1
|
Kai R, Hatakeyama M, Iwamoto S, Kitaoka T. Primary human mesenchymal stem cell culture under xeno-free conditions using surface-modified cellulose nanofiber scaffolds. Carbohydr Polym 2024; 343:122479. [PMID: 39174138 DOI: 10.1016/j.carbpol.2024.122479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Stem cell culture often requires various animal-derived components such as serum and collagen. This limits its practical use. Therefore, xeno-free (xenogeneic component-free) culture systems are receiving increased attention. Herein, we propose xeno-free, plant-derived cellulose nanofibers (CNFs) with different surface chemistry: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized CNFs (TOCNFs) with carboxy groups and surface-sulfated CNFs (S-CNFs) for the proliferation of human mesenchymal stem cells (hMSCs) under various serum conditions. We cultured bone marrow-derived hMSCs on CNF scaffolds with various fiber lengths and functional group contents. Original CNFs were bioinert materials that did not contribute to cell adhesion. In contrast, the surface-modified CNFs facilitated the proliferation of immortalized hMSCs under normal and low-serum conditions. The TOCNFs (COONa: 1.47 mmol g-1; length: 0.53 μm), the S-CNFs (OSO3Na: 0.64 mmol g-1; 0.61 μm), and a combination of the two (1:1 by weight) enabled immortalized hMSCs to maintain their multipotency, even under serum-free conditions. Primary cultured hMSCs proliferated well on the TOCNF/S-CNF scaffolds in a completely serum-free medium, comparable to animal-derived type I collagen, although few hMSCs adhered to the standard polystyrene substrate. Our strategy of using surface-modified CNFs will inform the development of xeno-free culture systems to avoid the use of animal-derived materials for both cell culture media and scaffolds.
Collapse
Affiliation(s)
- Ritomo Kai
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Sung TC, Chen YH, Wang T, Qian L, Chao WH, Liu J, Pang J, Ling QD, Lee HHC, Higuchi A. Design of dual peptide-conjugated hydrogels for proliferation and differentiation of human pluripotent stem cells. Mater Today Bio 2024; 25:100969. [PMID: 38318478 PMCID: PMC10839443 DOI: 10.1016/j.mtbio.2024.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Completely synthetic cell cultivation materials for human pluripotent stem cells (hPSCs) are important for the future clinical use of hPSC-derived cells. Currently, cell culture materials conjugated with extracellular matrix (ECM)-derived peptides are being prepared using only one specific integrin-targeting peptide. We designed dual peptide-conjugated hydrogels, for which each peptide was selected from different ECM sites: the laminin β4 chain and fibronectin or vitronectin, which can target α6β1 and α2β1 or αVβ5. hPSCs cultured on dual peptide-conjugated hydrogels, especially on hydrogels conjugated with peptides obtained from the laminin β4 chain and vitronectin with a low peptide concentration of 200 μg/mL, showed high proliferation ability over the long term and differentiated into cells originating from 3 germ layers in vivo as well as a specific lineage of cardiac cells. The design of grafting peptides was also important, for which a joint segment and positive amino acids were added into the designed peptide. Because of the designed peptides on the hydrogels, only 200 μg/mL peptide solution was sufficient for grafting on the hydrogels, and the hydrogels supported hPSC cultures long-term; in contrast, in previous studies, greater than 1000 μg/mL peptide solution was needed for the grafting of peptides on cell culture materials.
Collapse
Affiliation(s)
- Tzu-Cheng Sung
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Yen-Hung Chen
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Ting Wang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Liu Qian
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
| | - Jun Liu
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Jiandong Pang
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Qing-Dong Ling
- Cathay Medical Research Institute, Cathay General Hospital, No. 32, Ln 160, Jian-Cheng Road, Hsi-Chi City, Taipei, 221, Taiwan
| | - Henry Hsin-Chung Lee
- Department of Surgery, Hsinchu Cathay General Hospital, No. 678, Sec 2, Zhonghua Rd., Hsinchu, 30060, Taiwan
- Graduate Institute of Translational and Interdisciplinary Medicine, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan
| | - Akon Higuchi
- State Key Laboratory of Opthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan, 32001, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan
| |
Collapse
|
3
|
Jakl V, Popp T, Haupt J, Port M, Roesler R, Wiese S, Friemert B, Rojewski MT, Schrezenmeier H. Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells. Cells 2023; 12:2105. [PMID: 37626914 PMCID: PMC10453497 DOI: 10.3390/cells12162105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free (XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-free (SF/XF) formulations have been established as safe and efficient, and both groups provide different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and concentration of supplement. The lactate per glucose yield increased along with a higher proportion of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like migratory potential. These findings support current approaches where growth media may be utilized for priming MSCs for specific therapeutic applications.
Collapse
Affiliation(s)
- Viktoria Jakl
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Julian Haupt
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, 80937 Munich, Germany (J.H.); (M.P.)
| | - Reinhild Roesler
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany; (R.R.); (S.W.)
| | - Benedikt Friemert
- Clinic for Trauma Surgery and Orthopedics, Army Hospital Ulm, 89081 Ulm, Germany
| | - Markus T. Rojewski
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, 89081 Ulm, Germany; (V.J.)
