1
|
Lynch MM, Al-Marayaty R, Obeidin F, Alexiev BA, Chen EY, Viveiros P, Schroeder BA, Hudkins K, Fan TM, Redman MW, Baker KK, Jour G, Cranmer LD, Pollack SM. B7-H3 is widely expressed in soft tissue sarcomas. BMC Cancer 2024; 24:1336. [PMID: 39478506 PMCID: PMC11523878 DOI: 10.1186/s12885-024-13061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
PURPOSE Targeted therapy development in soft tissue sarcoma (STS) has been burdened by the heterogeneity of this group of rare tumors. B7 homolog 3 protein (B7-H3) is a molecule in the same family as programmed death-ligand 1 (PD-L1). It has limited expression in noncancerous tissues and is overexpressed in many cancers, making it an attractive target for cancer therapy, and clinical trials targeting B7-H3 are actively underway. While available data demonstrate high expression levels of B7-H3 in individual sarcoma subtypes, its expression patterns across STS subtypes are not well described. The purpose of this study was to characterize the expression patterns of B7-H3 in STS. PATIENTS AND METHODS This retrospective analysis evaluated STS tumor specimens from patients with a variety of different subtypes. Specimens were evaluated by immunohistochemistry (IHC) for expression and staining pattern of B7-H3 both in tumors and in associated vasculature. RESULTS Specimens from 153 sarcoma patients included 15 different STS subtypes. B7-H3 was broadly expressed in 97% of samples (95% CI 0.93-0.99) and 69.2% demonstrated high levels of B7-H3 expression (95% CI 0.61-0.76). No significant association between B7-H3 positivity or expression level and prior treatment(s), tumor size, tumor grade, or patient age. B7-H3 positivity in vessels was found in 94.7% (145/153) of samples. In tumors that had been previously assessed for PD-L1 and PD-1, there was no correlation between B7-H3 positivity or expression and the positivity or expression level of PD-L1 or PD-1. CONCLUSION These data show high levels of B7-H3 positivity across soft tissue sarcoma subtypes, suggesting its feasibility as a therapeutic target for future sarcoma treatments. Future clinical trials are needed to evaluate whether targeting B7-H3 can provide clinical benefit to help patients with sarcoma.
Collapse
Affiliation(s)
- Meghan M Lynch
- Department of Internal Medicine, Northwestern University, Chicago, IL, USA
| | - Rusul Al-Marayaty
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA
| | - Farres Obeidin
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Pedro Viveiros
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA
| | | | - Kelly Hudkins
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Mary W Redman
- Department of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kelsey K Baker
- Department of Clinical Biostatistics, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - George Jour
- Department of Pathology, New York University, New York, NY, USA
| | - Lee D Cranmer
- Division of Medical Oncology, University of Washington and Clinical Research Division of the Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Seth M Pollack
- Department of Medicine, Division of Oncology, Northwestern University, 303 E. Superior St. #3-115, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S, DeRenzo C. Redirecting B7-H3.CAR T Cells to Chemokines Expressed in Osteosarcoma Enhances Homing and Antitumor Activity in Preclinical Models. Clin Cancer Res 2024; 30:4434-4449. [PMID: 39101835 PMCID: PMC11443211 DOI: 10.1158/1078-0432.ccr-23-3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Collapse
MESH Headings
- Osteosarcoma/immunology
- Osteosarcoma/therapy
- Osteosarcoma/pathology
- Osteosarcoma/genetics
- Animals
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/immunology
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Xenograft Model Antitumor Assays
- Chemokines/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cell Movement
Collapse
Affiliation(s)
- Lindsay J Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aaron B Ross
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra Beckett
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Shepphard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
3
|
Zeng F, Li C, Wang H, Wang Y, Ren T, He F, Jiang J, Xu J, Wang B, Wu Y, Yu Y, Hu Z, Tian J, Wang S, Tang X. Intraoperative Resection Guidance and Rapid Pathological Diagnosis of Osteosarcoma using B7H3 Targeted Probe under NIR-II Fluorescence Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310167. [PMID: 38502871 PMCID: PMC11434027 DOI: 10.1002/advs.202310167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/31/2024] [Indexed: 03/21/2024]
Abstract
Complete removal of all tumor tissue with a wide surgical margin is essential for the treatment of osteosarcoma (OS). However, it's difficult, sometimes impossible, to achieve due to the invisible small satellite lesions and blurry tumor boundaries. Besides, intraoperative frozen-section analysis of resection margins of OS is often restricted by the hard tissues around OS, which makes it impossible to know whether a negative margin is achieved. Any unresected small tumor residuals will lead to local recurrence and worse prognosis. Herein, based on the high expression of B7H3 in OS, a targeted probe B7H3-IRDye800CW is synthesized by conjugating anti-B7H3 antibody and IRDye800CW. B7H3-IRDye800CW can accurately label OS areas after intravenous administration, thereby helping surgeons identify and resect residual OS lesions (<2 mm) and lung metastatic lesions. The tumor-background ratio reaches 4.42 ± 1.77 at day 3. After incubating fresh human OS specimen with B7H3-IRDye800CW, it can specifically label the OS area and even the microinvasion area (confirmed by hematoxylin-eosin [HE] staining). The probe labeled area is consistent with the tumor area shown by magnetic resonance imaging and complete HE staining of the specimen. In summary, B7H3-IRDye800CW has translational potential in intraoperative resection guidance and rapid pathological diagnosis of OS.
