1
|
Bansia H, Ramakumar S. Homology Modeling of Antibody Variable Regions: Methods and Applications. Methods Mol Biol 2023; 2627:301-319. [PMID: 36959454 DOI: 10.1007/978-1-0716-2974-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Adaptive immunity specifically protects us from antigenic challenges. Antibodies are key effector proteins of adaptive immunity, and they are remarkable in their ability to recognize a virtually limitless number of antigens. Fragment variable (FV), the antigen-binding region of antibodies, can be split into two main components, namely, framework and complementarity determining regions. The framework (FR) consists of light-chain framework (FRL) and heavy-chain framework (FRH). Similarly, the complementarity determining regions (CDRs) comprises of light-chain CDRs 1-3 (CDRs L1-3) and heavy-chain CDRs 1-3 (CDRs H1-3). While FRs are relatively constant in sequence and structure across diverse antibodies, sequence variation in CDRs leading to differential conformations of CDR loops accounts for the distinct antigenic specificities of diverse antibodies. The conserved structural features in FRs and conformity of CDRs to a limited set of standard conformations allow for the accurate prediction of FV models using homology modeling techniques. Antibody structure prediction from its amino acid sequence has numerous important applications including prediction of antibody-antigen interaction interfaces and redesign of therapeutically and biotechnologically useful antibodies with improved affinity. This chapter summarizes the current practices employed in the successful homology modeling of antibody variable regions and the potential applications of the generated homology models.
Collapse
Affiliation(s)
- Harsh Bansia
- Department of Physics, Indian Institute of Science, Bengaluru, India.
- Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA.
| | | |
Collapse
|
2
|
Qian H, Wang L, Li Y, Wang B, Li C, Fang L, Tang L. The traditional uses, phytochemistry and pharmacology of Abrus precatorius L.: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115463. [PMID: 35714881 DOI: 10.1016/j.jep.2022.115463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Abrus precatorius L. (AP) is a folk medicine with a long-term medicinal history worldwide, which is extensively applied to various ailments, such as bronchitis, jaundice, hepatitis, contraception, tumor, abortion, malaria, etc. Meanwhile, its leaves are also served as tea in China, and its roots are employed as a substitute for Glycyrrhiza uralensis or as a raw material for the extraction of glycyrrhizin in India. Thus, AP is considered to be a plant with dual values of medicine and economy as well as its chemical composition and biological activity, which are of growing interest to the scientific community. AIM OF REVIEW In the review, the traditional application, botany, chemical constituents, pharmacological activities, and toxicity are comprehensively and systematically summarized. MATERIALS AND METHODS An extensive database retrieval was conducted to gather the specific information about AP from 1871 to 2022 using online bibliographic databases Web of Science, PubMed, SciFinder, Google Scholar, CNKI, and Baidu Scholar. The search terms comprise the keywords "Abrus precatorius", "phytochemistry", "pharmacological activity", "toxicity" and "traditional application" as a combination. RESULTS To date, AP is traditionally used to treat various diseases, including sore throat, cough, bronchitis, jaundice, hepatitis, abdominal pain, contraception, tumor, abortion, malaria, and so on. More than 166 chemical compounds have been identified from AP, which primarily cover flavonoids, phenolics, terpenoids, steroids, alkaloids, organic acids, esters, proteins, polysaccharides, and so on. A wide range of in vitro and in vivo pharmacological functions of AP have been reported, such as antitumor, antimicrobial, insecticidal, antiprotozoal, antiparasitic, anti-inflammatory, antioxidant, immunomodulatory, antifertility, antidiabetic, other pharmacological activities. The crushed seeds in powder or paste form were comparatively toxic to humans and animals by oral administration. Interestingly, the methanolic extracts were non-toxic to adult Wistar albino rats at various doses (200 and 400 mg/kg) daily. CONCLUSIONS The review focuses on the traditional application, botany, phytochemistry, pharmacological activities, and toxicity of AP, which offers a valuable context for researchers on the current research status and a reference for further research and applications of this medicinal plant.
