1
|
Li JJ, Xin N, Yang C, Tavizon LA, Hong R, Park J, Moore TI, Tharyan RG, Antebi A, Kim HE. Unveiling the Intercompartmental Signaling Axis: Mitochondrial to ER Stress Response (MERSR) and its Impact on Proteostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.07.556674. [PMID: 38187690 PMCID: PMC10769184 DOI: 10.1101/2023.09.07.556674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Maintaining protein homeostasis is essential for cellular health. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response, activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPR ER ), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPR ER is inhibited, introducing a previously unknown regulatory component of MCSR. Moreover, proteostasis is enhanced through the upregulation of the PERK-eIF2α signaling pathway, increasing phosphorylation of eIF2α and improving the ER's ability to handle proteostasis. MERSR activation in both polyglutamine and amyloid-beta peptide-expressing C. elegans disease models also led to improvement in both aggregate burden and overall disease outcome. These findings shed light on the coordination between the mitochondria and the ER in maintaining cellular proteostasis and provide further evidence for the importance of intercompartmental signaling.
Collapse
|
2
|
Scholz J, Rudt E, Gremme A, Gaßmöller Née Wienken CM, Bornhorst J, Hayen H. Hyphenation of supercritical fluid chromatography and trapped ion mobility-mass spectrometry for quantitative lipidomics. Anal Chim Acta 2024; 1317:342913. [PMID: 39030025 DOI: 10.1016/j.aca.2024.342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Lipidomics studies require rapid separations with accurate and reliable quantification results to further elucidate the role of lipids in biological processes and their biological functions. Supercritical fluid chromatography (SFC), in particular, can provide this rapid and high-resolution separation. The combination with trapped ion mobility spectrometry (TIMS) has not yet been applied, although the post-ionization separation method in combination with liquid chromatography or imaging techniques has already proven itself in resolving isomeric and isobaric lipids and preventing false identifications. However, a multidimensional separation method should not only allow confident identification but also provide quantitative results to substantiate studies with absolute concentrations. RESULTS A SFC method was developed and the hyphenation of SFC and TIMS was further explored towards the separation of different isobaric overlaps. Furthermore, lipid identification was performed using mass spectrometry (MS) and parallel accumulation serial fragmentation (PASEF) MS/MS experiments in addition to retention time and collision cross section (CCS). Quantification was further investigated with short TIMS ramps and performed based on the ion mobility signal of lipids, since TIMS increases the sensitivity by noise filtering. The final method was, as an exemplary study, applied to investigate the function of different ceramide synthases (CerS) in the nematode and model organism Caenorhabditis elegans (C. elegans). Loss of three known CerS hyl-1, hyl-2 and lagr-1 demonstrated different influences on and alterations in the sphingolipidome. SIGNIFICANCE This method describes for the first time the combination of SFC and TIMS-MS/MS, which enables a fast and sensitive quantification of lipids. The results of the application to C. elegans samples prove the functionality of the method and support research on the metabolism of sphingolipids in nematodes.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Edward Rudt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany
| | - Anna Gremme
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
| | | | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 48, 48149, Münster, Germany.
| |
Collapse
|
3
|
Lasher AT, Wang L, Hyun J, Summers SA, Sun LY. Unveiling ceramide dynamics: Shedding light on healthy aging in growth hormone-releasing hormone knockout mice. Aging Cell 2024; 23:e14226. [PMID: 38808779 PMCID: PMC11320351 DOI: 10.1111/acel.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Dysregulation of growth hormone (GH) signaling consistently leads to increased lifespan in laboratory rodents, yet the precise mechanisms driving this extension remain unclear. Understanding the molecular underpinnings of the beneficial effects associated with GH deficiency could unveil novel therapeutic targets for promoting healthy aging and longevity. In our pursuit of identifying metabolites implicated in aging, we conducted an unbiased lipidomic analysis of serum samples from growth hormone-releasing hormone knockout (GHRH-KO) female mice and their littermate controls. Employing a targeted lipidomic approach, we specifically investigated ceramide levels in GHRH-KO mice, a well-established model of enhanced longevity. While younger GHRH-KO mice did not exhibit notable differences in serum lipids, older counterparts demonstrated significant reductions in over one-third of the evaluated lipids. In employing the same analysis in liver tissue, GHRH-KO mice showed pronounced downregulation of numerous ceramides and hexosylceramides, which have been shown to elicit many of the tissue defects that accompany aging (e.g., insulin resistance, oxidative stress, and cell death). Additionally, gene expression analysis in the liver tissue of adult GHRH-KO mice identified substantial decreases in several ceramide synthesis genes, indicating that these alterations are, at least in part, attributed to GHRH-KO-induced transcriptional changes. These findings provide the first evidence of disrupted ceramide metabolism in a long-lived mammal. This study sheds light on the intricate connections between GH deficiency, ceramide levels, and the molecular mechanisms influencing lifespan extension.