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg—Hessia and University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
4
|
Jabbari E, Sepahvandi A. Decellularized Articular Cartilage Microgels as Microcarriers for Expansion of Mesenchymal Stem Cells. Gels 2022; 8:gels8030148. [PMID: 35323261 PMCID: PMC8949257 DOI: 10.3390/gels8030148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional microcarriers used for expansion of human mesenchymal stem cells (hMSCs) require detachment and separation of the cells from the carrier prior to use in clinical applications for regeneration of articular cartilage, and the carrier can cause undesirable phenotypic changes in the expanded cells. This work describes a novel approach to expand hMSCs on biomimetic carriers based on adult or fetal decellularized bovine articular cartilage that supports tissue regeneration without the need to detach the expanded cells from the carrier. In this approach, the fetal or adult bovine articular cartilage was minced, decellularized, freeze-dried, ground, and sieved to produce articular cartilage microgels (CMGs) in a specified size range. Next, the hMSCs were expanded on CMGs in a bioreactor in basal medium to generate hMSC-loaded CMG microgels (CMG-MSCs). Then, the CMG-MSCs were suspended in sodium alginate, injected in a mold, crosslinked with calcium chloride, and incubated in chondrogenic medium as an injectable cellular construct for regeneration of articular cartilage. The expression of chondrogenic markers and compressive moduli of the injectable CMG-MSCs/alginate hydrogels incubated in chondrogenic medium were higher compared to the hMSCs directly encapsulated in alginate hydrogels.
Collapse
|
5
|
Frese L, Darwiche SE, Gunning ME, Hoerstrup SP, von Rechenberg B, Giovanoli P, Calcagni M. Optimizing large-scale autologous human keratinocyte sheets for major burns-Toward an animal-free production and a more accessible clinical application. Health Sci Rep 2022; 5:e449. [PMID: 35028432 PMCID: PMC8738975 DOI: 10.1002/hsr2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Aims Autologous keratinocyte sheets constitute an important component of the burn wound treatment toolbox available to a surgeon and can be considered a life‐saving procedure for patients with severe burns over 50% of their total body surface area. Large‐scale keratinocyte sheet cultivation still fundamentally relies on the use of animal components such as inactivated murine 3T3 fibroblasts as feeders, animal‐derived enzymes such as trypsin, as well as media components such as fetal bovine serum (FBS). This study was therefore aimed to optimize autologous keratinocyte sheets by comparing various alternatives to critical components in their production. Methods Human skin samples were retrieved from remnant operative tissues. Cell isolation efficiency and viability were investigated by comparing the efficacy of porcine‐derived trypsin and animal‐free enzymes (Accutase and TrypLESelect). The subsequent expansion of the cells and the keratinocyte sheet formation was analyzed, comparing various cell culture substrates (inactivated murine 3T3 fibroblasts, inactivated human fibroblasts, Collagen I or plain tissue culture plastic), as well as media containing serum or chemically defined animal‐free media. Results The cell isolation step showed clear cell yield advantages when using porcine‐derived trypsin, compared to animal‐free alternatives. The keratinocyte sheets produced using animal‐free serum were similar to those produced using 3T3 feeder layer and FBS‐containing medium, particularly in mechanical integrity as all grafts were liftable. In addition, sheets grown on collagen in an animal‐free medium showed indications of advantages in homogeneity, speed, reduced variability, and differentiation status compared to the other growth conditions investigated. Most importantly, the procedure was compatible with the up‐scaling requirements of major burn wound treatments. Conclusion This study demonstrated that animal‐free components could be used successfully to reduce the risk profile of large‐scale autologous keratinocyte sheet production, and thereby increase clinical accessibility.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine (IREM) University of Zurich Zurich Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,La Colline Sion Switzerland
| | - Salim Elias Darwiche
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Myrna Elisabeth Gunning
- Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| | - Simon Philipp Hoerstrup
- Institute for Regenerative Medicine (IREM) University of Zurich Zurich Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland
| | - Brigitte von Rechenberg
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty University of Zurich Zurich Switzerland
| | - Pietro Giovanoli
- Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| | - Maurizio Calcagni
- Center for Applied Biotechnology and Molecular Medicine (CABMM) University of Zurich Zurich Switzerland.,Department of Plastic and Reconstructive Surgery University Hospital Zurich Zurich Switzerland
| |
Collapse
|
6
|
Arredondo R, Poggioli F, Martínez-Díaz S, Piera-Trilla M, Torres-Claramunt R, Tío L, Monllau JC. Fibronectin-coating enhances attachment and proliferation of mesenchymal stem cells on a polyurethane meniscal scaffold. Regen Ther 2021; 18:480-486. [PMID: 34926733 PMCID: PMC8633527 DOI: 10.1016/j.reth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022] Open
Abstract
Introduction Partial meniscectomy is one of the most common surgical strategy for a meniscal injury, but sometimes, patients complain of knee pain due to an overload in the ablated compartment. In these cases, implantation of tissue engineering scaffold could be indicated. Currently, two commercial scaffolds, based on collagen or polycaprolactone-polyurethane (PCL-PU), are available for meniscus scaffolding. In short term follow-up assessments, both showed clinical improvement and tissue formation. However, long-term studies carried out in PCL-PU showed that the new tissue decreased in volume and assumed an irregular shape. Moreover, in some cases, the scaffold was totally reabsorbed, without new tissue formation. Mesenchymal stem cells (MSCs) combined with scaffolds could represents a promising approach for treating meniscal defects because of their multipotency and self-renewal. In this work, we aimed to compare the behaviour of MSCs and chondrocytes on a PCL-PU scaffold in vitro. MSCs express integrins that binds to fibronectin (FN), so we also investigate the effect of a FN coating on the bioactivity of the scaffold. Methods We isolated rabbit bone marrow MSCs (rBM-MSCs) from two skeletally mature New Zealand white rabbits and stablished the optimum culture condition to expand them. Then, they were seeded over non-coated and FN-coated scaffolds and cultured in chondrogenic conditions. To evaluate cell functionality, we performed an MTS assay to compare cell proliferation between both conditions. Finally, a histologic study was performed to assess extracellular matrix (ECM) production in both samples, and to compare them with the ones obtained with rabbit chondrocytes (rCHs) seeded in a non-coated scaffold. Results A culture protocol based on low FBS concentration was set as the best for rBM-MSCs expansion. The MTS assay revealed that rBM-MSCs seeded on FN-coated scaffolds have more cells on proliferation (145%; 95% CI: 107%–182%) compared with rBM-MSCs seeded on non-coated scaffolds. Finally, the histologic study demonstrated that rCHs seeded on non-coated scaffolds displayed the highest production of ECM, followed by rBM-MSCs seeded on FN-coated scaffolds. Furthermore, both cell types produced a comparable ECM pattern. Conclusion These results suggest that MSCs have low capacity attachment to PCL-PU scaffolds, but the presence of integrin alpha5beta1 (FN-receptor) in MSCs allows them to interact with the FN-coated scaffolds. These results could be applied in the design of scaffolds, and might have important clinical implications in orthopaedic surgery of meniscal injuries. Cultures with low FBS are more suitable to isolation and expansion of rBM-MSC. PCL-PU scaffolds coated with FN show improve adhesion properties for rBM-MSCs. rBM-MSCs seeded in PCL-PU + FN produce ECM similar to the one produced by chondrocytes.