Collapse
Affiliation(s)
- Fanwei Zeng
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Changjian Li
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
| | - Han Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Fangzhou He
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Jiang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Wu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Yiyang Yu
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jie Tian
- School of Engineering Medicine & Key Laboratory of Big Data-Based Precision Medicine, Beihang University, Ministry of Industry and Information Technology, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shidong Wang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor & Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
4
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
5
|
Park R, Yu J, Shahzad M, Lee S, Ji JD. The immune regulatory function of B7-H3 in malignancy: spotlight on the IFN-STAT1 axis and regulation of tumor-associated macrophages. Immunol Res 2024; 72:526-537. [PMID: 38265550 DOI: 10.1007/s12026-024-09458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
B7-H3 is a member of the B7 superfamily and a putative inhibitory immune checkpoint molecule. Several early-phase clinical trials have reported promising anti-tumor activity and safety of anti-cancer drugs targeting B7-H3, suggesting that it may be a promising target for a potential next-generation immune checkpoint inhibitor. Despite ongoing clinical studies, most B7-H3-targeted drugs being currently investigated rely on direct cytotoxicity as their mechanisms of action rather than modulating its function as an immune checkpoint, at least in part due to its incompletely understood immune regulatory function. Recent studies have begun to elucidate the role of B7-H3 in regulating the tumor microenvironment (TME). Emerging evidence suggests that B7-H3 may regulate the interferon-STAT1 axis in the TME and promote immune suppression. Similarly, increasing evidence shows B7-H3 may be implicated in promoting M1 to M2 polarization of tumor-associated macrophages (TAMs). There is also accumulating evidence suggesting that B7-H3 may play a role in the heterotypic fusion of cancer stem cells and macrophages, thereby promoting tumor invasion and metastasis. Here, we review the recent advances in the understanding of B7-H3 cancer immunobiology with a focus on highlighting its potential role in the interferon priming of TAMs and the heterotypic fusion of TAMs with cancer stem cells and suggest future direction in elucidating its immune checkpoint function.
Collapse
Affiliation(s)
- Robin Park
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - James Yu
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Moazzam Shahzad
- Department of Hematology/Oncology, Moffitt Cancer Center/University of South Florida, Tampa, FL, USA
| | - Sunggon Lee
- Department of Internal Medicine, Korea University, Seoul, South Korea
| | - Jong Dae Ji
- Department of Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Lake JA, Woods E, Hoffmeyer E, Schaller KL, Cruz-Cruz J, Fernandez J, Tufa D, Kooiman B, Hall SC, Jones D, Hayashi M, Verneris MR. Directing B7-H3 chimeric antigen receptor T cell homing through IL-8 induces potent antitumor activity against pediatric sarcoma. J Immunother Cancer 2024; 12:e009221. [PMID: 39043604 PMCID: PMC11268054 DOI: 10.1136/jitc-2024-009221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Advances in pediatric oncology have occurred for some cancers; however, new therapies for sarcoma have been inadequate. Cellular immunotherapy using chimeric antigen receptor (CAR) T cells has shown dramatic benefits in leukemia, lymphoma, and multiple myeloma but has been far less successful in pediatric solid tumors such as rhabdomyosarcoma (RMS) and osteosarcoma (OS). Balancing issues of "on-target, off-tumor toxicity", investigators have identified B7-H3 as a broadly expressed tumor antigen with otherwise restricted expression on normal tissues. We hypothesized that rapid homing via a chemokine receptor and CAR engagement through B7-H3 would enhance CAR T cell efficacy in solid tumors. METHODS We generated B7-H3 CAR T cells that also express the Interleukin-8 (IL-8) receptor, CXCR2. Cytokine production, flow cytometry, Seahorse assays and RNA sequencing were used to compare the B7-H3 CXCR2 (BC2) CAR T cells with B7-H3 CAR T cells. We developed an IL-8 overexpressing human RMS mouse model to test homing and cytotoxicity in vivo. RESULTS We demonstrate that IL-8 is expressed by RMS and OS and expression significantly increases after radiation. Overexpression of an IL-8 receptor, CXCR2, on B7-H3 CAR T cells enhances homing into IL-8 expressing tumors, augments T cell metabolism and leads to significant tumor regression. CONCLUSION These findings warrant further investigation into the use of BC2 CAR T cells as a treatment for patients with RMS, OS and other B7-H3-expressing, IL-8 producing solid tumors.
Collapse
Affiliation(s)
- Jessica A Lake
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elena Woods
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric Hoffmeyer
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin L Schaller
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joselyn Cruz-Cruz
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joseph Fernandez
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dejene Tufa
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Benjamin Kooiman
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Spencer C Hall
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Dallas Jones
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Masanori Hayashi
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael R Verneris
- Department of Pediatric Hematology, Oncology, BMT, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Griffin K, Mizenko R, Arun V, Carney RP, Leach JK. Extracellular Vesicles from Highly Metastatic Osteosarcoma Cells Induce Pro-Tumorigenic Macrophage Phenotypes. Adv Biol (Weinh) 2024; 8:e2300577. [PMID: 38596830 PMCID: PMC11178448 DOI: 10.1002/adbi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Metastasis is the principal factor in poor prognosis for individuals with osteosarcoma (OS). Understanding the events that lead to metastasis is critical to develop better interventions for this disease. Alveolar macrophages are potentially involved in priming the lung microenvironment for OS metastasis, yet the mechanisms involved in this process remain unclear. Since extracellular vesicles (EVs) are a known actor in primary tumor development, their potential role in OS metastagenesis through macrophage modulation is explored here. The interaction of EVs isolated from highly metastatic (K7M2) and less metastatic (K12) osteosarcoma cell lines is compared with a peritoneal macrophage cell line. An EV concentration that reproducibly induced macrophage migration is identified first, then used for later experiments. By confocal microscopy, both EV types associated with M0 or M1 macrophages; however, only K7M2-EVs are associated with M2 macrophages, an interaction that is abrogated by EV pre-treatment with anti-CD47 antibody. Interestingly, all interactions appeared to be surface binding, not internalized. In functional studies, K7M2-EVs polarized fewer macrophages to M1. Together, these data suggest that K7M2-EVs have unique interactions with macrophages that can contribute to the production of a higher proportion of pro-tumor type macrophages, thereby accelerating metastasis.
