing exceptionally dangerous gain-of-function experiments that are designed to create potentially pandemic and novel strains of influenza, for example, by enhancing the airborne transmissibility in mammals of highly virulent avian influenza strains. This is a question of intense debate over the last 5 years, though the history of such experiments goes back at least to the synthesis of viable influenza A H1N1 (1918) based on material preserved from the 1918 pandemic. This chapter makes the case that experiments to create potential pandemic pathogens (PPPs) are nearly unique in that they present biosafety risks that extend well beyond the experimenter or laboratory performing them; an accidental release could, as the name suggests, lead to global spread of a virulent virus, a biosafety incident on a scale never before seen. In such cases, biosafety considerations should be uppermost in the consideration of alternative approaches to experimental objectives and design, rather than being settled after the fact, as is appropriately done for most research involving pathogens. The extensive recent discussion of the magnitude of risks from such experiments is briefly reviewed. The chapter argues that, while there are indisputably certain questions that can be answered only by gain-of-function experiments in highly pathogenic strains, these questions are narrow and unlikely to meaningfully advance public health goals such as vaccine production and pandemic prediction. Alternative approaches to experimental influenza virology and characterization of existing strains are in general completely safe, higher throughput, more generalizable, and less costly than creation of PPP in the laboratory and can thereby better inform public health. Indeed, virtually every finding of recent PPP experiments that has been cited for its public health value was predated by similar findings using safe methodologies. The chapter concludes that the unique scientific and public health value of PPP experiments is inadequate to justify the unique risks they entail and that researchers would be well-advised to turn their talents to other methodologies that will be safe and more rewarding scientifically.
Collapse
Affiliation(s)
- Marc Lipsitch
- Departments of Epidemiology and Immunology and Infectious Diseases, Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Anderson CS, Ortega S, Chaves FA, Clark AM, Yang H, Topham DJ, DeDiego ML. Natural and directed antigenic drift of the H1 influenza virus hemagglutinin stalk domain. Sci Rep 2017; 7:14614. [PMID: 29097696 PMCID: PMC5668287 DOI: 10.1038/s41598-017-14931-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/18/2017] [Indexed: 12/02/2022] Open
Abstract
The induction of antibodies specific for the influenza HA protein stalk domain is being pursued as a universal strategy against influenza virus infections. However, little work has been done looking at natural or induced antigenic variability in this domain and the effects on viral fitness. We analyzed human H1 HA head and stalk domain sequences and found substantial variability in both, although variability was highest in the head region. Furthermore, using human immune sera from pandemic A/California/04/2009 immune subjects and mAbs specific for the stalk domain, viruses were selected in vitro containing mutations in both domains that partially contributed to immune evasion. Recombinant viruses encoding amino acid changes in the HA stalk domain replicated well in vitro, and viruses incorporating two of the stalk mutations retained pathogenicity in vivo. These findings demonstrate that the HA protein stalk domain can undergo limited drift under immune pressure and the viruses can retain fitness and virulence in vivo, findings which are important to consider in the context of vaccination targeting this domain.
Collapse
Affiliation(s)
- Christopher S Anderson
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Sandra Ortega
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Francisco A Chaves
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Amelia M Clark
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, United States
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States.
| | - Marta L DeDiego
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, Rochester, NY, United States.
| |
Collapse
|
11
|
Wörmann X, Lesch M, Welke RW, Okonechnikov K, Abdurishid M, Sieben C, Geissner A, Brinkmann V, Kastner M, Karner A, Zhu R, Hinterdorfer P, Anish C, Seeberger PH, Herrmann A, Meyer TF, Karlas A. Genetic characterization of an adapted pandemic 2009 H1N1 influenza virus that reveals improved replication rates in human lung epithelial cells. Virology 2016; 492:118-29. [PMID: 26914510 DOI: 10.1016/j.virol.2016.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/03/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
The 2009 influenza pandemic originated from a swine-origin H1N1 virus, which, although less pathogenic than anticipated, may acquire additional virulence-associated mutations in the future. To estimate the potential risk, we sequentially passaged the isolate A/Hamburg/04/2009 in A549 human lung epithelial cells. After passage 6, we observed a 100-fold increased replication rate. High-throughput sequencing of viral gene segments identified five dominant mutations, whose contribution to the enhanced growth was analyzed by reverse genetics. The increased replication rate was pinpointed to two mutations within the hemagglutinin (HA) gene segment (HA1 D130E, HA2 I91L), near the receptor binding site and the stem domain. The adapted virus also replicated more efficiently in mice in vivo. Enhanced replication rate correlated with increased fusion pH of the HA protein and a decrease in receptor affinity. Our data might be relevant for surveillance of pre-pandemic strains and development of high titer cell culture strains for vaccine production.