Collapse
Key Words
- AMT, allograft meniscus transplantation
- CMI, collagen meniscal implant
- ECM, extracellular matrix
- FN, fibronectin
- Fibronectin
- ITS, Insulin Transferrin Selenium
- MNCs, mononuclear cells
- MSCs, mesenchymal stem cells
- Meniscal injuries
- Mesenchymal stem cell
- PCL-PU, polycaprolactone-polyurethane
- PSR, picrosirius red
- Post-meniscectomy syndrome
- RT, room temperature
- Scaffolds
- Tissue engineering
- rBM, rabbit bone marrow
- rCHs, rabbit chondrocytes
Collapse
Affiliation(s)
- Raquel Arredondo
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Francesco Poggioli
- Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy
| | - Santos Martínez-Díaz
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| | - María Piera-Trilla
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Raúl Torres-Claramunt
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| | - Laura Tío
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Joan C Monllau
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| |
Collapse
|
7
|
Peng L, Gautrot JE. Long term expansion profile of mesenchymal stromal cells at protein nanosheet-stabilised bioemulsions for next generation cell culture microcarriers. Mater Today Bio 2021; 12:100159. [PMID: 34841241 PMCID: PMC8605361 DOI: 10.1016/j.mtbio.2021.100159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/27/2022] Open
Abstract
Tremendous progress in the identification, isolation and expansion of stem cells has allowed their application in regenerative medicine and tissue engineering, and their use as advanced in vitro models. As a result, stem cell manufacturing increasingly requires scale up, parallelisation and automation. However, solid substrates currently used for the culture of adherent cells are poorly adapted for such applications, owing to their difficult processing from cell products, relatively high costs and their typical reliance on difficult to recycle plastics and microplastics. In this work, we show that bioemulsions formed of microdroplets stabilised by protein nanosheets displaying strong interfacial mechanics are well-suited for the scale up of adherent stem cells such as mesenchymal stromal cells (MSCs). We demonstrate that, over multiple passages (up to passage 10), MSCs retain comparable phenotypes when cultured on such bioemulsions, solid microcarriers (Synthemax II) and classic 2D tissue culture polystyrene. Phenotyping (cell proliferation, morphometry, flow cytometry and differentiation assays) of MSCs cultured for multiple passages on these systems indicate that, although stemness is lost at late passages when cultured on these different substrates, stem cell phenotypes remained comparable between different culture conditions, at any given passage. Hence our study validates the use of bioemulsions for the long term expansion of adherent stem cells and paves the way to the design of novel 3D bioreactors based on microdroplet microcarriers.
Collapse
Affiliation(s)
- Lihui Peng
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Julien E Gautrot
- Institute of Bioengineering and, UK.,School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
8
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Wetzel R, Hauser S, Lin W, Berg P, Werner C, Pietzsch J, Kempermann G, Zhang Y. Screening Arrays of Laminin Peptides on Modified Cellulose for Promotion of Adhesion of Primary Endothelial and Neural Precursor Cells. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.201900303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Richard Wetzel
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400 Dresden 01328 Germany
| | - Weilin Lin
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Peggy Berg
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Hohe Str. 6 Dresden 01069 Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400 Dresden 01328 Germany
- Faculty of Chemistry and Food Chemistry, School of Science Technische Universität Dresden Dresden 01062 Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Tatzberg 41 Dresden 01307 Germany
- CRTD—Center for Regenerative Therapies Dresden Technische Universität Dresden Fetscherstraße 105 Dresden 01307 Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| |
Collapse
|
10
|
Le NNT, Liu TL, Johnston J, Krutty JD, Templeton KM, Harms V, Dias A, Le H, Gopalan P, Murphy WL. Customized hydrogel substrates for serum-free expansion of functional hMSCs. Biomater Sci 2020; 8:3819-3829. [PMID: 32543628 PMCID: PMC7436193 DOI: 10.1039/d0bm00540a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe a screening approach to identify customized substrates for serum-free human mesenchymal stromal cell (hMSC) culture. In particular, we combine a biomaterials screening approach with design of experiments (DOE) and multivariate analysis (MVA) to understand the effects of substrate stiffness, substrate adhesivity, and media composition on hMSC behavior in vitro. This approach enabled identification of poly(ethylene glycol)-based and integrin binding hydrogel substrate compositions that supported functional hMSC expansion in multiple serum-containing and serum-free media, as well as the expansion of MSCs from multiple, distinct sources. The identified substrates were compatible with standard thaw, seed, and harvest protocols. Finally, we used MVA on the screening data to reveal the importance of serum and substrate stiffness on hMSC expansion, highlighting the need for customized cell culture substrates in optimal hMSC biomanufacturing processes.