Collapse
Affiliation(s)
| | - Liping Wang
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Jooyoung Hyun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Scott A. Summers
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Liou Y. Sun
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Luo H, Zhao X, Wang ZD, Wu G, Xia Y, Dong MQ, Ma Y. Sphingolipid profiling reveals differential functions of sphingolipid biosynthesis isozymes of Caenorhabditis elegans. J Lipid Res 2024; 65:100553. [PMID: 38704027 PMCID: PMC11153919 DOI: 10.1016/j.jlr.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Multiple isozymes are encoded in the Caenorhabditis elegans genome for the various sphingolipid biosynthesis reactions, but the contributions of individual isozymes are characterized only in part. We developed a simple but effective reversed-phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method that enables simultaneous identification and quantification of ceramides (Cer), glucosylceramides (GlcCer), and sphingomyelins (SM) from the same MS run. Validating this sphingolipid profiling method, we show that nearly all 47 quantifiable sphingolipid species found in young adult worms were reduced upon RNA interference (RNAi) of sptl-1 or elo-5, which are both required for synthesis of the id17:1 sphingoid base. We also confirm that HYL-1 and HYL-2, but not LAGR-1, constitute the major ceramide synthase activity with different preference for fatty acid substrates, and that CGT-3, but not CGT-1 and CGT-2, plays a major role in producing GlcCers. Deletion of sms-5 hardly affected SM levels. RNAi of sms-1, sms-2, and sms-3 all lowered the abundance of certain SMs with an odd-numbered N-acyl chains (mostly C21 and C23, with or without hydroxylation). Unexpectedly, sms-2 RNAi and sms-3 RNAi elevated a subset of SM species containing even-numbered N-acyls. This suggests that sphingolipids containing even-numbered N-acyls could be regulated separately, sometimes in opposite directions, from those containing odd-numbered N-acyls, which are presumably monomethyl branched chain fatty acyls. We also find that ceramide levels are kept in balance with those of GlcCers and SMs. These findings underscore the effectiveness of this RPLC-MS/MS method in studies of C. elegans sphingolipid biology.
Collapse
Affiliation(s)
- Hui Luo
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Zi-Dan Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences (NIBS), Beijing, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Meng-Qiu Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Yan Ma
- National Institute of Biological Sciences (NIBS), Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Zhu H, You Y, Yu B, Deng Z, Liu M, Hu Z, Duan J. Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition. J Biol Chem 2024; 300:107320. [PMID: 38677510 PMCID: PMC11145541 DOI: 10.1016/j.jbc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d17:1/C20∼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d18:1-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d18:1/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Collapse
Affiliation(s)
- Huaiyi Zhu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yunfei You
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Boming Yu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhitao Deng
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Watzinger G, Bennett HL. Ceramide Synthase HYL-2 is Required for Neural Preconditioning to Anoxia in Caenorhabditis elegans . MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001024. [PMID: 38872843 PMCID: PMC11170290 DOI: 10.17912/micropub.biology.001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Oxygen is vital for neuron development and function, and low oxygen (hypoxia) or 0% oxygen available (anoxia) conditions lead to neuronal dysfunction and death. Nonlethal forms of stress, prior to hypoxic or anoxic (preconditioning) environments protects neurons and increases survival to oxygen deprivation. Hyperpolarization of C. elegans neurons prior to anoxia (neural preconditioning) increases survival, but the cellular and molecular pathways that confer survival are unclear. Here we report that loss in ceramide synthase gene, hyl-2 suppresses increased survival to anoxia in neural preconditioned animals, suggesting that HYL-2 functions upstream of the circuit that regulates neural preconditioning.
Collapse
Affiliation(s)
- Ginger Watzinger
- Department of Biology, Trinity College, Hartford, Connecticut, United States
| | - Heather L Bennett
- Department of Biology, Trinity College, Hartford, Connecticut, United States
| |
Collapse
|
7
|
Chen Q, Kovilakath A, Allegood J, Thompson J, Hu Y, Cowart LA, Lesnefsky EJ. Endoplasmic reticulum stress and mitochondrial dysfunction during aging: Role of sphingolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159366. [PMID: 37473835 PMCID: PMC11154090 DOI: 10.1016/j.bbalip.2023.159366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
The endoplasmic reticulum (ER) plays a key role in the regulation of protein folding, lipid synthesis, calcium homeostasis, and serves as a primary site of sphingolipid biosynthesis. ER stress (ER dysfunction) participates in the development of mitochondrial dysfunction during aging. Mitochondria are in close contact with the ER through shared mitochondria associated membranes (MAM). Alteration of sphingolipids contributes to mitochondria-driven cell injury. Cardiolipin is a phospholipid that is critical to maintain enzyme activity in the electron transport chain. The aim of the current study was to characterize the changes in sphingolipids and cardiolipin in ER, MAM, and mitochondria during the progression of aging in young (3 mo.), middle (18 mo.), and aged (24 mo.) C57Bl/6 mouse hearts. ER stress increased in hearts from 18 mo. mice and mice exhibited mitochondrial dysfunction by 24 mo. Hearts were pooled to isolate ER, MAM, and subsarcolemmal mitochondria (SSM). LC-MS/MS quantification of lipid content showed that aging increased ceramide content in ER and MAM. In addition, the contents of sphingomyelin and monohexosylceramides are also increased in the ER from aged mice. Aging increased the total cardiolipin content in the ER. Aging did not alter the total cardiolipin content in mitochondria or MAM yet altered the composition of cardiolipin with aging in line with increased oxidative stress compared to young mice. These results indicate that alteration of sphingolipids can contribute to the ER stress and mitochondrial dysfunction that occurs during aging.
Collapse
Affiliation(s)
- Qun Chen
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Anna Kovilakath
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Jeremy Thompson
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ying Hu
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America
| | - Edward J Lesnefsky
- Department of Medicine (Division of Cardiology), Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Richmond Department of Veterans Affairs Medical Center, Richmond, VA 23249, United States of America.
| |
Collapse
|
8
|
Xatse MA, Olsen CP. Defining the glucosylceramide population of C. elegans. Front Physiol 2023; 14:1244158. [PMID: 37772059 PMCID: PMC10524606 DOI: 10.3389/fphys.2023.1244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Glucosylceramides (GlcCer) are lipids that impact signaling pathways, serve as critical components of cellular membranes, and act as precursors for hundreds of other complex glycolipid species. Abnormal GlcCer metabolism is linked to many diseases, including cancers, diabetes, Gaucher disease, neurological disorders, and skin disorders. A key hurdle to fully understanding the role of GlcCer in disease is the development of methods to accurately detect and quantify these lipid species in a model organism. This will allow for the dissection of the role of this pool in vivo with a focus on all the individual types of GlcCer. In this review, we will discuss the analysis of the GlcCer population specifically in the nematode Caenorhabditis elegans, focusing on the mass spectrometry-based methods available for GlcCer quantification. We will also consider the combination of these approaches with genetic interrogation of GlcCer metabolic genes to define the biological role of these unique lipids. Furthermore, we will explore the implications and obstacles for future research.