Collapse
Affiliation(s)
- Katherine Griffin
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
| | - Rachel Mizenko
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Vishalakshi Arun
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Randy P. Carney
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - J. Kent Leach
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| |
Collapse
|
8
|
Holzmayer SJ, Liebel K, Hagelstein I, Salih HR, Märklin M. The bispecific B7H3xCD3 antibody CC-3 induces T cell immunity against bone and soft tissue sarcomas. Front Immunol 2024; 15:1391954. [PMID: 38765008 PMCID: PMC11099233 DOI: 10.3389/fimmu.2024.1391954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Sarcomas are rare and heterogeneous malignancies that are difficult to treat. Approximately 50% of patients diagnosed with sarcoma develop metastatic disease with so far very limited treatment options. The transmembrane protein B7-H3 reportedly is expressed in various malignancies, including different sarcoma subtypes. In several cancer entities B7-H3 expression is associated with poor prognosis. In turn, B7-H3 is considered a promising target for immunotherapeutic approaches. We here report on the preclinical characterization of a B7-H3xCD3 bispecific antibody in an IgG-based format, termed CC-3, for treatment of different sarcoma subtypes. We found B7-H3 to be expressed on all sarcoma cells tested and expression on sarcoma patients correlated with decreased progression-free and overall survival. CC-3 was found to elicit robust T cell responses against multiple sarcoma subtypes, resulting in significant activation, release of cytokines and effector molecules. In addition, CC-3 promoted T cell proliferation and differentiation, resulting in the generation of memory T cell subsets. Finally, CC-3 induced potent target cell lysis in a target cell restricted manner. Based on these results, a clinical trial evaluating CC-3 in soft tissue sarcoma is currently in preparation.
Collapse
Affiliation(s)
- Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Kai Liebel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK); Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Stefańczyk SA, Hagelstein I, Lutz MS, Müller S, Holzmayer SJ, Jarjour G, Zekri L, Heitmann JS, Salih HR, Märklin M. Induction of NK cell reactivity against acute myeloid leukemia by Fc-optimized CD276 (B7-H3) antibody. Blood Cancer J 2024; 14:67. [PMID: 38637557 PMCID: PMC11026476 DOI: 10.1038/s41408-024-01050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
Acute myeloid leukemia (AML) remains a therapeutic challenge despite recent therapeutic advances. Although monoclonal antibodies (mAbs) engaging natural killer (NK) cells via antibody-dependent cellular cytotoxicity (ADCC) hold promise in cancer therapy, almost none have received clinical approval for AML, so far. Recently, CD276 (B7-H3) has emerged as a promising target for AML immunotherapy, due to its high expression on leukemic blasts of AML patients. Here, we present the preclinical development of the Fc-optimized CD276 mAb 8H8_SDIE with enhanced CD16 affinity. We demonstrate that 8H8_SDIE specifically binds to CD276 on AML cell lines and primary AML cells and induces pronounced NK cell activation and degranulation as measured by CD69, CD25, and CD107a. Secretion of IFNγ, TNF, granzyme B, granulysin, and perforin, which mediate NK cell effector functions, was induced by 8H8_SDIE. A pronounced target cell-restricted lysis of AML cell lines and primary AML cells was observed in cytotoxicity assays using 8H8_SDIE. Finally, xenograft models with 8H8_SDIE did not cause off-target immune activation and effectively inhibited leukemia growth in vivo. We here present a novel attractive immunotherapeutic compound that potently induces anti-leukemic NK cell reactivity in vitro and in vivo as treatment option for AML.
Collapse
Affiliation(s)
- Sylwia A Stefańczyk
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martina S Lutz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefanie Müller
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Samuel J Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Grace Jarjour
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Cao JW, Lake J, Impastato R, Chow L, Perez L, Chubb L, Kurihara J, Verneris MR, Dow S. Targeting osteosarcoma with canine B7-H3 CAR T cells and impact of CXCR2 Co-expression on functional activity. Cancer Immunol Immunother 2024; 73:77. [PMID: 38554158 PMCID: PMC10981605 DOI: 10.1007/s00262-024-03642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/25/2024] [Indexed: 04/01/2024]
Abstract
The use of large animal spontaneous models of solid cancers, such as dogs with osteosarcoma (OS), can help develop new cancer immunotherapy approaches, including chimeric antigen receptor (CAR) T cells. The goal of the present study was to generate canine CAR T cells targeting the B7-H3 (CD276) co-stimulatory molecule overexpressed by several solid cancers, including OS in both humans and dogs, and to assess their ability to recognize B7-H3 expressed by canine OS cell lines or by canine tumors in xenograft models. A second objective was to determine whether a novel dual CAR that expressed a chemokine receptor together with the B7-H3 CAR improved the activity of the canine CAR T cells. Therefore, in the studies reported here we examined B7-H3 expression by canine OS tumors, evaluated target engagement by canine B7-H3 CAR T cells in vitro, and compared the relative effectiveness of B7-H3 CAR T cells versus B7-H3-CXCR2 dual CAR T cells in canine xenograft models. We found that most canine OS tumors expressed B7-H3; whereas, levels were undetectable on normal dog tissues. Both B7-H3 CAR T cells demonstrated activation and OS-specific target killing in vitro, but there was significantly greater cytokine production by B7-H3-CXCR2 CAR T cells. In canine OS xenograft models, little anti-tumor activity was generated by B7-H3 CAR T cells; whereas, B7-H3-CXCR2 CAR T cells significantly inhibited tumor growth, inducing complete tumor elimination in most treated mice. These findings indicated therefore that addition of a chemokine receptor could significantly improve the anti-tumor activity of canine B7-H3 CAR T cells, and that evaluation of this new dual CAR construct in dogs with primary or metastatic OS is warranted since such studies could provide a critical and realistic validation of the chemokine receptor concept.
Collapse
Affiliation(s)
- Jennifer W Cao
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA
| | - Jessica Lake
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA
| | - Renata Impastato
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luisanny Perez
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laura Chubb
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael R Verneris
- Department of Pediatrics, Center for Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower 12800 E. 19th Ave. Mail Stop 8302, Room P18-4108, Aurora, CO, 80045, USA.
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Campus Delivery 1678, Fort Collins, CO, USA.
