1
|
Arce M, Venegas G, Paez K, Latz S, Navarrete P, Caruffo M, Feijoo C, García K, Bastías R. Valp1, a Newly Identified Temperate Phage Facilitating Coexistence of Lysogenic and Non-Lysogenic Populations of Vibrio anguillarum. Pathogens 2024; 13:285. [PMID: 38668240 PMCID: PMC11054321 DOI: 10.3390/pathogens13040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/29/2024] Open
Abstract
Vibrio anguillarum is a pathogen for several fish and shellfish species. Its ecology is influenced by diverse factors, including bacteriophages. Here, we identify and characterize a new temperate bacteriophage (Valp1) of V. anguillarum. Valp1 is a myovirus with a 60 nm head and a 90 nm contractile tail. Its double-stranded DNA genome of 42,988 bp contains 68 genes, including a protelomerase gene, typical of telomeric phages. Valp1 inhibits the growth of the virulent strain of V. anguillarum PF4, while the derived lysogenic strain P1.1 presents a slight reduction in its growth but is not affected by the presence of Valp1. Both strains present similar virulence in a larval zebrafish (Danio rerio) model, and only slight differences have been observed in their biochemical profile. Co-culture assays reveal that PF4 and P1.1 can coexist for 10 h in the presence of naturally induced Valp1, with the proportion of PF4 ranging between 28% and 1.6%. By the end of the assay, the phage reached a concentration of ~108 PFU/mL, and all the non-lysogenic PF4 strains were resistant to Valp1. This equilibrium was maintained even after five successive subcultures, suggesting the existence of a coexistence mechanism between the lysogenic and non-lysogenic populations of V. anguillarum in conjunction with the phage Valp1.
Collapse
Affiliation(s)
- Manuel Arce
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Guillermo Venegas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Karla Paez
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Simone Latz
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| | - Paola Navarrete
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Mario Caruffo
- Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago 8820000, Chile
| | - Carmen Feijoo
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Roberto Bastías
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340000, Chile; (M.A.)
| |
Collapse
|
2
|
Zhang X, Liang Y, Zheng K, Wang Z, Dong Y, Liu Y, Ren L, Wang H, Han Y, McMinn A, Sung YY, Mok WJ, Wong LL, He J, Wang M. Characterization and genomic analysis of phage vB_ValR_NF, representing a new viral family prevalent in the Ulva prolifera blooms. Front Microbiol 2023; 14:1161265. [PMID: 37213492 PMCID: PMC10196503 DOI: 10.3389/fmicb.2023.1161265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Vibrio is an important bacterial genus containing many pathogenic species. Although more and more Vibrio phages were isolated, the genome, ecology and evolution of Vibrio phages and their roles in bacteriophage therapy, have not been fully revealed. Methods Novel Vibrio phage vB_ValR_NF infecting Vibrio alginolyticus was isolated from the coastal waters of Qingdao during the Ulva prolifera blooms, Characterization and genomic feature of phage vB_ValR_NF has been analysed using phage isolation, sequencing and metagenome method. Results and Discussion Phage vB_ValR_NF has a siphoviral morphology (icosahedral head 114±1 nm in diameter; a tail length of 231±1 nm), a short latent period (30 minutes) and a large burst size (113 virions per cell), and the thermal/pH stability study showed that phage vB_ValR_NF was highly tolerant to a range of pHs (4-12) and temperatures (-20 - 45 °C), respectively. Host range analysis suggests that phage vB_ValR_NF not only has a high inhibitory ability against the host strain V. alginolyticus, but also can infect 7 other Vibrio strains. In addition, the phage vB_ValR_NF has a double-stranded 44, 507 bp DNA genome, with 43.10 % GC content and 75 open reading frames. Three auxiliary metabolic genes associated with aldehyde dehydrogenase, serine/threonine protein phosphatase and calcineurin-like phosphoesterase were predicted, might help the host V. alginolyticus occupy the survival advantage, thus improving the survival chance of phage vB_ValR_NF under harsh conditions. This point can be supported by the higher abundance of phage vB_ValR_NF during the U. prolifera blooms than in other marine environments. Further phylogenetic and genomic analysis shows that the viral group represented by Vibrio phage vB_ValR_NF is different from other well-defined reference viruses, and can be classified into a new family, named Ruirongviridae. In general, as a new marine phage infecting V. alginolyticus, phage vB_ValR_NF provides basic information for further molecular research on phage-host interactions and evolution, and may unravel a novel insight into changes in the community structure of organisms during the U. prolifera blooms. At the same time, its high tolerance to extreme conditions and excellent bactericidal ability will become important reference factors when evaluating the potential of phage vB_ValR_NF in bacteriophage therapy in the future.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jianfeng He