Collapse
Affiliation(s)
| | - Carissa Perez Olsen
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
9
|
Guzman GG, Farley S, Kyle JE, Bramer LM, Hoeltzl S, van den Dikkenberg J, Holthuis JCM, Tafesse FG. Systematic analysis of the sphingomyelin synthase family in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550547. [PMID: 37546869 PMCID: PMC10402111 DOI: 10.1101/2023.07.25.550547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Sphingomyelin (SM) is a major component of mammalian cell membranes and particularly abundant in the myelin sheath that surrounds nerve fibers. Its production is catalyzed by SM synthases SMS1 and SMS2, which interconvert phosphatidylcholine and ceramide to diacylglycerol and SM in the Golgi and at the plasma membrane, respectively. As the lipids participating in this reaction fulfill both structural and signaling functions, SMS enzymes have considerable potential to influence diverse important cellular processes. The nematode Caenorhabditis elegans is an attractive model for studying both animal development and human disease. The organism contains five SMS homologues but none of these have been characterized in any detail. Here, we carried out the first systematic analysis of SMS family members in C. elegans . Using heterologous expression systems, genetic ablation, metabolic labeling and lipidome analyses, we show that C. elegans harbors at least three distinct SM synthases and one ceramide phosphoethanolamine (CPE) synthase. Moreover, C. elegans SMS family members have partially overlapping but also unique subcellular distributions and together occupy all principal compartments of the secretory pathway. Our findings shed light on crucial aspects of sphingolipid metabolism in a valuable animal model and opens avenues for exploring the role of SM and its metabolic intermediates in organismal development.
Collapse
|
10
|
Xatse MA, Vieira AFC, Byrne C, Olsen CP. Targeted Lipidomics Reveals a Novel Role for Glucosylceramides in Glucose Response. J Lipid Res 2023:100394. [PMID: 37245562 PMCID: PMC10320606 DOI: 10.1016/j.jlr.2023.100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023] Open
Abstract
The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wildtype Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry-based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl-branched chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wildtype animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.
Collapse
Affiliation(s)
- Mark A Xatse
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre F C Vieira
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chloe Byrne
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Carissa Perez Olsen
- From the Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.
| |
Collapse
|
11
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
12
|
Tjahjono E, Kirienko DR, Kirienko NV. The emergent role of mitochondrial surveillance in cellular health. Aging Cell 2022; 21:e13710. [PMID: 36088658 PMCID: PMC9649602 DOI: 10.1111/acel.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is one of the primary causatives for many pathologies, including neurodegenerative diseases, cancer, metabolic disorders, and aging. Decline in mitochondrial functions leads to the loss of proteostasis, accumulation of ROS, and mitochondrial DNA damage, which further exacerbates mitochondrial deterioration in a vicious cycle. Surveillance mechanisms, in which mitochondrial functions are closely monitored for any sign of perturbations, exist to anticipate possible havoc within these multifunctional organelles with primitive origin. Various indicators of unhealthy mitochondria, including halted protein import, dissipated membrane potential, and increased loads of oxidative damage, are on the top of the lists for close monitoring. Recent research also indicates a possibility of reductive stress being monitored as part of a mitochondrial surveillance program. Upon detection of mitochondrial stress, multiple mitochondrial stress-responsive pathways are activated to promote the transcription of numerous nuclear genes to ameliorate mitochondrial damage and restore compromised cellular functions. Co-expression occurs through functionalization of transcription factors, allowing their binding to promoter elements to initiate transcription of target genes. This review provides a comprehensive summary of the intricacy of mitochondrial surveillance programs and highlights their roles in our cellular life. Ultimately, a better understanding of these surveillance mechanisms is expected to improve healthspan.
Collapse
|
13
|
Zhang J, Zhao Y, Sun Z, Sun T. Lacticaseibacillus rhamnosus Probio-M9 extends the lifespan of Caenorhabditis elegans. Commun Biol 2022; 5:1139. [PMID: 36302976 PMCID: PMC9613993 DOI: 10.1038/s42003-022-04031-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics have been characterized as useful for maintaining the balance of host gut flora and conferring health effects, but few studies have focused on their potential for delaying aging in the host. Here we show that Lacticaseibacillus rhamnosus Probio-M9 (Probio-M9), a healthy breast milk probiotic, enhances the locomotor ability and slows the decline in muscle function of the model organism Caenorhabditis elegans. Live Probio-M9 significantly extends the lifespan of C. elegans in a dietary restriction-independent manner. By screening various aging-related mutants of C. elegans, we find that Probio-M9 extends lifespan via p38 cascade and daf-2 signaling pathways, independent on daf-16 but dependent on skn-1. Probio-M9 protects and repairs damaged mitochondria by activating mitochondrial unfolded protein response. The significant increase of amino acids, sphingolipid, galactose and fatty acids in bacterial metabolites might be involved in extending the lifespan of C. elegans. We reveal that Probio-M9 as a dietary supplementation had the potential to delay aging in C. elegans and also provide new methods and insights for further analyzing probiotics in improving host health and delaying the occurrence of age-related chronic diseases.