- Department of Clinical Sciences, Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
11
|
Li G, Wang H, Meftahpour V. Overall review of curative impact and barriers of CAR-T cells in osteosarcoma. EXCLI JOURNAL 2024; 23:364-383. [PMID: 38655095 PMCID: PMC11036068 DOI: 10.17179/excli2023-6760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/26/2024]
Abstract
Osteosarcoma (OS) is a rare form of cancer and primary bone malignancy in children and adolescents. Current therapies include surgery, chemotherapy, and amputation. Therefore, a new therapeutic strategy is needed to dramatically change cancer treatment. Recently, chimeric antigen receptor T cells (CAR-T cells) have been of considerable interest as it has provided auspicious results and patients suffering from low side effects after injection that resolve with current therapy. However, there are reports that cytokine release storm (CRS) can be observed in some patients. In addition, as researchers have faced problems that limit and suppress T cells, further studies are required to resolve these problems. In addition, to maximize the therapeutic benefit of CAR-T cell therapy, researchers have suggested that combination therapy could be better used to treat cancer by overcoming any problems and reducing side effects as much as possible. This review summarizes these problems, barriers, and the results of some studies on the evaluation of CAR-T cells in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guilin Li
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Hong Wang
- Xinyang Vocational and Technical College, Xinyang Henan 464000 China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Jiang Y, Liu J, Chen L, Qian Z, Zhang Y. A promising target for breast cancer: B7-H3. BMC Cancer 2024; 24:182. [PMID: 38326735 PMCID: PMC10848367 DOI: 10.1186/s12885-024-11933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer (BC) is the second-leading factor of mortality for women globally and is brought on by a variety of genetic and environmental causes. The conventional treatments for this disease have limitations, making it difficult to improve the lifespan of breast cancer patients. As a result, extensive research has been conducted over the past decade to find innovative solutions to these challenges. Targeting of the antitumor immune response through the immunomodulatory checkpoint protein B7 family has revolutionized cancer treatment and led to intermittent patient responses. B7-H3 has recently received attention because of its significant demodulation and its immunomodulatory effects in many cancers. Uncontrolled B7-H3 expression and a bad outlook are strongly associated, according to a substantial body of cancer research. Numerous studies have shown that BC has significant B7-H3 expression, and B7-H3 induces an immune evasion phenotype, consequently enhancing the survival, proliferation, metastasis, and drug resistance of BC cells. Thus, an innovative target for immunotherapy against BC may be the B7-H3 checkpoint.In this review, we discuss the structure and regulation of B7-H3 and its double costimulatory/coinhibitory function within the framework of cancer and normal physiology. Then we expound the malignant behavior of B7-H3 in BC and its role in the tumor microenvironment (TME) and finally focus on targeted drugs against B7-H3 that have opened new therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Care Hospital, Women's Hospital of Jiangnan University, Jiangnan University, Wuxi, 214002, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi, 214000, China.
| |
Collapse
|
13
|
Meenakshi S, Maharana KC, Nama L, Vadla UK, Dhingra S, Ravichandiran V, Murti K, Kumar N. Targeting Histone 3 Variants Epigenetic Landscape and Inhibitory Immune Checkpoints: An Option for Paediatric Brain Tumours Therapy. Curr Neuropharmacol 2024; 22:1248-1270. [PMID: 37605389 PMCID: PMC10964098 DOI: 10.2174/1570159x21666230809110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 08/23/2023] Open
Abstract
Despite little progress in survival rates with regular therapies, which do not provide complete care for curing pediatric brain tumors (PBTs), there is an urgent need for novel strategies to overcome the toxic effects of conventional therapies to treat PBTs. The co-inhibitory immune checkpoint molecules, e.g., CTLA-4, PD-1/PD-L1, etc., and epigenetic alterations in histone variants, e.g., H3K27me3 that help in immune evasion at tumor microenvironment have not gained much attention in PBTs treatment. However, key epigenetic mechanistic alterations, such as acetylation, methylation, phosphorylation, sumoylation, poly (ADP)-ribosylation, and ubiquitination in histone protein, are greatly acknowledged. The crucial checkpoints in pediatric brain tumors are cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1) and programmed death-ligand 1 (PDL1), OX-2 membrane glycoprotein (CD200), and indoleamine 2,3-dioxygenase (IDO). This review covers the state of knowledge on the role of multiple co-inhibitory immunological checkpoint proteins and histone epigenetic alterations in different cancers. We further discuss the processes behind these checkpoints, cell signalling, the current scenario of clinical and preclinical research and potential futuristic opportunities for immunotherapies in the treatment of pediatric brain tumors. Conclusively, this article further discusses the possibilities of these interventions to be used for better therapy options.
Collapse
Affiliation(s)
- Sarasa Meenakshi
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Udaya Kumar Vadla
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Velayutham Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali- 844102, Bihar, India
| |
Collapse
|
14
|
Timpanaro A, Piccand C, Dzhumashev D, Anton-Joseph S, Robbi A, Moser J, Rössler J, Bernasconi M. CD276-CAR T cells and Dual-CAR T cells targeting CD276/FGFR4 promote rhabdomyosarcoma clearance in orthotopic mouse models. J Exp Clin Cancer Res 2023; 42:293. [PMID: 37924157 PMCID: PMC10625270 DOI: 10.1186/s13046-023-02838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. METHODS Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. RESULTS CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. CONCLUSIONS CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Andrea Robbi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Janine Moser
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland.
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
15
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
16
|
Hidalgo L, Somovilla-Crespo B, Garcia-Rodriguez P, Morales-Molina A, Rodriguez-Milla MA, Garcia-Castro J. Switchable CAR T cell strategy against osteosarcoma. Cancer Immunol Immunother 2023; 72:2623-2633. [PMID: 37062034 PMCID: PMC10361906 DOI: 10.1007/s00262-023-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Immunotherapy with chimeric antigen receptor T (CAR T) cells has changed the treatment of hematological malignances, but they are still a challenge for solid tumors, including pediatric sarcomas. Here, we report a switchable CAR T cell strategy based on anti-FITC CAR T cells and a switch molecule conjugated with FITC for targeting osteosarcoma (OS) tumors. As a potential target, we analyzed the expression of B7-H3, an immune checkpoint inhibitor, in OS cell lines. In addition, we evaluate the capacity of an anti-B7-H3 monoclonal antibody conjugated with FITC (anti-B7-H3-FITC mAb) to control the antitumor activity of anti-FITC CAR T cells. The effector functions of anti-FITC CAR T cells against OS, measured in vitro by tumor cell killing activity and cytokine production, are dependent on the presence of the anti-B7-H3-FITC mAb switch. Moreover, OS cells stimulate anti-FITC CAR T cells migration. In vivo, anti-B7-H3 mAb penetrates in the tumor and binds 143B OS tumor cells. Furthermore, anti-FITC CAR T cells reach tumor region and exert antitumor effect in an OS NSG mouse model only in the presence of the switch molecule. We demonstrate that anti-B7-H3-FITC mAb redirects the cytotoxic activity of anti-FITC CAR T cells against OS tumors suggesting that switchable CAR T cell platforms might be a plausible strategy against OS.