Collapse
Affiliation(s)
- Ngoc Nhi T Le
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cherian DS, Bhuvan T, Meagher L, Heng TSP. Biological Considerations in Scaling Up Therapeutic Cell Manufacturing. Front Pharmacol 2020; 11:654. [PMID: 32528277 PMCID: PMC7247829 DOI: 10.3389/fphar.2020.00654] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cell therapeutics - using cells as living drugs - have made advances in many areas of medicine. One of the most clinically studied cell-based therapy products is mesenchymal stromal cells (MSCs), which have shown promising results in promoting tissue regeneration and modulating inflammation. However, MSC therapy requires large numbers of cells, the generation of which is not feasible via conventional planar tissue culture methods. Scale-up manufacturing methods (e.g., propagation on microcarriers in stirred-tank bioreactors), however, are not specifically tailored for MSC expansion. These processes may, in principle, alter the cell secretome, a vital component underlying the immunosuppressive properties and clinical effectiveness of MSCs. This review outlines our current understanding of MSC properties and immunomodulatory function, expansion in commercial manufacturing systems, and gaps in our knowledge that need to be addressed for effective up-scaling commercialization of MSC therapy.
Collapse
Affiliation(s)
- Darshana S Cherian
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tejasvini Bhuvan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Castilla-Casadiego DA, Reyes-Ramos AM, Domenech M, Almodovar J. Effects of Physical, Chemical, and Biological Stimulus on h-MSC Expansion and Their Functional Characteristics. Ann Biomed Eng 2020; 48:519-535. [PMID: 31705365 PMCID: PMC6952531 DOI: 10.1007/s10439-019-02400-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/30/2019] [Indexed: 01/10/2023]
Abstract
Human adult mesenchymal stem or stromal cells (h-MSC) therapy has gained considerable attention due to the potential to treat or cure diseases given their immunosuppressive properties and tissue regeneration capabilities. Researchers have explored diverse strategies to promote high h-MSC production without losing functional characteristics or properties. Physical stimulus including stiffness, geometry, and topography, chemical stimulus, like varying the surface chemistry, and biochemical stimuli such as cytokines, hormones, small molecules, and herbal extracts have been studied but have yet to be translated to industrial manufacturing practice. In this review, we describe the role of those stimuli on h-MSC manufacturing, and how these stimuli positively promote h-MSC properties, impacting the cell manufacturing field for cell-based therapies. In addition, we discuss other process considerations such as bioreactor design, good manufacturing practice, and the importance of the cell donor and ethics factors for manufacturing potent h-MSC.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Ana M Reyes-Ramos
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayagüez, PR, 00681-9000, USA
| | - Jorge Almodovar
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
13
|
Pushp P, Sahoo B, Ferreira FC, Sampaio Cabral JM, Fernandes‐Platzgummer A, Gupta MK. Functional comparison of beating cardiomyocytes differentiated from umbilical cord‐derived mesenchymal/stromal stem cells and human foreskin‐derived induced pluripotent stem cells. J Biomed Mater Res A 2019; 108:496-514. [DOI: 10.1002/jbm.a.36831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
- Department of Biotechnology Institute of Engineering and Technology, Bundelkhand University Jhansi Uttar Pradesh India
| | - Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Frederico C. Ferreira
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Joaquim M. Sampaio Cabral
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Ana Fernandes‐Platzgummer
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Mukesh K. Gupta
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| |
Collapse
|
14
|
Completely serum-free and chemically defined adipocyte development and maintenance. Cytotherapy 2018; 20:576-588. [DOI: 10.1016/j.jcyt.2018.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
|
15
|
Cimino M, Gonçalves RM, Bauman E, Barroso-Vilares M, Logarinho E, Barrias CC, Martins MCL. Optimization of the use of a pharmaceutical grade xeno-free medium for in vitro expansion of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med 2017; 12:e1785-e1795. [PMID: 29024519 DOI: 10.1002/term.2588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023]
Abstract
Human bone marrow-derived mesenchymal stem/stromal cells (hMSCs) are considered promising therapeutic agents in the field of cell therapy and regenerative medicine, mainly due to their relative facility to be isolated, multi-differentiation potential, and immunomodulatory role. However, their application in clinics requires a crucial step of in vitro expansion. Most of the protocols for hMSCs in vitro culture use foetal bovine serum as medium supplement that, being from animal origin, presents several safety concerns and may initiate xenogeneic immune responses after cells transplantation. This work reports the optimization of a pharmaceutical-grade xeno-free strategy for hMSCs in vitro expansion based on the supplementation of basal medium with a pharmaceutical-grade human plasma-derived supplement for cell culture (SCC) and 2 human growth factors (bFGF and TGFβ1), plus a coating of human plasma fibronectin (Fn). After 4 weeks in culture, this strategy improves hMSCs expansion yield about 4.3-fold in comparison with foetal bovine serum supplementation and 4.5-fold compared with a commercially available xeno-free medium. hMSCs expanded in SCC-based formulation maintained their phenotype and differentiation capacity into osteogenic, adipogenic, and chondrogenic lineages, without alterations in cell karyotype. Overall, the SCC-based medium appears to be an excellent alternative for the xeno-free expansion of hMSCs as therapeutic agents for clinical applications.