Collapse
Affiliation(s)
- Juntao Zhang
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanmei Zhao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Tiansong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
14
|
Tang H, Huang X, Pang S. Regulation of the lysosome by sphingolipids: potential role in aging. J Biol Chem 2022; 298:102118. [PMID: 35691340 PMCID: PMC9257404 DOI: 10.1016/j.jbc.2022.102118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders. These diseases are defined by primary lysosomal defects and a few secondary defects such as mitochondrial dysfunction. Intriguingly, recent research indicates that the majority of these defects are also associated with aging, implying that sphingolipid-related diseases and aging may share common mechanisms. We propose that the lysosome is a pivotal hub for sphingolipid-mediated aging regulation. This review discusses the critical roles of sphingolipid metabolism in regulating various lysosomal functions, with an emphasis on how such regulation may contribute to aging and aging-related diseases.
Collapse
Affiliation(s)
- Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaokun Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
15
|
Shi J, Wang Y, Lei Y, Chen X, Liu Y, Xu YJ. Lipidome reveals the alleviation of krill oil on the impairment of acrylamide. Food Funct 2022; 13:8012-8021. [DOI: 10.1039/d2fo00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Krill oil has rich content of polyunsaturated fatty acids and various biological functions. Previous researches have demonstrated that krill oil is helpful to improve the locomotion via antioxidation and regulation...
Collapse
|
16
|
Scholz J, Helmer PO, Nicolai MM, Bornhorst J, Hayen H. Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography - mass spectrometry. J Chromatogr A 2021; 1655:462481. [PMID: 34455370 DOI: 10.1016/j.chroma.2021.462481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sphingolipids exert important functions in cells, ranging from stabilising the cell membrane to bioactive signalling in signal transduction pathways. Changed concentrations of sphingolipids are associated with, among others, neurodegenerative and cardiovascular diseases. In this work, we present a novel two-dimensional liquid chromatography method (2D-LC) coupled to tandem mass spectrometry (MS/MS) for the identification of ceramides, hexosylceramides and sphingomyelins in the model organism Caenorhabditis elegans (C. elegans). The method utilises a multiple heart-cut approach with a hydrophilic interaction liquid chromatography (HILIC) separation in the first dimension. The fractions of the sphingolipid classes were cut out and thereby separated from the abundant glycerolipids, which offers a simplified sample preparation and a high degree of automation as it compensates the alkaline depletion step usually conducted prior to the chromatographic analysis. The fractions were stored in a sample loop and transferred onto the second column with the combination of two six port valves. A reversed phase liquid chromatography was performed as the second dimension and allowed for a separation of the species within a sphingolipid class and according to the fatty acid moiety of the sphingolipid. The segregation of the abundant glycerolipids and the reduced matrix effects allowed for better identification of low abundant species, especially dihydro-sphingolipids with a saturated sphingoid base. In addition, the separation of the three fractions was carried out parallel to the separation and equilibration in the first dimension, which leads to no extension of the analysis time for the 2D-LC compared to the one-dimensional HILIC method. In total 45 sphingolipids were detected in the C. elegans lipid extract and identified via accurate mass and MS/MS fragments.
Collapse
Affiliation(s)
- Johannes Scholz
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Patrick O Helmer
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany
| | - Merle M Nicolai
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Heiko Hayen
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstraße 30, 48149 Münster, Germany.
| |
Collapse
|
17
|
Saturated very long chain fatty acid configures glycosphingolipid for lysosome homeostasis in long-lived C. elegans. Nat Commun 2021; 12:5073. [PMID: 34417467 PMCID: PMC8379269 DOI: 10.1038/s41467-021-25398-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
The contents of numerous membrane lipids change upon ageing. However, it is unknown whether and how any of these changes are causally linked to lifespan regulation. Acyl chains contribute to the functional specificity of membrane lipids. In this study, working with C. elegans, we identified an acyl chain-specific sphingolipid, C22 glucosylceramide, as a longevity metabolite. Germline deficiency, a conserved lifespan-extending paradigm, induces somatic expression of the fatty acid elongase ELO-3, and behenic acid (22:0) generated by ELO-3 is incorporated into glucosylceramide for lifespan regulation. Mechanistically, C22 glucosylceramide is required for the membrane localization of clathrin, a protein that regulates membrane budding. The reduction in C22 glucosylceramide impairs the clathrin-dependent autophagic lysosome reformation, which subsequently leads to TOR activation and longevity suppression. These findings reveal a mechanistic link between membrane lipids and ageing and suggest a model of lifespan regulation by fatty acid-mediated membrane configuration. The membrane lipids change with ageing and function as regulatory molecules, but the underlying mechanisms are incompletely understood. Here, the authors identify C22 glucosylceramide as a regulator of the longevity transcription factor SKN-1, and show that C22 glucosylceramide regulates lifespan by controlling lysosome homeostasis and subsequent TOR activation.