Collapse
Affiliation(s)
- Laura Hidalgo
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain.
| | - Beatriz Somovilla-Crespo
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Patricia Garcia-Rodriguez
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015, Madrid, Spain
| | - Alvaro Morales-Molina
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Miguel Angel Rodriguez-Milla
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Javier Garcia-Castro
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain.
| |
Collapse
|
17
|
Huang X, Guo J, Wang S, Lin Z, Zhao S, Li W, Wang Y, Zhu C, Lv J, Qiu W. Global research trends on B7-H3 for cancer immunotherapy: A bibliometric analysis (2012-2022). Hum Vaccin Immunother 2023; 19:2246498. [PMID: 37635349 PMCID: PMC10464541 DOI: 10.1080/21645515.2023.2246498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment. B7-H3 is a promising target for cancer immunotherapy (CI). The present study aimed to utilize bibliometric methods to assess the current research status and explore future trends in the use of B7-H3 for CI. We collected publications related to B7-H3/CI from the Clarivate Web of Science Core Collection database. VOSviewer, Microsoft Excel, the bibliometrix R package, and an online platform were used to conduct qualitative and visualized analyses of the literature. A total of 555 papers were analyzed, revealing a significant increase in annual publications since 2018. The most productive countries were China and the USA, and the leading institutions were Soochow University and Sichuan University. Zang and Ferrone were the most popular authors. Among the journals, Frontiers in Immunology had the highest number of papers, whereas Clinical Cancer Research was the most influential. Historical citation analysis reveals the development of B7-H3/CI. Top-cited papers and keyword analyses were performed to highlight current hotspots in the domain. Using cluster analysis, we classified all keywords into four clusters: "immunotherapy," "co-stimulatory molecule," "B7 family," and "PD-L1." Finally, Trends analysis suggested that future research might focus on "chimeric antigen receptor," "pathways," and "targeting B7-H3." This is the first bibliometric crosstalk analysis between B7-H3 and CI. Our study illustrates that the topic of B7-H3/CI is very popular and has great clinical implications and that the number of correlative publications will continue to increase. B7-H3-based CI may lead to new research trends.
Collapse
Affiliation(s)
- Xiaojuan Huang
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Guo
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhongkun Lin
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenqian Li
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyang Zhu
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Alhamad S, Elmasry Y, Uwagboe I, Chekmeneva E, Sands C, Cooper BW, Camuzeaux S, Salam A, Parsons M. B7-H3 Associates with IMPDH2 and Regulates Cancer Cell Survival. Cancers (Basel) 2023; 15:3530. [PMID: 37444640 DOI: 10.3390/cancers15133530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers worldwide, and despite improvements in treatment regimens, patient prognosis remains poor. Lung adenocarcinomas develop from the lung epithelia and understanding how specific genetic and environmental factors lead to oncogenic transformation in these cells is of great importance to define the pathways that contribute to tumorigenesis. The recent rise in the use of immunotherapy to treat different cancers has prompted the exploration of immune modulators in tumour cells that may provide new targets to manipulate this process. Of these, the B7 family of cell surface receptors, which includes PD-1, is of particular interest due to its role in modulating immune cell responses within the tumour microenvironment. B7-H3 (CD276) is one family member that is upregulated in many cancer types and suggested to contribute to tumour-immune interactions. However, the function and ligand(s) for this receptor in normal lung epithelia and the mechanisms through which the overexpression of B7-H3 regulate cancer progression in the absence of immune cell interactions remain unclear. Here, we present evidence that B7-H3 is associated with one of the key rate-limiting metabolic enzymes IMPDH2, and the localisation of this complex is altered in human lung cancer cells that express high levels of B7-H3. Mechanistically, the IMPDH2:B7-H3 complex provides a protective role in cancer cells to escape oxidative stress triggered by chemotherapy, thus leading to cell survival. We further demonstrate that the loss of B7-H3 in cancer cells has no effect on growth or migration in 2D but promotes the expansion of 3D spheroids in an IMPDH2-dependent manner. These findings provide new insights into the B7-H3 function in the metabolic homeostasis of normal and transformed lung cancer cells, and whilst this molecule remains an interesting target for immunotherapy, these findings caution against the use of anti-B7-H3 therapies in certain clinical settings.