Collapse
Affiliation(s)
- M Cimino
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto (UP), Porto, Portugal
| | - R M Gonçalves
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto (UP), Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto (UP), Porto, Portugal
| | - E Bauman
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto (UP), Porto, Portugal
| | - M Barroso-Vilares
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto (UP), Porto, Portugal
| | - E Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto (UP), Porto, Portugal
| | - C C Barrias
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto (UP), Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto (UP), Porto, Portugal
| | - M C L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto (UP), Porto, Portugal.,INEB-Instituto de Engenharia Biomédica, University of Porto (UP), Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto (UP), Porto, Portugal
| |
Collapse
|
16
|
Chisini LA, Conde MCM, Grazioli G, Martin ASS, Carvalho RVD, Nör JE, Demarco FF. Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review. Braz Dent J 2017; 28:657-668. [PMID: 29211118 DOI: 10.1590/0103-6440201701646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Although the biological properties of mesenchymal stem cells (MSC) are well-characterized in vitro, MSC clinical application is still far away to be achieved, mainly due to the need of xenogeneic substances for cell expansion, such as fetal bovine serum (FBS). FBS presents risks regarding pathogens transmissions and internalization of animal's proteins, which can unleash antigenic responses in patients after MSC implantation. A wide range of venous blood derivatives (VBD) has been reported as FBS substitutes showing promising results. Thus, the aim of this study was to conduct a systematic scoping review to analyze whether VBD are effective FBS substitutes for MSC ex vivo expansion. The search was performed in SciVerse ScopusTM, PubMed, Web of ScienceTM, BIREME, Cochrane library up to January 2016. The keywords were selected using MeSH and entry terms. Two independent reviewers scrutinized the records obtained considering specific inclusion criteria. The included studies were evaluated in accordance with a modified Arksey and O' Malley's framework. From 184 found studies, 90 were included. Bone marrow mesenchymal stem cells (BMMSC) were presented in most of these studies. Overall, VBD allowed for either, maintenance of MCS's fibroblast-like morphology, high proliferation, high colony-formation ability and maintenance of multipotency. Besides. MSC expanded in VBD supplements presented higher mitogen activity than FBS. VBD seems to be excellent xeno-free serum for ex vivo expansion of mesenchymal stem cells. However, an accentuated heterogeneity was observed between the carried out protocols for VBD isolation did not allowing for direct comparisons between the included studies.
Collapse
Affiliation(s)
- Luiz A Chisini
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcus C M Conde
- Graduate Program in Dentistry, School of Dentistry, UNIVATES - Universidade do Vale do Taquari, Lajeado, Brazil
| | | | - Alissa S San Martin
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Jacques E Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Flávio F Demarco
- Graduate Program in Dentistry, Dental School, UFPel - Universidade Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
17
|
Xeno-Free Strategies for Safe Human Mesenchymal Stem/Stromal Cell Expansion: Supplements and Coatings. Stem Cells Int 2017; 2017:6597815. [PMID: 29158740 PMCID: PMC5660800 DOI: 10.1155/2017/6597815] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have generated great interest in regenerative medicine mainly due to their multidifferentiation potential and immunomodulatory role. Although hMSC can be obtained from different tissues, the number of available cells is always low for clinical applications, thus requiring in vitro expansion. Most of the current protocols for hMSC expansion make use of fetal bovine serum (FBS) as a nutrient-rich supplement. However, regulatory guidelines encourage novel xeno-free alternatives to define safer and standardized protocols for hMSC expansion that preserve their intrinsic therapeutic potential. Since hMSCs are adherent cells, the attachment surface and cell-adhesive components also play a crucial role on their successful expansion. This review focuses on the advantages/disadvantages of FBS-free media and surfaces/coatings that avoid the use of animal serum, overcoming ethical issues and improving the expansion of hMSC for clinical applications in a safe and reproducible way.
Collapse
|
18
|
Fajardo-Orduña GR, Mayani H, Castro-Manrreza ME, Flores-Figueroa E, Flores-Guzmán P, Arriaga-Pizano L, Piña-Sánchez P, Hernández-Estévez E, Castell-Rodríguez AE, Chávez-Rueda AK, Legorreta-Haquet MV, Santiago-Osorio E, Montesinos JJ. Bone Marrow Mesenchymal Stromal Cells from Clinical Scale Culture: In Vitro Evaluation of Their Differentiation, Hematopoietic Support, and Immunosuppressive Capacities. Stem Cells Dev 2017; 25:1299-310. [PMID: 27462977 DOI: 10.1089/scd.2016.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The differentiation capacity, hematopoietic support, and immunomodulatory properties of human bone marrow mesenchymal stromal cells (BM-MSCs) make them attractive therapeutic agents for a wide range of diseases. Clinical scale cultures (CSCs) have been used to expand BM-MSCs for their use in cell therapy protocols; however, little is known about the functionality of the expanded cells. The main goal of the present study was to evaluate the functional characteristics of BM-MSCs expanded from CSCs to determine the quality of the cells for cellular therapy protocols. To address this issue, we analyzed the morphology, immunophenotype, differentiation potential (adipogenic, osteogenic and chondrogenic), hematopoietic support, and immunosuppressive capacity of BM-MSCs from short scale cultures (SSCs) and CSCs in a comparative manner. After 12 days of culture in CSCs (HYPERFlask System), BM-MSCs reached cell numbers of 125.52 × 10(6) ± 25.6 × 10(6) MSCs, which corresponded to the number of cells required for transplantation (∼1.7 × 10(6) MSCs/kg for a 70-kg patient). After expansion, BM-MSCs expressed the characteristic markers CD73, CD90, and CD105; however, expansion decreased their differentiation capacity toward the adipogenic, osteogenic, and chondrogenic lineages and their ability to inhibit T-cell proliferation compared with SSCs-MSCs. Importantly, CSCs-MSCs maintained the ability to support the proliferation and expansion of hematopoietic progenitor cells and the capacity to express the molecules, cytokines, and extracellular matrix proteins involved in the regulation of hematopoiesis. Our study highlights the need to evaluate the functional properties of the expanded BM-MSCs for verification of their quality for cell therapy protocols.