- Antarctic Great Wall Ecology National Observation and Research Station, MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Yantao Liang, ; Jianfeng He, ; Min Wang,
| |
Collapse
|
3
|
Gonçalves G, Santos RA, Coutinho F, Pedrosa N, Curado M, Machado M, Costas B, Bonneville L, Serrano M, Carvalho AP, Díaz-Rosales P, Oliva-Teles A, Couto A, Serra CR. Oral vaccination of fish against vibriosis using spore-display technology. Front Immunol 2022; 13:1012301. [PMID: 36311700 PMCID: PMC9608137 DOI: 10.3389/fimmu.2022.1012301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/29/2022] [Indexed: 10/06/2024] Open
Abstract
Oral vaccines are highly demanded by the aquaculture sector, to allow mass delivery of antigens without using the expensive and labor-intensive injectable vaccines. These later require individual handling of fish, provoking stress-related mortalities. One possible strategy to create injection-free vaccine delivery vehicles is the use of bacterial spores, extremely resistant structures with wide biotechnological applications, including as probiotics, display systems, or adjuvants. Bacterial spores, in particular those of Bacillus subtilis, have been shown to behave as mucosal vaccine adjuvants in mice models. However, such technology has not been extensively explored against fish bacterial disease. In this study, we used a laboratory strain of B. subtilis, for which a variety of genetic manipulation tools are available, to display at its spores surface either a Vibrio antigenic protein, OmpK, or the green fluorescence protein, GFP. When previously vaccinated by immersion with the OmpK- carrying spores, zebrafish survival upon a bacterial challenge with V. anguillarum and V. parahaemolyticus, increased up to 50 - 90% depending on the pathogen targeted. Further, we were able to detect anti-GFP-antibodies in the serum of European seabass juveniles fed diets containing the GFP-carrying spores and anti-V. anguillarum antibodies in the serum of European seabass juveniles fed the OmpK-carrying spores containing diet. More important, seabass survival was increased from 60 to 86% when previously orally vaccinated with in-feed OmpK- carrying spores. Our results indicate that B. subtilis spores can effectively be used as antigen-carriers for oral vaccine delivery in fish.
Collapse
Affiliation(s)
- Gabriela Gonçalves
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Rafaela A. Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Filipe Coutinho
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Neide Pedrosa
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Maria Curado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marina Machado
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benjamin Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lourenço Bonneville
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - Mónica Serrano
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Oeiras, Portugal
| | - António Paulo Carvalho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA, INIA-CSIC), Madrid, Spain
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| | - Ana Couto
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Cláudia R. Serra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto (CIMAR/CIIMAR), Matosinhos, Portugal
| |
Collapse
|
4
|
León M, Kokkari C, García K, Castillo D, Katharios P, Bastías R. Diversification of Vibrio anguillarum Driven by the Bacteriophage CHOED. Front Microbiol 2019; 10:1396. [PMID: 31281297 PMCID: PMC6596326 DOI: 10.3389/fmicb.2019.01396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023] Open
Abstract
Bacteriophages are an important factor in bacterial evolution. Some reports suggest that lytic bacteriophages can select for resistant mutant strains with reduced virulence. The present study explores the role of the CHOED bacteriophage in the diversification and virulence of its host Vibrio anguillarum. Nine phage-resistant strains were analyzed for their phenotype and different virulence factors, showing alterations in their fitness, motility, biofilm formation, lipopolysaccharide profiles and/or protease activity. Seven of the nine phage-resistant strains showed virulence reduction in a Sparus aurata larvae model. However, this is not generalized since two of the resistant strains show equal virulence compared with the parental strain. The genomic analysis of representative resistant strains displayed that the majority of the mutations are specific for each isolate, affecting genes related to lipopolysaccharide biosynthesis, quorum sensing, motility, toxin and membrane transport. The observed mutations were coherent with the phenotypic and virulence differences observed. These results suggest that the CHOED phage acts as a selective pressure on V. anguillarum, allowing proliferation of resistant strains with different genotypes, phenotypes and degrees of virulence, contributing to bacterial diversification.
