1
|
Huang C, Li A, Pang Y, Yang J, Zhang J, Wu X, Mei L. How the intrinsic functional connectivity patterns of the semantic network support semantic processing. Brain Imaging Behav 2024; 18:539-554. [PMID: 38261218 DOI: 10.1007/s11682-024-00849-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Semantic processing, a core of language comprehension, involves the activation of brain regions dispersed extensively across the frontal, temporal, and parietal cortices that compose the semantic network. To comprehend the functional structure of this semantic network and how it prepares for semantic processing, we investigated its intrinsic functional connectivity (FC) and the relation between this pattern and semantic processing ability in a large sample from the Human Connectome Project (HCP) dataset. We first defined a well-studied brain network for semantic processing, and then we characterized the within-network connectivity (WNC) and the between-network connectivity (BNC) within this network using a voxel-based global brain connectivity (GBC) method based on resting-state functional magnetic resonance imaging (fMRI). The results showed that 97.73% of the voxels in the semantic network displayed considerably greater WNC than BNC, demonstrating that the semantic network is a fairly encapsulated network. Moreover, multiple connector hubs in the semantic network were identified after applying the criterion of WNC > 1 SD above the mean WNC of the semantic network. More importantly, three of these connector hubs (i.e., the left anterior temporal lobe, angular gyrus, and orbital part of the inferior frontal gyrus) were reliably associated with semantic processing ability. Our findings suggest that the three identified regions use WNC as the central mechanism for supporting semantic processing and that task-independent spontaneous connectivity in the semantic network is essential for semantic processing.
Collapse
Affiliation(s)
- Chengmei Huang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China
- School of Psychology, South China Normal University, Guangzhou, 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Che X, Lian H, Zhang F, Li S, Zheng Y. The Reactivation of working memory representations affects attentional guidance. Psychophysiology 2024; 61:e14514. [PMID: 38183326 DOI: 10.1111/psyp.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 11/19/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Recent studies have suggested that the neural activity that supported working memory (WM) storage is dynamic over time and this dynamic storage decides memory performance. Does the temporal dynamic of the WM representation also affect visual search, and how does it interact with distractor suppression over time? To address these issues, we tracked the time course of the reactivation of WM representations during visual search by analyzing the electroencephalogram (EEG) and event-related optical signals (EROS) in Experiments 1 and 2, respectively, and investigated the interaction between the representation reactivation and distractor suppression in Experiment 3. Participants had to maintain a color in WM under high- or low-precision requirement and perform a subsequent search task. The reactivation of WM representations was defined by the above-chance decoding accuracy. The EEG results showed that compared with the low-precision requirement, WM-matching distractors captured more attention and the WM representation were reactivated more frequently under high-precision requirement. The EROS results showed that compared with the low-precision requirement, the increased activity in occipital cortex in the WM-matching versus WM-mismatching conditions was observed at 224 ms during visual search under high-precision requirement. Regression analysis showed that the representation reactivation during visual search directly predicted the behavioral WM-based attentional capture effect, while the representation reactivation before visual search impacted the WM-based attentional capture effect through the mediation of distractor suppression during visual search. These results suggest that the reactivation of WM representations and distractor suppression collectively determine WM-based attentional capture.
Collapse
Affiliation(s)
- Xiaowei Che
- Department of Psychology, Shandong Normal University, Jinan, P. R. China
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Haomin Lian
- Department of Psychology, Shandong Normal University, Jinan, P. R. China
| | - Feiyan Zhang
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| | - Shouxin Li
- Department of Psychology, Shandong Normal University, Jinan, P. R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, P. R. China
| |
Collapse
|
4
|
Fantini S, Sassaroli A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front Neurosci 2020; 14:300. [PMID: 32317921 PMCID: PMC7154496 DOI: 10.3389/fnins.2020.00300] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/16/2020] [Indexed: 12/31/2022] Open
Abstract
This article reviews the basic principles of frequency-domain near-infrared spectroscopy (FD-NIRS), which relies on intensity-modulated light sources and phase-sensitive optical detection, and its non-invasive applications to the brain. The simpler instrumentation and more straightforward data analysis of continuous-wave NIRS (CW-NIRS) accounts for the fact that almost all the current commercial instruments for cerebral NIRS have embraced the CW technique. However, FD-NIRS provides data with richer information content, which complements or exceeds the capabilities of CW-NIRS. One example is the ability of FD-NIRS to measure the absolute optical properties (absorption and reduced scattering coefficients) of tissue, and thus the absolute concentrations of oxyhemoglobin and deoxyhemoglobin in brain tissue. This article reviews the measured values of such optical properties and hemoglobin concentrations reported in the literature for animal models and for the human brain in newborns, infants, children, and adults. We also review the application of FD-NIRS to functional brain studies that focused on slower hemodynamic responses to brain activity (time scale of seconds) and faster optical signals that have been linked to neuronal activation (time scale of 100 ms). Another example of the power of FD-NIRS data is related to the different regions of sensitivity featured by intensity and phase data. We report recent developments that take advantage of this feature to maximize the sensitivity of non-invasive optical signals to brain tissue relative to more superficial extracerebral tissue (scalp, skull, etc.). We contend that this latter capability is a highly appealing quality of FD-NIRS, which complements absolute optical measurements and may result in significant advances in the field of non-invasive optical sensing of the brain.
Collapse
Affiliation(s)
- Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | | |
Collapse
|
6
|
Mathewson KE, Beck DM, Ro T, Maclin EL, Low KA, Fabiani M, Gratton G. Dynamics of alpha control: preparatory suppression of posterior alpha oscillations by frontal modulators revealed with combined EEG and event-related optical signal. J Cogn Neurosci 2014; 26:2400-15. [PMID: 24702458 PMCID: PMC4291167 DOI: 10.1162/jocn_a_00637] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously, we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently recorded EEG, while participants performed a visual target detection task. The pretarget alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across participants. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks before posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli.
Collapse
Affiliation(s)
- Kyle E. Mathewson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Diane M. Beck
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Tony Ro
- Department of Psychology, The City College of the City University of New York
| | - Edward L. Maclin
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Kathy A. Low
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Department of Psychology, University of Illinois at Urbana-Champaign
| |
Collapse
|