Collapse
Affiliation(s)
- Guadalupe R Fajardo-Orduña
- 1 Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico .,2 Program in Biological Sciences of the National Autonomous University of Mexico (UNAM) , Mexico City, Mexico
| | - Héctor Mayani
- 3 Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | | | - Eugenia Flores-Figueroa
- 5 Niche and Hematopoietic Microenvironment Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | - Patricia Flores-Guzmán
- 3 Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | | | - Patricia Piña-Sánchez
- 7 Molecular Oncology Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | - Erika Hernández-Estévez
- 1 Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | | | - Adriana K Chávez-Rueda
- 9 Immunology Research Unit, Pediatric Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | - María V Legorreta-Haquet
- 9 Immunology Research Unit, Pediatric Hospital, National Medical Center , IMSS, Mexico City, Mexico
| | | | - Juan J Montesinos
- 1 Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center , IMSS, Mexico City, Mexico
| |
Collapse
|
19
|
Pal B, Das B. In vitro Culture of Naïve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Based Approach. Front Cell Dev Biol 2017; 5:69. [PMID: 28884113 PMCID: PMC5572382 DOI: 10.3389/fcell.2017.00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022] Open
Abstract
Human bone marrow derived mesenchymal stem cells (BM-MSCs) resides in their niches in close proximity to hematopoietic stem cells (HSCs). These naïve MSCs have tremendous potential in regenerative therapeutics, and may also be exploited by cancer and infectious disease agents. Hence, it is important to study the physiological and pathological roles of naïve MSC. However, our knowledge of naïve MSCs is limited by lack of appropriate isolation and in vitro culture methods. Established culture methods use serum rich media, and serial passaging for retrospective isolation of MSCs. These primed MSCs may not reflect the true physiological and pathological roles of naive MSCs (Figure 1). Therefore, there is a strong need for direct isolation and in vitro culture of naïve MSCs to study their stemness (self-renewal and undifferentiated state) and developmental ontogeny. We have taken a niche-based approach on stemness to better maintain naïve MSCs in vitro. In this approach, stemness is broadly divided as niche dependent (extrinsic), niche independent (intrinsic) and niche modulatory (altruistic or competitive). Using this approach, we were able to maintain naïve CD271+/CD133+ BM-MSCs for 2 weeks. Furthermore, this in vitro culture system helped us to identify naïve MSCs as a protective niche site for Mycobacterium tuberculosis, the causative organism of pulmonary tuberculosis. In this review, we discuss the in vitro culture of primed vs. naïve human BM derived MSCs with a special focus on how a stemness based approach could facilitate the study of naïve BM-MSCs.
Collapse
Affiliation(s)
- Bidisha Pal
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| | - Bikul Das
- Department of Immunology and Infectious Diseases, The Forsyth InstituteCambridge, MA, United States
- Department of Stem Cell Biology, KaviKrishna Laboratory, Guwahati Biotech Park, Indian Institute of TechnologyGuwahati, India
| |
Collapse
|
20
|
Leber J, Barekzai J, Blumenstock M, Pospisil B, Salzig D, Czermak P. Microcarrier choice and bead-to-bead transfer for human mesenchymal stem cells in serum-containing and chemically defined media. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
|
22
|
Varun D, Srinivasan GR, Tsai YH, Kim HJ, Cutts J, Petty F, Merkley R, Stephanopoulos N, Dolezalova D, Marsala M, Brafman DA. A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs). Acta Biomater 2017; 48:120-130. [PMID: 27989923 DOI: 10.1016/j.actbio.2016.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/03/2016] [Accepted: 10/26/2016] [Indexed: 12/22/2022]
Abstract
Despite therapeutic advances, neurodegenerative diseases and disorders remain some of the leading causes of mortality and morbidity in the United States. Therefore, cell-based therapies to replace lost or damaged neurons and supporting cells of the central nervous system (CNS) are of great therapeutic interest. To that end, human pluripotent stem cell (hPSC) derived neural progenitor cells (hNPCs) and their neuronal derivatives could provide the cellular 'raw material' needed for regenerative medicine therapies for a variety of CNS disorders. In addition, hNPCs derived from patient-specific hPSCs could be used to elucidate the underlying mechanisms of neurodegenerative diseases and identify potential drug candidates. However, the scientific and clinical application of hNPCs requires the development of robust, defined, and scalable substrates for their long-term expansion and neuronal differentiation. In this study, we rationally designed a vitronectin-derived peptide (VDP) that served as an adhesive growth substrate for the long-term expansion of several hNPC lines. Moreover, VDP-coated surfaces allowed for the directed neuronal differentiation of hNPC at levels similar to cells differentiated on traditional extracellular matrix protein-based substrates. Overall, the ability of VDP to support the long-term expansion and directed neuronal differentiation of hNPCs will significantly advance the future translational application of these cells in treating injuries, disorders, and diseases of the CNS.