Collapse
Affiliation(s)
- Marcela León
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, San Miguel, Chile
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Roberto Bastías
- Laboratorio de Microbiología, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Vadstein O, Attramadal KJK, Bakke I, Forberg T, Olsen Y, Verdegem M, Giatsis C, Skjermo J, Aasen IM, Gatesoupe FJ, Dierckens K, Sorgeloos P, Bossier P. Managing the Microbial Community of Marine Fish Larvae: A Holistic Perspective for Larviculture. Front Microbiol 2018; 9:1820. [PMID: 30210457 PMCID: PMC6119882 DOI: 10.3389/fmicb.2018.01820] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
The availability of high-quality juveniles is a bottleneck in the farming of many marine fish species. Detrimental larvae-microbe interactions are a main reason for poor viability and quality in larval rearing. In this review, we explore the microbial community of fish larvae from an ecological and eco-physiological perspective, with the aim to develop the knowledge basis for microbial management. The larvae are exposed to a huge number of microbes from external and internal sources in intensive aquaculture, but their relative importance depend on the rearing technology used (especially flow-through vs. recirculating systems) and the retention time of the water in the fish tanks. Generally, focus has been on microbes entering the system, but microbes from growth within the system is normally a substantial part of the microbes encountered by larvae. Culture independent methods have revealed an unexpected high richness of bacterial species associated with larvae, with 100-250 operational taxonomic units associated with one individual. The microbiota of larvae changes rapidly until metamorphosis, most likely due to changes in the selection pressure in the digestive tract caused by changes in host-microbe and microbe-microbe interactions. Even though the microbiota of larvae is distinctly different from the microbiota of the water and the live food, the microbiota of the water strongly affects the microbiota of the larvae. We are in the early phase of understanding larvae-microbe interactions in vivo, but some studies with other animals than fish emphasize that we so far have underestimated the complexity of these interactions. We present examples demonstrating the diversity of these interactions. A large variety of microbial management methods exist, focusing on non-selective reduction of microbes, selective enhancement of microbes, and on improvement of the resistance of larvae against microbes. However, relatively few methods have been studied extensively. We believe that there is a lot to gain by increasing the diversity of approaches for microbial management. As many microbial management methods are perturbations of the microbial community, we argue that ecological theory is needed to foresee and test for longer term consequences in microbe-microbe and microbe-larvae interactions. We finally make some recommendations for future research and development.