Collapse
Affiliation(s)
- Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China.
| | - Lu Wang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Bailing Wang
- College of Pharmacy, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chunyan Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Like Fang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| | - Lijie Tang
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang, 453000, China
| |
Collapse
|
3
|
Li Z, Xu H, Ma B, Luo L, Guo L, Zhang P, Zhao Y, Wang L, Xie J. Neutralizing Monoclonal Antibody, mAb 10D8, Is an Effective Detoxicant against Abrin-a Both In Vitro and In Vivo. Toxins (Basel) 2022; 14:toxins14030164. [PMID: 35324661 PMCID: PMC8955035 DOI: 10.3390/toxins14030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/05/2023] Open
Abstract
Abrin is a types II ribosome-inactivating protein (RIP) isolated from Abrus precatorious seeds, which comprises a catalytically active A chain and a lectin-like B chain linked by a disulfide bond. Four isotoxins of abrin have been reported with similar amino-acid composition but different cytotoxicity, of which abrin-a is the most potent toxin. High lethality and easy availability make abrin a potential bioterrorism agent. However, there are no antidotes available for managing abrin poisoning, and treatment is only symptomatic. Currently, neutralizing antibodies remain the most effective therapy against biotoxin poisoning. In this study, we prepared, identified, and acquired a high-affinity neutralizing monoclonal antibody (mAb) 10D8 with a potent pre- and post-exposure protective effect against cytotoxicity and animal toxicity induced by abrin-a or abrin crude extract. The mAb 10D8 could rescue the mouse injected intraperitoneally with a 25 × LD50 dose of abrin-a from lethality and prevent tissue damages. Results indicated that 10D8 does not prevent the binding and internalization of abrin-a to cells but inhibits the enzymatic activity of abrin-a and reduces protein synthesis inhibition of cells. The high affinity, good specificity, and potent antitoxic efficiency of 10D8 make it a promising candidate for therapeutic antibodies against abrin.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| | - Bo Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Li Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Pingping Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of POCT for Bioemergency and Clinic, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (P.Z.); (Y.Z.)
| | - Lili Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; (Z.L.); (B.M.); (L.L.); (L.G.); (L.W.)
- Correspondence: (H.X.); (J.X.); Tel.: +86-10-66930621 (H.X.); +86-10-68225893 (J.X.)
| |
Collapse
|
4
|
Equal Neutralization Potency of Antibodies Raised against Abrin Subunits. Antibodies (Basel) 2020; 9:antib9010004. [PMID: 32041179 PMCID: PMC7148520 DOI: 10.3390/antib9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 11/17/2022] Open
Abstract
Abrin and ricin are potent AB toxins, which are considered biological threats. To date, there are no approved treatments against abrin or ricin intoxications. Previously, we showed that the administration of polyclonal anti-abrin antibodies to mice that were intranasally exposed to abrin, even very late post-exposure, conferred an exceedingly high-level of protection, while following ricin intoxication, similar treatment with anti-ricin antibodies resulted in negligible survival rates. To probe this unexpected difference in protection ability, we first examined whether the efficient anti-abrin-induced protection was due to neutralization of the A-subunit responsible for the catalytic effect, or of the B-subunit, which enables binding/internalization, by evaluating the protection conferred by antibodies directed against one of the two subunits. To this end, we generated and immunized rabbits with chimeric toxins containing a single abrin subunit, AabrinBricin in which abrin A-subunit was linked to ricin B-subunit, and AricinBabrin in which ricin A-subunit is linked to abrin B-subunit. Here, we show that antibodies raised against either AabrinBricin or AricinBabrin conferred exceptionally high protection levels to mice following intranasal exposure to a a lethal dose of abrin, suggesting that the high level of protection conferred by anti-abrin antibodies is not related to the neutralization of a particular subunit.