Collapse
|
23
|
Pooled Human Serum Increases Regenerative Potential of In Vitro Expanded Stem Cells from Human Extracted Deciduous Teeth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:29-44. [PMID: 28730381 DOI: 10.1007/5584_2017_74] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In regenerative therapy, in vitro expansion of stem cells is critical to obtain a significantly higher number of cells for successful engraftment after transplantation. However, stem cells lose its regenerative potential and enter senescence during in vitro expansion. In this study, the influence of foetal bovine serum (FBS) and pooled human serum (pHS) on the proliferation, morphology and migration of stem cells from human extracted deciduous teeth (SHED) was compared. SHED (n = 3) was expanded in KnockOut DMEM supplemented with either pHS (pHS-SM) or FBS (FBS-SM). pHS was prepared using peripheral blood serum of six healthy male adults, aged between 21 and 35 years old. The number of live SHED was significantly higher, from passage 5 to 7, when cultured in pHS-SM compared to those cultured in FBS-SM (p < 0.05). Number of cells having flattened morphology, characteristics of partially differentiated and senescent cells, was significantly lower (p < 0.05) in pHS-SM (3%) compared to those in FBS-SM (7%). Furthermore, migration of SHED in pHS-SM was found to be more directional. The presence of selected ten paracrine factors known for their proliferation and migration potential was detected in all six individual human sera, used to produce pHS, none of which were detected in FBS. Ingenuity Pathway Analysis showed the possible involvement of the 'ephrin receptor signalling pathway' to regulate the proliferation and migration of SHED in pHS-SM. In conclusion, pHS-SM showed significantly higher proliferation rate and could maintain significantly lower number of senescent cells and support directional migration of cells.
Collapse
|
24
|
Karnieli O, Friedner OM, Allickson JG, Zhang N, Jung S, Fiorentini D, Abraham E, Eaker SS, Yong TK, Chan A, Griffiths S, Wehn AK, Oh S, Karnieli O. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 2016; 19:155-169. [PMID: 28017599 DOI: 10.1016/j.jcyt.2016.11.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 10/09/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
The cell therapy industry is a fast-growing industry targeted toward a myriad of clinical indications. As the cell therapy industry matures and clinical trials hit their pivotal Phase 3 studies, there will be a significant need for scale-up, process validation, and critical raw material quality assurance. Part of the well discussed challenges of upscaling manufacturing processes there is a less discussed issue relating to the availability of raw materials in the needed quality and quantities. The FDA recently noted that over 80% of the 66 investigational new drug (IND) applications for mesenchymal stem cell (MSC) products analyzed described the use of FBS during manufacturing. Accumulated data from the past years show an acceleration in serum consumption by at least 10%-15% annually, which suggests that the global demand for serum may soon exceed the supply. Ongoing concerns of safety issues due to risks of various pathogen contaminations, as well as issues related to the aforementioned serum variability that can affect final product reproducibility, are strong motivators to search for serum substitutes or serum-free media. it is important to note that there are no accepted definitions for most of these terms which leads to misleading's and misunderstandings, where the same term might be defined differently by different vendors, manufacturer, and users. It is the drug developer's responsibility to clarify what the supplied labels mean and to identify the correct questions and audits to ensure quality. The paper reviews the available serum replacements, main components, basic strategies for replacement of serum and suggests definitions.
Collapse
Affiliation(s)
| | | | - Julie G Allickson
- Regenerative Medicine Clinical Center, Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nan Zhang
- Hematology Branch, National Heart, Lung, and Blood Institute National Institute of Health, Bethesda, Maryland, USA
| | - Sunghoon Jung
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | | | - Eytan Abraham
- Cell Therapy Research & Technology Lonza Walkersville, Walkersville, Maryland, USA
| | - Shannon S Eaker
- GE Healthcare Cell Therapy Division, Marlborough, Massachusetts, USA
| | | | - Allan Chan
- Bioprocessing Technology Institute, Singapore
| | | | - Amy K Wehn
- Irvine Scientific, Santa Ana, California, USA
| | - Steve Oh
- Bioprocessing Technology Institute, Singapore
| | | |
Collapse
|
25
|
Wu X, Kang H, Liu X, Gao J, Zhao K, Ma Z. Serum and xeno-free, chemically defined, no-plate-coating-based culture system for mesenchymal stromal cells from the umbilical cord. Cell Prolif 2016; 49:579-88. [PMID: 27492579 DOI: 10.1111/cpr.12279] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/25/2016] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Umbilical cord mesenchymal stromal cells (UCMSCs) can be considered to become a new gold standard for MSC-based therapies. A serum and xeno-free, chemically defined and no-plate-coating-based culture system will greatly facilitate development of robust, clinically acceptable bioprocesses for reproducibly generating quality-assured UCMSCs. MATERIALS AND METHODS In this study, we report for the first time, such a serum-free, xeno-free, completely chemically defined and no-plate-coating-based culture system for the isolation and expansion of UCMSCs, whose biological characteristics were evaluated and compared with serum-containing medium (SCM) methods. RESULTS This culture system not only supported UCMSC primary cultures but also allowed for their expansion at low seeding density. Compared to SCM, UCMSCs in SFM exhibited (i) higher proliferative and colony-forming capacities; (ii) distinctly different morphologies; (iii) similar phenotype; (iv) similar pluripotency-associated marker expression; (v) superior osteogenic, but reduced adipogenic differentiation capacitities. In addition, UCMSCs cultured in SFM retained similar immunomodulatory properties to those in SCM. CONCLUSIONS Our findings demonstrate the feasibility of isolating and expanding UCMSCs in a completely serum-free, xeno-free, chemically defined and no-plate-coating-based culture system and represent an important step forward for development of robust, clinically acceptable bioprocesses for UCMSCs. Further, this provides a superior study platform for UCMSCs biology in a controlled environment.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Huiyan Kang
- Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Xuemin Liu
- Department of Technology, Beijing JingMeng Stem Cell Technology. Co. Ltd., Beijing, China
| | - Jin Gao
- Beijing Institute of Life Science Translational Medicine Research Center, Beijing, China.,Center for Tissue Engineering and Technology of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Kuijun Zhao
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhijie Ma
- Department of pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ, Punreddy S, Rook MS. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Tan KY, Teo KL, Lim JFY, Chen AKL, Choolani M, Reuveny S, Chan J, Oh SK. Serum-free media formulations are cell line-specific and require optimization for microcarrier culture. Cytotherapy 2016; 17:1152-65. [PMID: 26139547 DOI: 10.1016/j.jcyt.2015.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are being investigated as potential cell therapies for many different indications. Current methods of production rely on traditional monolayer culture on tissue-culture plastic, usually with the use of serum-supplemented growth media. However, the monolayer culturing system has scale-up limitations and may not meet the projected hundreds of billions to trillions batches of cells needed for therapy. Furthermore, serum-free medium offers several advantages over serum-supplemented medium, which may have supply and contaminant issues, leading to many serum-free medium formulations being developed. METHODS We cultured seven MSC lines in six different serum-free media and compared their growth between monolayer and microcarrier culture. RESULTS We show that (i) expansion levels of MSCs in serum-free monolayer cultures may not correlate with expansion in serum-containing media; (ii) optimal culture conditions (serum-free media for monolayer or microcarrier culture) differ for each cell line; (iii) growth in static microcarrier culture does not correlate with growth in stirred spinner culture; (iv) and that early cell attachment and spreading onto microcarriers does not necessarily predict efficiency of cell expansion in agitated microcarrier culture. CONCLUSIONS Current serum-free media developed for monolayer cultures of MSCs may not support MSC proliferation in microcarrier cultures. Further optimization in medium composition will be required for microcarrier suspension culture for each cell line.