Collapse
Affiliation(s)
- Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari J. K. Attramadal
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Forberg
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yngvar Olsen
- Department of Biology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Marc Verdegem
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, Netherlands
| | - Cristos Giatsis
- Aquaculture and Fisheries Group, Wageningen University, Wageningen, Netherlands
| | - Jorunn Skjermo
- Department of Environment and New Resources, SINTEF Ocean, Trondheim, Norway
| | - Inga M. Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | | - Kristof Dierckens
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Patrick Sorgeloos
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Peter Bossier
- Faculty of Bioscience Engineering, Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
De Swaef E, Vercauteren M, Duchateau L, Haesebrouck F, Decostere A. Experimental infection model for vibriosis in Dover sole (Solea solea) larvae as an aid in studying its pathogenesis and alternative treatments. Vet Res 2018; 49:24. [PMID: 29482620 PMCID: PMC5828318 DOI: 10.1186/s13567-018-0520-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/09/2018] [Indexed: 12/26/2022] Open
Abstract
Severe economic losses due to diseases in marine larviculture may be linked to vibriosis. To better understand the pathogenesis of vibriosis and evaluate new ways to prevent and combat this important disease, there is a great need for reliable and reproducible experimental infection models. The present study aimed at developing a challenge model for vibriosis in Dover sole larvae and testing its applicability to study the effect of the probiotic treatment. For that purpose, larvae were challenged at 10 days post hatching with Vibrio anguillarum WT, V. anguillarum HI610 or V. harveyi WT. Following administration of V. anguillarum WT via immersion at 1 × 107 colony forming units/mL, a larval mortality of 50% was observed at 17 days post-inoculation. In a next step, the probiotic potential of 371 isolates retrieved from Dover sole was assessed by screening for their inhibitory effects against Vibrio spp. and absence of haemolytic activity. One remaining isolate (V. proteolyticus) and V. lentus, known for its protective characteristics in seabass larvae, were further tested in vivo by means of the pinpointed experimental infection model. Neither isolate provided via the water or feed proved to be protective for the Dover sole larvae against challenge with V. anguillarum WT. This developed challenge model constitutes a firm basis to expedite basic and applied research regarding the pathogenesis and treatment of vibriosis as well as for studying the impact of (a)biotic components on larval health.
Collapse
Affiliation(s)
- Evelien De Swaef
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Maaike Vercauteren
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Annemie Decostere
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
7
|
Rønneseth A, Castillo D, D'Alvise P, Tønnesen Ø, Haugland G, Grotkjaer T, Engell-Sørensen K, Nørremark L, Bergh Ø, Wergeland HI, Gram L. Comparative assessment of Vibrio virulence in marine fish larvae. JOURNAL OF FISH DISEASES 2017; 40:1373-1385. [PMID: 28160295 DOI: 10.1111/jfd.12612] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Vibrionaceae infections are a major obstacle for marine larviculture; however, little is known about virulence differences of Vibrio strains. The virulence of Vibrio strains, mostly isolated from vibriosis outbreaks in farmed fish, was tested in larval challenge trials with cod (Gadus morhua), turbot (Scophthalmus maximus) and halibut (Hippoglossus hippoglossus) using a multiwell dish assays with single-egg/larvae cultures. The strains differed significantly in virulence as some caused a high mortality of larva reaching 100% mortality after a few days, while others had no or only marginal effects on survival. Some Vibrio strains were pathogenic in all of the larva species, while some caused disease only in one of the species. Twenty-nine of the Vibrio anguillarum strains increased the mortality of larvae from at least one fish species; however, pathogenicity of the strains differed markedly. Other Vibrio species had no or less pronounced effects on larval mortalities. Iron uptake has been related to V. anguillarum virulence; however, the presence or absence of the plasmid pJM1 encoding anguibactin did not correlate with virulence. The genomes of V. anguillarum were compared (D. Castillo, P.W. D'Alvise, M. Middelboe & L. Gram, unpublished data) and most of the high-virulent strains had acquired virulence genes from other pathogenic Vibrio.
Collapse
Affiliation(s)
- A Rønneseth
- Department for Biology, University of Bergen, Bergen, Norway
| | - D Castillo
- Marine Biology Section, University of Copenhagen, Helsinore, Denmark
| | - P D'Alvise
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ø Tønnesen
- Department for Biology, University of Bergen, Bergen, Norway
| | - G Haugland
- Department for Biology, University of Bergen, Bergen, Norway
| | - T Grotkjaer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | - Ø Bergh
- Institute for Marine Research, Bergen, Norway
| | - H I Wergeland
- Department for Biology, University of Bergen, Bergen, Norway
| | - L Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
8
|
Kalatzis PG, Rørbo NI, Castillo D, Mauritzen JJ, Jørgensen J, Kokkari C, Zhang F, Katharios P, Middelboe M. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses 2017; 9:E122. [PMID: 28531104 PMCID: PMC5454434 DOI: 10.3390/v9050122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/03/2023] Open
Abstract
Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics.