Collapse
|
5
|
Bansia H, Bagaria S, Karande AA, Ramakumar S. Structural basis for neutralization of cytotoxic abrin by monoclonal antibody D6F10. FEBS J 2019; 286:1003-1029. [DOI: 10.1111/febs.14716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Harsh Bansia
- Department of Physics Indian Institute of Science Bengaluru India
| | - Shradha Bagaria
- Department of Biochemistry Indian Institute of Science Bengaluru India
| | | | | |
Collapse
|
6
|
Tiwari V, Bagaria S, Karande AA. A chimeric protein of abrin and Abrus precatorius agglutinin that neutralizes abrin mediated lethality in mice. Toxicon 2017; 127:122-129. [PMID: 28088476 DOI: 10.1016/j.toxicon.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Abrin, a type II ribosome inactivating protein from the Abrus precatorius plant, is extremely toxic. It has been shown to be 75 times more potent than its infamous sister toxin, ricin and their potential use in bio-warfare is a cause of major concern. Although several vaccine candidates are under clinical trials for ricin, none are available against abrin. The present study proposes a chimeric protein, comprising of 1-123 amino acids taken from the A chain of abrin and 124-175 amino acids from Abrus precatorius agglutinin A chain, as a vaccine candidate against abrin intoxication. The design was based on the inclusion of the immunogenic region of the full length protein and the minimal essential folding domains required for inducing neutralizing antibody response. The chimera also contains the epitope for the only two neutralizing antibodies; D6F10 and A7C4, reported against abrin till now. Active immunization with the chimera protected all the mice challenged with 45 X LD50 of abrin. Also, passive transfer of antibodies raised against the chimera rescued all mice challenged with 50 X LD50 of toxin. Hence the chimeric protein appears to be a promising vaccine candidate against abrin induced lethality.
Collapse
Affiliation(s)
- Vinita Tiwari
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Shradha Bagaria
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
7
|
Sarkes DA, Hurley MM, Stratis-Cullum DN. Unraveling the Roots of Selectivity of Peptide Affinity Reagents for Structurally Similar Ribosomal Inactivating Protein Derivatives. Molecules 2016; 21:E1504. [PMID: 27834872 PMCID: PMC6272918 DOI: 10.3390/molecules21111504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Peptide capture agents have become increasingly useful tools for a variety of sensing applications due to their ease of discovery, stability, and robustness. Despite the ability to rapidly discover candidates through biopanning bacterial display libraries and easily mature them to Protein Catalyzed Capture (PCC) agents with even higher affinity and selectivity, an ongoing challenge and critical selection criteria is that the peptide candidates and final reagent be selective enough to replace antibodies, the gold-standard across immunoassay platforms. Here, we have discovered peptide affinity reagents against abrax, a derivative of abrin with reduced toxicity. Using on-cell Fluorescence Activated Cell Sorting (FACS) assays, we show that the peptides are highly selective for abrax over RiVax, a similar derivative of ricin originally designed as a vaccine, with significant structural homology to abrax. We rank the newly discovered peptides for strongest affinity and analyze three observed consensus sequences with varying affinity and specificity. The strongest (Tier 1) consensus was FWDTWF, which is highly aromatic and hydrophobic. To better understand the observed selectivity, we use the XPairIt peptide-protein docking protocol to analyze binding location predictions of the individual Tier 1 peptides and consensus on abrax and RiVax. The binding location profiles on the two proteins are quite distinct, which we determine is due to differences in pocket size, pocket environment (including hydrophobicity and electronegativity), and steric hindrance. This study provides a model system to show that peptide capture candidates can be quite selective for a structurally similar protein system, even without further maturation, and offers an in silico method of analysis for understanding binding and down-selecting candidates.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Margaret M Hurley
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch, Sensors and Electron Devices Directorate, US Army Research Laboratory, Adelphi, MD 20783, USA.