Collapse
Affiliation(s)
- Xenia Wörmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Markus Lesch
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee, Germany
| | - Robert-William Welke
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, Germany
| | - Konstantin Okonechnikov
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mirshat Abdurishid
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Christian Sieben
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, Germany
| | - Andreas Geissner
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Free University, Berlin, Germany
| | - Volker Brinkmann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Markus Kastner
- Institute for Biophysics, Johannes Kepler University, Linz, Austria
| | - Andreas Karner
- Center for Advanced Bioanalysis GmbH (CBL), Linz, Austria
| | - Rong Zhu
- Institute for Biophysics, Johannes Kepler University, Linz, Austria
| | | | - Chakkumkal Anish
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department for Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany; Institute of Chemistry and Biochemistry, Free University, Berlin, Germany
| | - Andreas Herrmann
- Department of Biology, Molecular Biophysics, IRI Life Sciences, Humboldt-Universität zu Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee, Germany.
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Steinbeis Innovation gGmbH, Center for Systems Biomedicine, Falkensee, Germany.
| |
Collapse
|
12
|
Wedde M, Biere B, Wolff T, Schweiger B. Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008-2009 and 2013-2014 in Germany. Int J Med Microbiol 2015; 305:762-75. [PMID: 26416089 DOI: 10.1016/j.ijmm.2015.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This report describes the evolution of the influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in Germany between 2008-2009 and 2013-2014. The phylogenetic analysis of the hemagglutinin (HA) genes of both subtypes revealed similar evolution of the HA variants that were also seen worldwide with minor exceptions. The analysis showed seven distinct HA clades for A(H1N1)pdm09 and six HA clades for A(H3N2) viruses. Herald strains of both subtypes appeared sporadically since 2008-2009. Regarding A(H1N1)pdm09, herald strains of HA clade 3 and 4 were detected late in the 2009-2010 season. With respect to A(H3N2), we found herald strains of HA clade 3, 4 and 7 between 2009 and 2012. Those herald strains were predominantly seen for minor and not for major HA clades. Generally, amino acid substitutions were most frequently found in the globular domain, including substitutions near the antigenic sites or the receptor binding site. Differences between both influenza A subtypes were seen with respect to the position of the indicated substitutions in the HA. For A(H1N1)pdm09 viruses, we found more substitutions in the stem region than in the antigenic sites. In contrast, in A(H3N2) viruses most changes were identified in the major antigenic sites and five changes of potential glycosylation sites were identified in the head of the HA monomer. Interestingly, we found in seasons with less influenza activity a relatively high increase of substitutions in the head of the HA in both subtypes. This might be explained by the fact that mutations under negative selection are subsequently compensated by secondary mutations to restore important functions e.g. receptor binding properties. A better knowledge of basic evolution strategies of influenza viruses will contribute to the refinement of predictive mathematical models for identifying novel antigenic drift variants.