Collapse
|
18
|
Li J, Qu M, Wang M, Yue Y, Chen Z, Liu R, Bu Y, Li Y. Reproductive toxicity and underlying mechanisms of di(2-ethylhexyl) phthalate in nematode Caenorhabditis elegans. J Environ Sci (China) 2021; 105:1-10. [PMID: 34130826 DOI: 10.1016/j.jes.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
DEHP (di(2-ethylhexyl) phthalate) is an endocrine disruptor commonly found in plastic products that has been associated with reproduction alterations, but the effect of DEHP on toxicity is still widely unknown. Using DEHP concentrations of 10, 1, and 0.1 mg/L, we showed that DEHP reduced the reproductive capacity of Caenorhabditis elegans after 72 hr. of exposure. DEHP exposure reduced the reproductive capacity in terms of decreased brood sizes, egg hatchability (0.1, 1 and 10 mg/L), and egg-laying rate (1 and 10 mg/L), and increased numbers of fertilized eggs in the uterus (1 and 10 mg/L). DEHP also caused damage to gonad development. DEHP decreased the total number of germline cells, and decreased the relative area of the gonad arm of all exposure groups, with worms in the 1 mg/L DEHP exposure group having the minimum gonad arm area. Additionally, DEHP caused a significant concentration-dependent increase in the expression of unc-86. Autophagy and ROS contributed to the enhancement of DEHP toxicity in reducing reproductive capacity, and glutathione peroxidase and superoxide dismutase were activated as the antioxidant defense in this study. Hence, we found that DEHP has a dual effect on nematodes. Higher concentration (10 mg/L) DEHP can inhibit the expression of autophagy genes (atg-18, atg-7, bec-1, lgg-1 and unc-51), and lower concentrations (0.1 and 1 mg/L) can promote the expression of autophagy genes. Our data highlight the potential environmental risk of DEHP in inducing reproductive toxicity toward the gonad development and reproductive capacity of environmental organisms.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Man Qu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Yue
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yunhui Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
19
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
20
|
Salzer L, Witting M. Quo Vadis Caenorhabditis elegans Metabolomics-A Review of Current Methods and Applications to Explore Metabolism in the Nematode. Metabolites 2021; 11:metabo11050284. [PMID: 33947148 PMCID: PMC8146106 DOI: 10.3390/metabo11050284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolomics and lipidomics recently gained interest in the model organism Caenorhabditis elegans (C. elegans). The fast development, easy cultivation and existing forward and reverse genetic tools make the small nematode an ideal organism for metabolic investigations in development, aging, different disease models, infection, or toxicology research. The conducted type of analysis is strongly depending on the biological question and requires different analytical approaches. Metabolomic analyses in C. elegans have been performed using nuclear magnetic resonance (NMR) spectroscopy, direct infusion mass spectrometry (DI-MS), gas-chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) or combinations of them. In this review we provide general information on the employed techniques and their advantages and disadvantages in regard to C. elegans metabolomics. Additionally, we reviewed different fields of application, e.g., longevity, starvation, aging, development or metabolism of secondary metabolites such as ascarosides or maradolipids. We also summarised applied bioinformatic tools that recently have been used for the evaluation of metabolomics or lipidomics data from C. elegans. Lastly, we curated metabolites and lipids from the reviewed literature, enabling a prototypic collection which serves as basis for a future C. elegans specific metabolome database.
Collapse
Affiliation(s)
- Liesa Salzer
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
21
|
Mutlu AS, Duffy J, Wang MC. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021; 56:1394-1407. [PMID: 33891896 DOI: 10.1016/j.devcel.2021.03.034] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Lipids play crucial roles in regulating aging and longevity. In the past few decades, a series of genetic pathways have been discovered to regulate lifespan in model organisms. Interestingly, many of these regulatory pathways are linked to lipid metabolism and lipid signaling. Lipid metabolic enzymes undergo significant changes during aging and are regulated by different longevity pathways. Lipids also actively modulate lifespan and health span as signaling molecules. In this review, we summarize recent insights into the roles of lipid metabolism and lipid signaling in aging and discuss lipid-related interventions in promoting longevity.
Collapse
Affiliation(s)
- Ayse Sena Mutlu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jonathon Duffy
- Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Spanier B, Laurençon A, Weiser A, Pujol N, Omi S, Barsch A, Korf A, Meyer SW, Ewbank JJ, Paladino F, Garvis S, Aguilaniu H, Witting M. Comparison of lipidome profiles of Caenorhabditis elegans-results from an inter-laboratory ring trial. Metabolomics 2021; 17:25. [PMID: 33594638 PMCID: PMC7886748 DOI: 10.1007/s11306-021-01775-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.
Collapse
Affiliation(s)
- Britta Spanier
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Anne Laurençon
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | - Anna Weiser
- Chair of Metabolic Programming, Technische Universität München, Gregor-Mendel-Straße 2, 85354, Freising, Germany
| | - Nathalie Pujol
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Shizue Omi
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Aiko Barsch
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Ansgar Korf
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Sven W Meyer
- Bruker Daltonics, Fahrenheitstr. 4, 28359, Bremen, Germany
| | - Jonathan J Ewbank
- Turing Center for Living Systems, Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Francesca Paladino
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Steve Garvis
- Laboratoire de Biologie Moléculaire de la Cellule UMR5239 CNRS/ENS Lyon/UCBL/HCL Ecole Normale Supérieure de Lyon 46, allée d'Italie, 69364, Lyon cedex 07, France
| | - Hugo Aguilaniu
- UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
- Instituto Serrapilheira, Rua Dias Ferreira 78, Leblon, Rio de Janeiro, Brazil
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
23
|
Van de Walle P, Muñoz-Jiménez C, Askjaer P, Schoofs L, Temmerman L. DamID identifies targets of CEH-60/PBX that are associated with neuron development and muscle structure in Caenorhabditis elegans. PLoS One 2020; 15:e0242939. [PMID: 33306687 PMCID: PMC7732058 DOI: 10.1371/journal.pone.0242939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 11/29/2022] Open
Abstract
Transcription factors govern many of the time- and tissue-specific gene expression events in living organisms. CEH-60, a homolog of the TALE transcription factor PBX in vertebrates, was recently characterized as a new regulator of intestinal lipid mobilization in Caenorhabditis elegans. Because CEH-60's orthologs and paralogs exhibit several other functions, notably in neuron and muscle development, and because ceh-60 expression is not limited to the C. elegans intestine, we sought to identify additional functions of CEH-60 through DNA adenine methyltransferase identification (DamID). DamID identifies protein-genome interaction sites through GATC-specific methylation. We here report 872 putative CEH-60 gene targets in young adult animals, and 587 in L2 larvae, many of which are associated with neuron development or muscle structure. In light of this, we investigate morphology and function of ceh-60 expressing AWC neurons, and contraction of pharyngeal muscles. We find no clear functional consequences of loss of ceh-60 in these assays, suggesting that in AWC neurons and pharyngeal muscle, CEH-60 function is likely more subtle or redundant with other factors.