Collapse
Affiliation(s)
- Panos G Kalatzis
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Nanna Iben Rørbo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | | | - Jóhanna Jørgensen
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Faxing Zhang
- Beijing Genomics Institute (BGI) Park, No.21 Hongan 3rd Street, Building NO. 7, Yantian District, Shenzhen 518083, China.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| |
Collapse
|
9
|
Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits. mSystems 2017; 2:mSystems00001-17. [PMID: 28293680 PMCID: PMC5347184 DOI: 10.1128/msystems.00001-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023] Open
Abstract
Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes. Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes.
Collapse
|
10
|
Holm KO, Nilsson K, Hjerde E, Willassen NP, Milton DL. Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia. Stand Genomic Sci 2015; 10:60. [PMID: 26380645 PMCID: PMC4572688 DOI: 10.1186/s40793-015-0060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 08/17/2015] [Indexed: 11/12/2022] Open
Abstract
Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.
Collapse
Affiliation(s)
- Kåre Olav Holm
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Kristina Nilsson
- />Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Department of Molecular Biology, 901 87 Umeå, SE Sweden
| | - Erik Hjerde
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Nils-Peder Willassen
- />Department of Chemistry, Faculty of Science and Technology, UiT: The Arctic University of Norway, 9037 Tromsø, NO Norway
| | - Debra L. Milton
- />Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Department of Molecular Biology, 901 87 Umeå, SE Sweden
| |
Collapse
|
11
|
Busschaert P, Frans I, Crauwels S, Zhu B, Willems K, Bossier P, Michiels C, Verstrepen K, Lievens B, Rediers H. Comparative genome sequencing to assess the genetic diversity and virulence attributes of 15 Vibrio anguillarum isolates. JOURNAL OF FISH DISEASES 2015; 38:795-807. [PMID: 25073650 DOI: 10.1111/jfd.12290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Vibrio anguillarum is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. However, the diversity and virulence mechanisms of this pathogen are still insufficiently known. In this study, we aimed to increase our understanding of V. anguillarum diversity and virulence through comparative genome analysis of 15 V. anguillarum strains, obtained from different hosts or non-host niches and geographical regions, among which 10 and 5 strains were found to be virulent and avirulent, respectively, against sea bass larvae. First, the 15 draft genomes were annotated and screened for putative virulence factors, including genes encoding iron uptake systems, transport systems and non-ribosomal peptide synthetases. Second, comparative genome analysis was performed, focusing on single nucleotide polymorphisms (SNPs) and small insertions and deletions (InDels). Five V. anguillarum strains showed a remarkably high nucleotide identity. However, these strains comprise both virulent and avirulent strains towards sea bass larvae, suggesting that differences in virulence may be caused by subtle nucleotide variations. Clearly, the draft genome sequence of these 15 strains represents a starting point for further genetic research of this economically important fish pathogen.