Collapse
Affiliation(s)
- Salwa Alhamad
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Yassmin Elmasry
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Isabel Uwagboe
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Caroline Sands
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Benjamin W Cooper
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Ash Salam
- National Phenome Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, IRDB Building, 5th Floor, Du Cane Road, London W12 0NN, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, New Hunts House, London SE1 1UL, UK
| |
Collapse
|
19
|
Kähkönen TE, Halleen JM, MacRitchie G, Andersson RM, Bernoulli J. Insights into immuno-oncology drug development landscape with focus on bone metastasis. Front Immunol 2023; 14:1121878. [PMID: 37475868 PMCID: PMC10355372 DOI: 10.3389/fimmu.2023.1121878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Bone is among the main sites of metastasis in breast, prostate and other major cancers. Bone metastases remain incurable causing high mortality, severe skeletal-related effects and decreased quality of life. Despite the success of immunotherapies in oncology, no immunotherapies are approved for bone metastasis and no clear benefit has been observed with approved immunotherapies in treatment of bone metastatic disease. Therefore, it is crucial to consider unique features of tumor microenvironment in bone metastasis when developing novel therapies. The vicious cycle of bone metastasis, referring to crosstalk between tumor and bone cells that enables the tumor cells to grow in the bone microenvironment, is a well-established concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was introduced to the scientific community. OIO emphasizes the significance of interactions between tumor, immune and bone cells in promoting tumor growth in bone metastasis, and it can be used to reveal the most promising targets for bone metastasis. In order to provide an insight into the current immuno-oncology drug development landscape, we used 1stOncology database, a cancer drug development resource to identify novel immunotherapies in preclinical or clinical development for breast and prostate cancer bone metastasis. Based on the database search, 24 immunotherapies were identified in preclinical or clinical development that included evaluation of effects on bone metastasis. This review provides an insight to novel immuno-oncology drug development in the context of bone metastasis. Bone metastases can be approached using different modalities, and tumor microenvironment in bone provides many potential targets for bone metastasis. Noting current increasing interest in the field of OIO, more therapeutic opportunities that primarily target bone metastasis are expected in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jenni Bernoulli
- University of Turku, Institute of Biomedicine, Turku, Finland
| |
Collapse
|
20
|
Weil R, Loeb D. Breaking down the tumor immune infiltration within pediatric sarcomas. Front Endocrinol (Lausanne) 2023; 14:1187289. [PMID: 37424864 PMCID: PMC10324675 DOI: 10.3389/fendo.2023.1187289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Immunotherapies are a promising therapeutic option, yet for a variety of reasons, these treatments have achieved limited success against sarcomas. The immunosuppressive tumor microenvironment (TME) of sarcomas as well as lack of predictive biomarkers, decreased T-cell clonal frequency, and high expression of immunosuppressive infiltrating cells has thus far prevented major success using immunotherapies. By breaking down the TME into its individual components and understanding how the various cell types interact with each other as well as in the context of the complex immune microenvironment, can lead to effective therapeutic immunotherapy treatments, potentially improving outcomes for those with metastatic disease.
Collapse
Affiliation(s)
- Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - David Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
21
|
Mielcarska S, Dawidowicz M, Kula A, Kiczmer P, Skiba H, Krygier M, Chrabańska M, Piecuch J, Szrot M, Ochman B, Robotycka J, Strzałkowska B, Czuba Z, Waniczek D, Świętochowska E. B7H3 Role in Reshaping Immunosuppressive Landscape in MSI and MSS Colorectal Cancer Tumours. Cancers (Basel) 2023; 15:3136. [PMID: 37370746 DOI: 10.3390/cancers15123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to assess the expression of B7H3 concerning clinicopathological and histological parameters, including MSI/MSS status, CD-8 cells, tumour-infiltrating lymphocytes (TILs), budding, TNM scale and grading. Moreover, we analyzed the B7H3-related pathways using available online datasets and the immunological context of B7H3 expression, through the 48-cytokine screening panel of cancer tissues homogenates, immunogenic features and immune composition. The study included 158 patients diagnosed with CRC. To assess B7H3 levels, we performed an immunohistochemistry method (IHC) and enzyme-linked immunosorbent assay (ELISA). To elucidate the immune composition of colorectal cancer, we performed the Bio-Plex Pro Human 48-cytokine panel. To study biological characteristics of B7H3, we used online databases. Expression of B7H3 was upregulated in CRC tumour tissues in comparison to adjacent noncancerous margin tissues. The concentrations of B7H3 in tumours were positively associated with T parameter of patients and negatively with tumour-infiltrating lymphocytes score. Additionally, Principal Component Analysis showed that B7H3 expression in tumours correlated positively with cytokines associated with M2-macrophages and protumour growth factors. The expression of B7H3 in tumours was independent of MSI/MSS status. These findings will improve our understanding of B7H3 role in colorectal cancer immunity. Our study suggests that B7-H3 is a promising potential target for cancer therapy. Further studies must clarify the mechanisms of B7H3 overexpression and its therapeutic importance in colorectal cancer.
Collapse
Affiliation(s)
- Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Hanna Skiba
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Małgorzata Krygier
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 10 Marii Curie-Skłodowskiej, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Julia Robotycka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Bogumiła Strzałkowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland
| |
Collapse
|
22
|
Bam R, Natarajan A, Tabesh F, Paulmurugan R, Dahl JJ. Synthesis and Evaluation of Clinically Translatable Targeted Microbubbles Using a Microfluidic Device for In Vivo Ultrasound Molecular Imaging. Int J Mol Sci 2023; 24:9048. [PMID: 37240396 PMCID: PMC10219500 DOI: 10.3390/ijms24109048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.
Collapse
Affiliation(s)
| | | | | | - Ramasamy Paulmurugan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Jeremy J. Dahl
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
23
|
Wood GE, Graves LA, Rubin EM, Reed DR, Riedel RF, Strauss SJ. Bad to the Bone: Emerging Approaches to Aggressive Bone Sarcomas. Am Soc Clin Oncol Educ Book 2023; 43:e390306. [PMID: 37220319 DOI: 10.1200/edbk_390306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone sarcomas are rare heterogeneous tumors that affect patients of all ages including children, adolescent young adults, and older adults. They include many aggressive subtypes and patient groups with poor outcomes, poor access to clinical trials, and lack of defined standard therapeutic strategies. Conventional chondrosarcoma remains a surgical disease, with no defined role for cytotoxic therapy and no approved targeted systemic therapies. Here, we discuss promising novel targets and strategies undergoing evaluation in clinical trials. Multiagent chemotherapy has greatly improved outcomes for patients with Ewing sarcoma (ES) and osteosarcoma, but management of those with high-risk or recurrent disease remains challenging and controversial. We describe the impact of international collaborative trials, such as the rEECur study, that aim to define optimal treatment strategies for those with recurrent, refractory ES, and evidence for high-dose chemotherapy with stem-cell support. We also discuss current and emerging strategies for other small round cell sarcomas, such as CIC-rearranged, BCOR-rearranged tumors, and the evaluation of emerging novel therapeutics and trial designs that may offer a new paradigm to improve survival in these aggressive tumors with notoriously bad (to the bone) outcomes.