Collapse
Affiliation(s)
- Pieter Van de Walle
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), CSIC/JA/Universidad Pablo de Olavide, Seville, Spain
| | - Liliane Schoofs
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| |
Collapse
|
24
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
25
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
26
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
27
|
Bai X, Huang LJ, Chen SW, Nebenfuehr B, Wysolmerski B, Wu JC, Olson SK, Golden A, Wang CW. Loss of the seipin gene perturbs eggshell formation in Caenorhabditiselegans. Development 2020; 147:dev192997. [PMID: 32820022 PMCID: PMC7578359 DOI: 10.1242/dev.192997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1 Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.
Collapse
Affiliation(s)
- Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leng-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Sheng-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Benjamin Nebenfuehr
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Wysolmerski
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Jui-Ching Wu
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sara K Olson
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
28
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
29
|
Mitochondrial Perturbations Couple mTORC2 to Autophagy in C. elegans. Cell Rep 2019; 29:1399-1409.e5. [DOI: 10.1016/j.celrep.2019.09.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/05/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
|
30
|
Johnson AA. Lipid Hydrolase Enzymes: Pragmatic Prolongevity Targets for Improved Human Healthspan? Rejuvenation Res 2019; 23:107-121. [PMID: 31426688 DOI: 10.1089/rej.2019.2211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compelling evidence suggests that lipid metabolism, which plays critical roles in fat storage, cell membrane maintenance, and cell signaling, is intricately linked to aging. Lipid hydrolases are important enzymes that catalyze the hydrolysis of more complex lipids into simpler lipids. Diverse interventions targeting lipid hydrolases can prolong or shorten life in model organisms. For example, the genetic removal of or RNAi knockdown against a phospholipase can reduce lifespan in Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus. The removal of lysosomal acid lipase results in premature death in mice, while its overexpression in nematodes generates lean, long-lived individuals. The overexpression or inhibition of diacylglycerol lipase leads to enhanced or reduced longevity, respectively, in both worms and flies. Lifespan can also be extended by knocking down triacylglycerol lipases in yeast, overexpressing fatty acid amide hydrolase in worms, or removing hepatic lipase in a mouse model of coronary disease. Conversely, flies lacking the triacylglycerol lipase Brummer are obese and short lived. Linking sphingolipids and aging, removing the sphingomyelinase inositol phosphosphingolipid phospholipase shortens chronological lifespan in Saccharomyces cerevisiae, while inhibiting an acid sphingomyelinase in worms or inactivating alkaline ceramidase in flies extends lifespan. The clinical potential of manipulating these enzymes is highlighted by the FDA-approved obesity drug orlistat, which is an inhibitor of pancreatic and hepatic lipases that induces weight loss and improves insulin/glucose homeostasis. Additional research is warranted to better understand how these lipid hydrolases impact aging and to determine if clinical interventions targeting them are capable of improving human healthspan.
Collapse
|
31
|
Dall KB, Færgeman NJ. Metabolic regulation of lifespan from a C. elegans perspective. GENES & NUTRITION 2019; 14:25. [PMID: 31428207 PMCID: PMC6694653 DOI: 10.1186/s12263-019-0650-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Decline of cellular functions especially cognitive is a major deficit that arises with age in humans. Harnessing the strengths of small and genetic tractable model systems has revealed key conserved regulatory biochemical and signaling pathways that control aging. Here, we review some of the key signaling and biochemical pathways that coordinate aging processes with special emphasis on Caenorhabditis elegans as a model system and discuss how nutrients and metabolites can regulate lifespan by coordinating signaling and epigenetic programs. We focus on central nutrient-sensing pathways such as mTOR and insulin/insulin-like growth factor signaling and key transcription factors including the conserved basic helix-loop-helix transcription factor HLH-30/TFEB.
Collapse
Affiliation(s)
- Kathrine B. Dall
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
32
|
Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans. Chem Phys Lipids 2019; 222:15-22. [PMID: 31028715 DOI: 10.1016/j.chemphyslip.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Sphingolipids are important lipids and integral members of membranes, where they form small microdomains called lipid rafts. These rafts are enriched in cholesterol and sphingolipids, which influences biophysical properties. Interestingly, the membranes of the biomedical model organism Caenorhabditis elegans contain only low amounts of cholesterol. Sphingolipids in C. elegans are based on an unusual C17iso branched sphingoid base. In order to analyze and the sphingolipidome of C. elegans in more detail, we performed fractionation of lipid extracts and depletion of glycero- and glycerophospholipids together with in-depth analysis using UPLC-UHR-ToF-MS. In total we were able to detect 82 different sphingolipids from different classes, including several isomeric species.