Collapse
Affiliation(s)
- P Busschaert
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - S Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - B Zhu
- VIB Lab for Systems Biology & Centre of Microbial and Plant Genetics (CMPG), Lab for Genetics and Genomics, M2S, KU Leuven, Leuven, Belgium
| | - K Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Centre, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Leuven, Belgium
| | - K Verstrepen
- VIB Lab for Systems Biology & Centre of Microbial and Plant Genetics (CMPG), Lab for Genetics and Genomics, M2S, KU Leuven, Leuven, Belgium
| | - B Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| | - H Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Cluster for Bioengineering Technology (CBeT), Department of Microbial and Molecular Systems (M2S), KU Leuven - Campus De Nayer, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
12
|
Li X, Defoirdt T, Bossier P. Relation between virulence of Vibrio anguillarum strains and response to the host factors mucin, bile salts and cholesterol. J Appl Microbiol 2015; 119:25-32. [PMID: 25807847 DOI: 10.1111/jam.12813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Abstract
AIMS In this study, we investigated the responsiveness of 15 Vibrio anguillarum strains to three host factors (mucin, bile salts and cholesterol). METHODS AND RESULTS Three virulence-related phenotypes were investigated in this respect, i.e. motility, biofilm formation and exopolysaccharide production. Almost all V. anguillarum strains showed a significantly increased motility in the presence of either of the three host factors. Only five of the strains showed increased biofilm formation in the presence of host factors and only three strains showed increased exopolysaccharide production in the presence of the host factors. CONCLUSIONS There were no significant correlations between the three putatively virulence-linked phenotypes (in the absence of host factors) and virulence to sea bass larvae. There was no correlation between responsiveness to the host factors (percentage increase in motility, biofilm formation or exopolysaccharide production in the presence of the three host factors) and virulence to sea bass larvae. However, the responses of these virulence-related phenotypes upon the addition of either of the three host factors were significantly correlated with each other. This result suggests that the mechanisms by which V. anguillarum responds to these three host factors is linked. SIGNIFICANCE AND IMPACT OF THE STUDY Although the mechanism by which V. anguillarum responds to the host factors mucin, bile salts and cholesterol seems to be linked, there is no correlation between host factor responsiveness and virulence towards sea bass larvae. This emphasizes that one should be careful when extrapolating results obtained for one particular strain to reach general conclusions on a species of pathogenic bacteria.
Collapse
Affiliation(s)
- X Li
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - T Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - P Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Ruiz P, Poblete M, Yáñez AJ, Irgang R, Toranzo AE, Avendaño-Herrera R. Cell-surface properties of Vibrio ordalii strains isolated from Atlantic salmon Salmo salar in Chilean farms. DISEASES OF AQUATIC ORGANISMS 2015; 113:9-23. [PMID: 25667332 DOI: 10.3354/dao02820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Vibrio ordalii is the causative agent of atypical vibriosis and has the potential to cause severe losses in salmonid aquaculture, but the factors determining its virulence have not yet been elucidated. In this work, cell-surface-related properties of the isolates responsible for outbreaks in Atlantic salmon were investigated. We also briefly examined whether pathogenicity against fish varied for V. ordalii strains with differing cell-surface properties. Hydrocarbon adhesions indicated the hydrophobic character of V. ordalii, although only 4 of 18 isolates induced haemagglutination in Atlantic salmon erythrocytes. A minority of the studied isolates (6 of 18) and the type strain ATCC 33509T produced low-grade biofilm formation on polyethylene surface after 2 h post-inoculation (hpi), but no strains were slime producers. Interestingly, V. ordalii isolates showed wide differences in hydrophobicity. Therefore, we chose 3 V. ordalii isolates (Vo-LM-03, Vo-LM-18 and Vo-LM-16) as representative of each hydrophobicity group (strongly hydrophobic, relatively hydrophobic and quasi-hydrophilic, respectively) and ATCC 33509T was used in the pathogenicity studies. All tested V. ordalii strains except the type strain resisted the killing activity of Atlantic salmon mucus and serum, and could proliferate in these components. Moreover, all V. ordalii isolates adhered to SHK-1 cells, causing damage to fish cell membrane permeability after 16 hpi. Virulence testing using rainbow trout revealed that isolate Vo-LM-18 was more virulent than isolates Vo-LM-03 and Vo-LM-16, indicating some relationship between haemagglutination and virulence, but not with hydrophobicity.
Collapse
Affiliation(s)
- P Ruiz
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | | | | | | | | | | |
Collapse
|
14
|
Mosca F, Ciulli S, Volpatti D, Romano N, Volpe E, Bulfon C, Massimini M, Caccia E, Galeotti M, Tiscar PG. Defensive response of European sea bass (Dicentrarchus labrax) against Listonella anguillarum or Photobacterium damselae subsp. piscicida experimental infection. Vet Immunol Immunopathol 2014; 162:83-95. [DOI: 10.1016/j.vetimm.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
|