Collapse
Affiliation(s)
- Georgina E Wood
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| | - Laurie A Graves
- Division of Hematology/Oncology, Department of Pediatrics, Duke University, Durham, NC
| | - Elyssa M Rubin
- Division of Oncology, Children's Hospital of Orange County, Orange, CA
| | - Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Richard F Riedel
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC
| | - Sandra J Strauss
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| |
Collapse
|
24
|
Rasic P, Jeremic M, Jeremic R, Dusanovic Pjevic M, Rasic M, Djuricic SM, Milickovic M, Vukadin M, Mijovic T, Savic D. Targeting B7-H3-A Novel Strategy for the Design of Anticancer Agents for Extracranial Pediatric Solid Tumors Treatment. Molecules 2023; 28:molecules28083356. [PMID: 37110590 PMCID: PMC10145344 DOI: 10.3390/molecules28083356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Recent scientific data recognize the B7-H3 checkpoint molecule as a potential target for immunotherapy of pediatric solid tumors (PSTs). B7-H3 is highly expressed in extracranial PSTs such as neuroblastoma, rhabdomyosarcoma, nephroblastoma, osteosarcoma, and Ewing sarcoma, whereas its expression is absent or very low in normal tissues and organs. The influence of B7-H3 on the biological behavior of malignant solid neoplasms of childhood is expressed through different molecular mechanisms, including stimulation of immune evasion and tumor invasion, and cell-cycle disruption. It has been shown that B7-H3 knockdown decreased tumor cell proliferation and migration, suppressed tumor growth, and enhanced anti-tumor immune response in some pediatric solid cancers. Antibody-drug conjugates targeting B7-H3 exhibited profound anti-tumor effects against preclinical models of pediatric solid malignancies. Moreover, B7-H3-targeting chimeric antigen receptor (CAR)-T cells demonstrated significant in vivo activity against different xenograft models of neuroblastoma, Ewing sarcoma, and osteosarcoma. Finally, clinical studies demonstrated the potent anti-tumor activity of B7-H3-targeting antibody-radioimmunoconjugates in metastatic neuroblastoma. This review summarizes the established data from various PST-related studies, including in vitro, in vivo, and clinical research, and explains all the benefits and potential obstacles of targeting B7-H3 by novel immunotherapeutic agents designed to treat malignant extracranial solid tumors of childhood.
Collapse
Affiliation(s)
- Petar Rasic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Marija Jeremic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Rada Jeremic
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Dusanovic Pjevic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milica Rasic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Slavisa M Djuricic
- Department of Clinical Pathology, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
| | - Maja Milickovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miroslav Vukadin
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Tanja Mijovic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
| | - Djordje Savic
- Department of Abdominal Surgery, Mother and Child Health Care Institute of Serbia "Dr. Vukan Cupic", 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
26
|
Hu Z, Wen S, Huo Z, Wang Q, Zhao J, Wang Z, Chen Y, Zhang L, Zhou F, Guo Z, Liu H, Zhou S. Current Status and Prospects of Targeted Therapy for Osteosarcoma. Cells 2022; 11:3507. [PMID: 36359903 PMCID: PMC9653755 DOI: 10.3390/cells11213507] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor occurring in bone tissue with a high propensity to metastasize, and its underlying mechanisms remain largely elusive. The OS prognosis is poor, and improving the survival of OS patients remains a challenge. Current treatment methods such as surgical approaches, chemotherapeutic drugs, and immunotherapeutic drugs remain ineffective. As research progresses, targeted therapy is gradually becoming irreplaceable. In this review, several treatment modalities for osteosarcoma, such as surgery, chemotherapy, and immunotherapy, are briefly described, followed by a discussion of targeted therapy, the important targets, and new technologies for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zunguo Hu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuang Wen
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Qing Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Jiantao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wang
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhangyu Guo
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Huancai Liu
- Department of Joint Surgery, Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang 261061, China
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Hagelstein I, Engel M, Hinterleitner C, Manz T, Märklin M, Jung G, Salih HR, Zekri L. B7-H3-targeting Fc-optimized antibody for induction of NK cell reactivity against sarcoma. Front Immunol 2022; 13:1002898. [PMID: 36275693 PMCID: PMC9585277 DOI: 10.3389/fimmu.2022.1002898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 06/24/2024] Open
Abstract
Natural killer (NK) cells largely contribute to antibody-dependent cellular cytotoxicity (ADCC), a central factor for success of monoclonal antibodies (mAbs) treatment of cancer. The B7 family member B7-H3 (CD276) recently receives intense interest as a novel promising target antigen for immunotherapy. B7-H3 is highly expressed in many tumor entities, whereas expression on healthy tissues is rather limited. We here studied expression of B7-H3 in sarcoma, and found substantial levels to be expressed in various bone and soft-tissue sarcoma subtypes. To date, only few immunotherapeutic options for treatment of sarcomas that are limited to a minority of patients are available. We here used a B7-H3 mAb to generate chimeric mAbs containing either a wildtype Fc-part (8H8_WT) or a variant Fc part with amino-acid substitutions (S239D/I332E) to increase affinity for CD16 expressing NK cells (8H8_SDIE). In comparative studies we found that 8H8_SDIE triggers profound NK cell functions such as activation, degranulation, secretion of IFNγ and release of NK effector molecules, resulting in potent lysis of different sarcoma cells and primary sarcoma cells derived from patients. Our findings emphasize the potential of 8H8_SDIE as novel compound for treatment of sarcomas, particularly since B7-H3 is expressed in bone and soft-tissue sarcoma independent of their subtype.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Monika Engel
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Timo Manz
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
28
|
Evaluation of an Affibody-Based Binder for Imaging of Immune Check-Point Molecule B7-H3. Pharmaceutics 2022; 14:pharmaceutics14091780. [PMID: 36145529 PMCID: PMC9506244 DOI: 10.3390/pharmaceutics14091780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Radionuclide molecular imaging could provide an accurate assessment of the expression of molecular targets in disseminated cancers enabling stratification of patients for specific therapies. B7-H3 (CD276) is a transmembrane protein belonging to the B7 superfamily. This protein is overexpressed in different types of human malignancies and such upregulation is generally associated with a poor clinical prognosis. In this study, targeting properties of an Affibody-based probe, AC12, containing a -GGGC amino acid sequence as a chelator (designated as AC12-GGGC) labelled with technetium-99m (99mTc) were evaluated for imaging of B7-H3-expressing tumours. AC12-GGGC was efficiently labelled with 99mTc. [99mTc]Tc-AC12-GGGC bound specifically to B7-H3 expressing cells in vitro with affinities in nanomolar range. In mice bearing B7-H3-expressing xenografts, [99mTc]Tc-AC12-GGGC showed tumour uptake of 2.1 ± 0.5 %ID/g at 2 h after injection. Its clearance from blood, normal organs and tissues was very rapid. This new targeting agent, [99mTc]Tc-AC12-GGGC, provided high tumour-to-blood ratio already at 2 h (8.2 ± 1.9), which increased to 11.0 ± 0.5 at 4 h after injection. Significantly (p < 0.05) higher tumour-to-liver and higher tumour-to-bone ratios at 2 h in comparison with 4 h after injection were observed. Thus, [99mTc]Tc-AC12-GGGC could be a promising candidate for further development.