Collapse
Affiliation(s)
- Kah Yong Tan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Jessica F Y Lim
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Allen K L Chen
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | | | - Steve Kw Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore.
| |
Collapse
|
28
|
Novosadova EV, Grivennikov IA. Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. BIOCHEMISTRY (MOSCOW) 2015; 79:1425-41. [DOI: 10.1134/s000629791413001x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, Melkoumian Z. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 2014; 9:e92120. [PMID: 24638103 PMCID: PMC3956887 DOI: 10.1371/journal.pone.0092120] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) present an attractive target for cell therapy given their wide availability, immunomodulatory properties, and multipotent nature for differentiation into chondrocytes, osteocytes, and adipocytes. With the progression of hMSC clinical studies, there is an increasing demand for development of technologies that enable efficient cell scale-up into clinically relevant quantities. Commercial scale manufacturing of hMSCs will require a large surface area which is not cost effective with available two-dimensional culture vessels. Recent studies showed that microcarriers provide a three-dimensional culture environment suitable for hMSC expansion. Traditionally, biological coatings and/or serum-containing medium are required to facilitate hMSC attachment and expansion in dynamic conditions. These limitations may hinder the use of microcarriers as a scale-up technology for hMSC therapeutics, where cell products, and therefore patient safety, are more controlled with the use of xeno-free, defined culture conditions. Here we report the long term culture of hMSCs on novel synthetic Synthemax II microcarriers in two different xeno-free media. Cells were maintained over 40 days on sterile, ready-to-use microcarriers in spinner flasks with programmed agitation. hMSC expansion was obtained by addition of fresh beads without the need for enzymatic dissociation. We achieved a cumulative cell expansion of >10,000 fold, and cells retained normal hMSC phenotype, karyotype, and tri-lineage differentiation potential. To our knowledge, this report is the first example of long term culture of hMSCs on synthetic microcarriers in xeno-free, defined conditions.
Collapse
Affiliation(s)
- Martial Hervy
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Jennifer L Weber
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - Marylene Pecheul
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Paula Dolley-Sonneville
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - David Henry
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Yue Zhou
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - Zara Melkoumian
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| |
Collapse
|
30
|
Alexander D, Rieger M, Klein C, Ardjomandi N, Reinert S. Selection of osteoprogenitors from the jaw periosteum by a specific animal-free culture medium. PLoS One 2013; 8:e81674. [PMID: 24349108 PMCID: PMC3857222 DOI: 10.1371/journal.pone.0081674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/17/2013] [Indexed: 12/29/2022] Open
Abstract
The goal of our research work is to establish mesenchymal osteoprogenitors derived from human jaw periosteum for tissue engineering applications in oral and maxillofacial surgery. For future autologous and/or allogeneic transplantations, some issues must be addressed. On the one hand, animal-free culture conditions have yet to be established. On the other hand, attempts should be undertaken to shorten the in vitro culturing process efficiently. The aim of the present study is to compare and analyze the phenotype of osteoprogenitors from the jaw periosteum under normal FCS-containing and animal-free culture conditions. Therefore, we analyzed the proliferation rates of MesenCult-XF medium (MC-) in comparison to DMEM-cultured JPCs. Whereas jaw periosteal cells (JPCs) show relatively slow proliferation rates and a fibroblastoid shape under DMEM culture conditions, MC-cultured JPCs diminished their cell size significantly and proliferated rapidly. By live-monitoring measurements of adhesion and proliferation, we made an interesting observation: whereas the proliferation of the MSCA-1+ subpopulation and the unseparated cell fraction were favored by the animal-free culture medium, the proliferation of the MSCA-1- subpopulation seemed to be repressed under these conditions. The alkaline phosphatase expression pattern showed similar results under both culture conditions. Comparison of the mineralization capacity revealed an earlier formation of calcium-phosphate precipitates under MC culture conditions; however, the mineralization capacity of the DMEM-cultured cells seemed to be higher. We conclude that the tested animal-free medium is suitable for the in vitro expansion and even for the specific selection of osteoprogenitor cells derived from the jaw periosteum.
Collapse
Affiliation(s)
- Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, Tübingen, Germany
- * E-mail:
| | - Melanie Rieger
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Christian Klein
- Department of Conservative Dentistry, University Hospital of Tübingen, Tübingen, Germany
- Dental practice Zahngesundheit Waiblingen, Waiblingen, Germany
| | - Nina Ardjomandi
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Siegmar Reinert
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|