Collapse
Affiliation(s)
- Victoria Hänel
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Christian Pendleton
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| |
Collapse
|
33
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
34
|
Abstract
Studies of bioactive lipids in general and sphingolipids in particular have intensified over the past several years, revealing an unprecedented and unanticipated complexity of the lipidome and its many functions, which rivals, if not exceeds, that of the genome or proteome. These results highlight critical roles for bioactive sphingolipids in most, if not all, major cell biological responses, including all major cell signalling pathways, and they link sphingolipid metabolism to key human diseases. Nevertheless, the fairly nascent field of bioactive sphingolipids still faces challenges in its biochemical and molecular underpinnings, including defining the molecular mechanisms of pathway and enzyme regulation, the study of lipid-protein interactions and the development of cellular probes, suitable biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, New York 11794, USA
- Northport Veterans Affairs Medical Center, Northport, New York 11768, USA
| |
Collapse
|
35
|
Wei CC, Chang CH, Liao VHC. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:118-125. [PMID: 29157804 DOI: 10.1016/j.phymed.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease that is associated with aging and is characterized as a movement disorder. Currently, there is still no complete therapy for PD. In recent years, the identification and characterization of medicinal plants to cure or treat PD has gained increasing scientific interest. PURPOSE In this study, we investigated a pentacyclic triterpenoid compound, β-amyrin, which is found in many medicinal plants for its anti-Parkinsonian effects, using Caenorhabditis elegans (C. elegans) disease models and their underlying mechanisms. METHODS C. elegans treated or untreated with β-amyrin were investigated for oxidative stress resistance, neurodegeneration, and α-synuclein aggregation assays. The C. elegans ortholog of Atg8/LC3, LGG-1 that is involved in the autophagy pathway was also evaluated by quantitative RT-PCR and transgenic strain experiments. RESULTS β-Amyrin exerted excellent antioxidant activity and reduced intracellular oxygen species in C. elegans. Using the transgenic strain BZ555, β-amyrin showed a protective effect on dopaminergic neurons reducing cell damage induced by 6-hydroxydopamine (6-OHDA). In addition, β-amyrin significantly reduced the α-synuclein aggregation in the transgenic strain NL5901. Moreover, β-amyrin up-regulated LGG-1 mRNA expression and increased the number of localized LGG-1 puncta in the transgenic strain DA2123. CONCLUSION The results from this study suggest that the anti-Parkinsonian effects of β-amyrin might be regulated via LGG-1 involved autophagy pathway in C. elegans. Therefore, β-amyrin may be useful for therapeutic applications or supplements to treat or slow the progression of PD.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
36
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
37
|
Chan JP, Brown J, Hark B, Nolan A, Servello D, Hrobuchak H, Staab TA. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans. Front Genet 2017; 8:132. [PMID: 28983319 PMCID: PMC5613162 DOI: 10.3389/fgene.2017.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.
Collapse
Affiliation(s)
- Jason P Chan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Jaylene Brown
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Brandon Hark
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Abby Nolan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Dustin Servello
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Hannah Hrobuchak
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Trisha A Staab
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| |
Collapse
|
38
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
39
|
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans. Genetics 2016; 205:775-785. [PMID: 27974500 DOI: 10.1534/genetics.116.194282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the cellular mechanisms by which animals regulate their response to starvation is limited, despite the strong relevance of the problem to major human health issues. The L1 diapause of Caenorhabditis elegans, where first-stage larvae arrest in response to a food-less environment, is an excellent system to study this mechanism. We found, through genetic manipulation and lipid analysis, that biosynthesis of ceramide, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic interaction analysis suggests that ceramide may act in both insulin-IGF-1 signaling (IIS)-dependent and IIS-independent pathways to affect starvation survival. Genetic and expression analyses indicate that ceramide is required for maintaining the proper expression of previously characterized starvation-responsive genes, genes that are regulated by the IIS pathway and tumor suppressor Rb, and genes responsive to pathogen. These findings provide an important insight into the roles of sphingolipid metabolism, not only in starvation response, but also in aging and food-response-related human health problems.
Collapse
|
40
|
Glucose or Altered Ceramide Biosynthesis Mediate Oxygen Deprivation Sensitivity Through Novel Pathways Revealed by Transcriptome Analysis in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:3149-3160. [PMID: 27507791 PMCID: PMC5068937 DOI: 10.1534/g3.116.031583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Individuals with type 2 diabetes display metabolic abnormalities, such as hyperglycemia, increased free fatty acids, insulin resistance, and altered ceramide levels, that contribute to vascular dysfunctions and compromised oxygen delivery. Caenorhabditis elegans fed a glucose-supplemented diet or with altered ceramide metabolism, due to a hyl-2 mutation, are sensitive to oxygen deprivation (anoxia). Our experiments showed that the combination of these factors further decreased the anoxia survival. RNA-sequencing analysis was performed to assess how a glucose-supplemented diet and/or a hyl-2 mutation altered the transcriptome. Comparison analysis of transcripts associated with anoxia-sensitive animals [hyl-2(tm2031) mutation or a glucose diet] revealed 199 common transcripts encoded by genes with known or predicted functions involving innate immunity, cuticle function (collagens), or xenobiotic and endobiotic phase I and II detoxification system. Use of RNA interference (RNAi) to target gene products of the xenobiotic and endobiotic phase I and II detoxification system (UDP-glycosyltransferase and Cytochrome p450 genes; ugt-15, ugt-18, ugt-19, ugt-41, ugt-63, cyp-13A12, cyp-25A1, and cyp-33C8) increased anoxia survival in wild-type animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was suppressed by RNAi of cyp-25A1 or cyp-33C8 genes. A glucose diet fed to the P0 hermaphrodite decreased the anoxia survival of its F1 embryos; however, the RNAi of ugt-63 and cyp-33C8 suppressed anoxia sensitivity. These studies provide evidence that the detoxification system impacts oxygen deprivation responses and that C. elegans can be used to model the conserved detoxification system.