Collapse
Affiliation(s)
- Marianne Wedde
- Division of Influenza Viruses and other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Barbara Biere
- Division of Influenza Viruses and other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Thorsten Wolff
- Division of Influenza Viruses and other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany
| | - Brunhilde Schweiger
- Division of Influenza Viruses and other Respiratory Viruses, National Reference Centre for Influenza, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany.
| |
Collapse
|
13
|
Castelán-Vega JA, Magaña-Hernández A, Jiménez-Alberto A, Ribas-Aparicio RM. The hemagglutinin of the influenza A(H1N1)pdm09 is mutating towards stability. Adv Appl Bioinform Chem 2014; 7:37-44. [PMID: 25328411 PMCID: PMC4198066 DOI: 10.2147/aabc.s68934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The last influenza A pandemic provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates since the beginning of the pandemic until date, we could monitor amino acid changes that occurred in the hemagglutinin (HA) as the virus spread worldwide and became the dominant H1N1 strain. HA is crucial to viral infection because it binds to sialidated cell-receptors and mediates fusion of cell and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. Multiple alignment analysis of sequences of the HA from isolates taken since 2009 to date allowed us to find amino acid changes that were positively selected as the pandemic progressed. We found nine changes that became prevalent: HA1 subunits D104N, K166Q, S188T, S206T, A259T, and K285E; and HA2 subunits E47K, S124N, and E172K. Most of these changes were located in areas involved in inter- and intrachain interactions, while only two (K166Q and S188T) were located in known antigenic sites. We conclude that selective pressure on HA was aimed to improve its functionality and hence virus fitness, rather than at avoidance of immune recognition.
Collapse
Affiliation(s)
- Juan A Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Anastasia Magaña-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
14
|
Yoo E. Conformation and Linkage Studies of Specific Oligosaccharides Related to H1N1, H5N1, and Human Flu for Developing the Second Tamiflu. Biomol Ther (Seoul) 2014; 22:93-9. [PMID: 24753813 PMCID: PMC3975476 DOI: 10.4062/biomolther.2014.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022] Open
Abstract
The interaction between viral HA (hemagglutinin) and oligosaccharide of the host plays an important role in the infection and transmission of avian and human flu viruses. Until now, this interaction has been classified by sialyl(α2-3) or sialyl(α2-6) linkage specificity of oligosaccharide moieties for avian or human virus, respectively. In the case of H5N1 and newly mutated flu viruses, classification based on the linkage type does not correlate with human infection and human-to-human transmission of these viruses. It is newly suggested that flu infection and transmission to humans require high affinity binding to the extended conformation with long length sialyl(α2-6)galactose containing oligosaccharides. On the other hand, the avian flu virus requires folded conformation with sialyl(α2-3) or short length sialyl(α2-6) containing trisaccharides. This suggests a potential future direction for the development of new species-specific antiviral drugs to prevent and treat pandemic flu.
Collapse
Affiliation(s)
- Eunsun Yoo
- College of Health Science, Honam University, Gwangju 506-714, Republic of Korea
| |
Collapse
|
15
|
Abstract
Please see later in the article for the Editors' Summary
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Alison P. Galvani
- Department of Epidemiology (Microbial Diseases), Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Abstract
UNLABELLED The noncovalent interactions that mediate trimerization of the influenza hemagglutinin (HA) are important determinants of its biological activities. Recent studies have demonstrated that mutations in the HA trimer interface affect the thermal and pH sensitivities of HA, suggesting a possible impact on vaccine stability (). We used size exclusion chromatography analysis of recombinant HA ectodomain to compare the differences among recombinant trimeric HA proteins from early 2009 pandemic H1N1 viruses, which dissociate to monomers, with those of more recent virus HAs that can be expressed as trimers. We analyzed differences among the HA sequences and identified intermolecular interactions mediated by the residue at position 374 (HA0 numbering) of the HA2 subdomain as critical for HA trimer stability. Crystallographic analyses of HA from the recent H1N1 virus A/Washington/5/2011 highlight the structural basis for this observed phenotype. It remains to be seen whether more recent viruses with this mutation will yield more stable vaccines in the future. IMPORTANCE Hemagglutinins from the early 2009 H1N1 pandemic viruses are unable to maintain a trimeric complex when expressed in a recombinant system. However, HAs from 2010 and 2011 strains are more stable, and our work highlights that the improvement in stability can be attributed to an E374K substitution in the HA2 subunit of the stalk that emerged naturally in the circulating viruses.
Collapse
|