| |
Collapse
|
8
|
Abraham A, Natraj U, Karande AA, Gulati A, Murthy MRN, Murugesan S, Mukunda P, Savithri HS. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles. Sci Rep 2016; 6:21803. [PMID: 26905902 PMCID: PMC4764859 DOI: 10.1038/srep21803] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/01/2016] [Indexed: 01/30/2023] Open
Abstract
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Collapse
Affiliation(s)
- Ambily Abraham
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Karnataka, India
| | - Ashutosh Gulati
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | - Mathur R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Karnataka, India
| | | | | | | |
Collapse
|
9
|
Kumar MS, Karande AA. A monoclonal antibody to an abrin chimera recognizing a unique epitope on abrin A chain confers protection from abrin-induced lethality. Hum Vaccin Immunother 2015; 12:124-31. [PMID: 26379120 PMCID: PMC4962719 DOI: 10.1080/21645515.2015.1067741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/22/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022] Open
Abstract
Abrin, obtained from the seeds of Abrus precatorius plant, is a potent toxin belonging to the family of type II ribosome-inactivating proteins. Recently, a recombinant vaccine consisting of the A subunits of abrin and its homolog Abrus precatorius agglutinin (APA) was demonstrated to protect mice from abrin lethality. Toward identifying neutralizing epitopes recognized during this response, we generated monoclonal antibodies against the proposed vaccine candidate. One antibody, namely A7C4, the corresponding epitope of which was found to be distal to the active site of the enzymatic A chain, prevented abrin-mediated toxicity on cells and abrin-induced lethality in mice but did not inhibit the catalytic activity of the A chain. The in vivo protection conferred by monoclonal antibody A7C4 highlights the potential use of this antibody as a promising immunotherapeutic.
Collapse
Affiliation(s)
- Meenakshi Sundaram Kumar
- Undergraduate Studies and Department of Biochemistry; Indian Institute of Science; Bangalore, Karnataka, India
| | - Anjali A Karande
- Department of Biochemistry; Indian Institute of Science; Bangalore, Karnataka, India
| |
Collapse
|
10
|
Zhang T, Kang L, Gao S, Yang H, Xin W, Wang J, Guo M, Wang J. Truncated abrin A chain expressed in Escherichia coli: a promising vaccine candidate. Hum Vaccin Immunother 2014; 10:2648-55. [PMID: 25483485 DOI: 10.4161/hv.29645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abrin toxin (AT) is a highly potent toxin, and is classified as one of the most important biological warfare and bioterrorism agents. There is currently no approved vaccine for AT. Therefore, the development of an effective vaccine is important in the prevention of intoxication by abrin. In this study, five vectors containing different gene of truncated abrin toxin A chain (tATA) fragments were constructed, and two of them (tATA1(1-126), tATA4(1-188)) were successfully expressed as a soluble form in E.coli strain. Both of the two tATA retained most of their immunogenicity with either low or no toxic effects as determined by both in vitro and in vivo assays. They were used to immunize BALB/c mice three times at an interval of three weeks apart. As a result, the tATA1 can elicite 80% protective efficacy against i.p. challenge of 5×LD50 of abrin, and the tATA4 provides a better protection, which can elicite 100% protective efficacy against intraperitoneal challenge of 40×LD50 of abrin. The superior fragment (tATA4(1-188)) should be considered as a promising vaccine candidate for further investigations.
Collapse
Key Words
- AU, absorbance unit
- BSA, bovine serum albumin
- E.coli, Escherichia coli
- IPTG, isopropyl-1-thio-β-galactopyranoside
- LD50, 50% lethal dose
- PBS, phosphate–buffered saline solution
- PCR, polymerase chain reaction
- SD, standard deviation
- abrin
- i.g., intragastric
- i.n., intranasal
- i.p., intraperitoneal/intraperitoneally
- immunity
- pAb, polyclonal antibody
- protection
- rATA, recombinant A chain of abrin toxin
- s.c., subcutaneous/subcutaneously
- tATA, truncated A chain of abrin toxin
- toxicity
- toxin
- truncated protein
- vaccine
Collapse
Affiliation(s)
- Tao Zhang
- a State Key Laboratory of Pathogen and Biosecurity ; The Institute of Microbiology and Epidemiology; Academy of Military Medical Sciences ; Beijing , PR China
| | | | | | | | | | | | | | | |
Collapse
|