Collapse
|
41
|
Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome. Arch Biochem Biophys 2016; 589:27-37. [DOI: 10.1016/j.abb.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
42
|
Abstract
Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as physiological regulators of autophagy in relation to cellular and organismal growth, survival, and aging.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | |
Collapse
|
43
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
44
|
Luttgeharm KD, Cahoon EB, Markham JE. A mass spectrometry-based method for the assay of ceramide synthase substrate specificity. Anal Biochem 2015; 478:96-101. [PMID: 25725359 DOI: 10.1016/j.ab.2015.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/24/2023]
Abstract
The acyl composition of sphingolipids is determined by the specificity of the enzyme ceramide synthase (EC 2.3.1.24). Ceramide contains a long-chain base (LCB) linked to a variety of fatty acids to produce a lipid class with potentially hundreds of structural variants. An optimized procedure for the assay of ceramide synthase in yeast microsomes is reported that uses mass spectrometry to detect any possible LCB and fatty acid combination synthesized from unlabeled substrates provided in the reaction. The assay requires the delivery of substrates with bovine serum albumin for maximum activity within defined limits of substrate concentration and specific methods to stop the reaction and extract the lipid that avoid the non-enzymatic synthesis of ceramide. The activity of ceramide synthase in yeast microsomes is demonstrated with the four natural LCBs found in yeast along with six saturated and two unsaturated fatty acyl-coenzyme As from 16 to 26 carbons in length. The procedure allows for the determination of substrate specificity and kinetic parameters toward natural substrates for ceramide synthase from potentially any organism.
Collapse
Affiliation(s)
- Kyle D Luttgeharm
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer E Markham
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
45
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
46
|
Jenzer C, Simionato E, Legouis R. Tools and methods to analyze autophagy in C. elegans. Methods 2014; 75:162-71. [PMID: 25484340 DOI: 10.1016/j.ymeth.2014.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 11/27/2022] Open
Abstract
For a long time, autophagy has been mainly studied in yeast or mammalian cell lines, and assays for analyzing autophagy in these models have been well described. More recently, the involvement of autophagy in various physiological functions has been investigated in multicellular organisms. Modification of autophagy flux is involved in developmental processes, resistance to stress conditions, aging, cell death and multiple pathologies. So, the use of animal models is essential to understand these processes in the context of different cell types and during the whole life. For ten years, the nematode Caenorhabditis elegans has emerged as a powerful model to analyze autophagy in physiological or pathological contexts. In this article, we present some of the established approaches and the emerging tools available to monitor and manipulate autophagy in C. elegans, and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Céline Jenzer
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Elena Simionato
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Renaud Legouis
- Centre de Génétique Moléculaire, CNRS UPR3404, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
47
|
Weikel KA, Cacicedo JM, Ruderman NB, Ido Y. Glucose and palmitate uncouple AMPK from autophagy in human aortic endothelial cells. Am J Physiol Cell Physiol 2014; 308:C249-63. [PMID: 25354528 DOI: 10.1152/ajpcell.00265.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dysregulated autophagy and decreased AMP-activated protein kinase (AMPK) activity are each associated with atherogenesis. Atherogenesis is preceded by high circulating concentrations of glucose and fatty acids, yet the mechanism by which these nutrients regulate autophagy in human aortic endothelial cells (HAECs) is not known. Furthermore, whereas AMPK is recognized as an activator of autophagy in cells with few nutrients, its effects on autophagy in nutrient-rich HAECs has not been investigated. We maintained and passaged primary HAECs in media containing 25 mM glucose and incubated them subsequently with 0.4 mM palmitate. These conditions impaired basal autophagy and rendered HAECs more susceptible to apoptosis and adhesion of monocytes, outcomes attenuated by the autophagy activator rapamycin. Glucose and palmitate diminished AMPK activity and phosphorylation of the uncoordinated-51-like kinase 1 (ULK1) at Ser555, an autophagy-activating site targeted by AMPK. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR)-mediated activation of AMPK phosphorylated acetyl-CoA carboxylase, but treatment with AICAR or other AMPK activators (A769662, phenformin) did not restore ULK1 phosphorylation or autophagosome formation. To determine whether palmitate-induced ceramide accumulation contributed to this finding, we overexpressed a ceramide-metabolizing enzyme, acid ceramidase. The increase in acid ceramidase expression ameliorated the effects of excess nutrients on ULK1 phosphorylation, without altering the effects of the AMPK activators. Thus, unlike low nutrient conditions, AMPK becomes uncoupled from autophagy in HAECs in a nutrient-rich environment, such as that found in patients with increased cardiovascular risk. These findings suggest that combinations of AMPK-independent and AMPK-dependent therapies may be more effective alternatives than either therapy alone for treating nutrient-induced cellular dysfunction.
Collapse
Affiliation(s)
- Karen A Weikel
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - José M Cacicedo
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Neil B Ruderman
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Yasuo Ido
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
48
|
Lemieux GA, Ashrafi K. Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 2014; 50:69-84. [PMID: 25228063 DOI: 10.3109/10409238.2014.959890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C. elegans provides a genetically tractable system for deciphering the homeostatic mechanisms that underlie fat regulation in intact organisms. Here, we provide an overview of the recent advances in the C. elegans fat field with particular attention to studies of C. elegans lipid droplets, the complex links between lipases, autophagy, and lifespan, and analyses of key transcriptional regulatory mechanisms that coordinate lipid homeostasis. These studies demonstrate the ancient origins of mammalian and C. elegans fat regulatory pathways and highlight how C. elegans is being used to identify and analyze novel lipid pathways that are then shown to function similarly in mammals. Despite its many advantages, study of fat regulation in C. elegans is currently faced with a number of conceptual and methodological challenges. We critically evaluate some of the assumptions in the field and highlight issues that we believe should be taken into consideration when interpreting lipid content data in C. elegans.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California , San Francisco, CA , USA
| | | |
Collapse
|
49
|
|
50
|
Shen W, Henry AG, Paumier KL, Li L, Mou K, Dunlop J, Berger Z, Hirst WD. Inhibition of glucosylceramide synthase stimulates autophagy flux in neurons. J Neurochem 2014; 129:884-94. [PMID: 24494600 DOI: 10.1111/jnc.12672] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/24/2014] [Accepted: 01/29/2014] [Indexed: 01/16/2023]
Abstract
Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Wei Shen
- Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|