Collapse
|
29
|
Clinical significance of B7-H3 and HER2 co-expression and therapeutic value of combination treatment in gastric cancer. Int Immunopharmacol 2022; 110:108988. [PMID: 35777267 DOI: 10.1016/j.intimp.2022.108988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gastric cancer (GC) is a digestive system malignancy. Trastuzumab (a HER2-targeted monoclonal antibody) is an important targeted drug for GC. However, the drug resistance limits its clinical efficacy. B7-H3 was suggested to be a promising target for cancer immunotherapy. This study aimed to investigate the clinical significance of B7-H3 and HER2 co-expression and the therapeutic value of combination treatment in GC. METHODS We examined the expression of B7-H3 and HER2 in 268 GC patients by immunohistochemistry. Pearson test was used to analyze the correlation between categorical variables. Overall survival was assessed by Kaplan-Meier analysis. All in vitro experiments using HER2-positive GC cells were treated with small interfering RNA targeting B7-H3/HER2 or B7-H3 blocking antibody 3E8/trastuzumab to verify the antitumor efficacy of the combination therapy. GC xenograft mouse models were established to evaluate the in vivo anti-tumor effect of combined therapy. RESULTS There was a significant correlation between B7-H3 and HER2 expression in GC tissues. High co-expression of B7-H3 and HER2 was associated with poor prognosis (P = 0.007) and could be an independent risk factor for survival. In addition, knockdown or targeted therapies of B7-H3/HER2 significantly suppressed cell proliferation, migration, invasion and adhesion in vitro. Trastuzumab combined with 3E8 was significantly effective at reducing mice tumor growth than monotherapy. CONCLUSION High co-expression of B7-H3 and HER2 indicates a poor prognosis, and combination therapy targeting B7-H3 and HER2 could be an immunotherapeutic strategy for GC.
Collapse
|
30
|
Zhao S, Wang Y, Yang N, Mu M, Wu Z, Li H, Tang X, Zhong K, Zhang Z, Huang C, Cao T, Zheng M, Wang G, Nie C, Yang H, Guo G, Zhou L, Zheng X, Tong A. Genome-scale CRISPR-Cas9 screen reveals novel regulators of B7-H3 in tumor cells. J Immunother Cancer 2022; 10:jitc-2022-004875. [PMID: 35768165 PMCID: PMC9244714 DOI: 10.1136/jitc-2022-004875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background Despite advances in B7 homolog 3 protein (B7-H3) based immunotherapy, the development of drug resistance remains a major clinical concern. The heterogeneity and emerging loss of B7-H3 expression are the main causes of drug resistance and treatment failure in targeted therapies, which reveals an urgent need to elucidate the mechanism underlying the regulation of B7-H3 expression. In this study, we identified and explored the crucial role of the transcription factor SPT20 homolog (SP20H) in B7-H3 expression and tumor progression. Methods Here, we performed CRISPR/Cas9-based genome scale loss-of-function screening to identify regulators of B7-H3 in human ovarian cancer cells. Signaling pathways altered by SP20H knockout were revealed by RNA sequencing. The regulatory role and mechanism of SP20H in B7-H3 expression were validated using loss-of-function and gain-of-function assays in vitro. The effects of inhibiting SP20H on tumor growth and efficacy of anti-B7-H3 treatment were evaluated in tumor-bearing mice. Results We identified SUPT20H (SP20H) as negative and eIF4E as positive regulators of B7-H3 expression in various cancer cells. Furthermore, we provided evidence that either SP20H loss or TNF-α stimulation in tumor cells constitutively activates p38 MAPK-eIF4E signaling, thereby upregulating B7-H3 expression. Loss of SP20H upregulated B7-H3 expression both in vitro and in vivo. Additionally, deletion of SP20H significantly suppressed tumor growth and increased immune cells infiltration in tumor microenvironment. More importantly, antibody–drug conjugates targeting B7-H3 exhibited superior antitumor performance against SP20H-deficient tumors relative to control groups. Conclusions Activation of p38 MAPK-eIF4E signaling serves as a key event in the transcription initiation and B7-H3 protein expression in tumor cells. Genetically targeting SP20H upregulates target antigen expression and sensitizes tumors to anti-B7-H3 treatment. Collectively, our findings provide new insight into the mechanisms underlying B7-H3 expression and introduce a potential synergistic target for existing antibody-based targeted therapy against B7-H3.
Collapse
Affiliation(s)
- Shasha Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zhiguo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Hexian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Cao
- Lab of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guoqing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Zheng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Wang Y, Tian X, Zhang W, Zhang Z, Lazcano R, Hingorani P, Roth ME, Gill JD, Harrison DJ, Xu Z, Jusu S, Kannan S, Wang J, Lazar AJ, Earley EJ, Erickson SW, Gelb T, Huxley P, Lahdenranta J, Mudd G, Kurmasheva RT, Houghton PJ, Smith MA, Kolb EA, Gorlick R. Comprehensive surfaceome profiling to identify and validate novel cell-surface targets in osteosarcoma. Mol Cancer Ther 2022; 21:903-913. [PMID: 35312779 DOI: 10.1158/1535-7163.mct-21-0836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/31/2021] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Immunoconjugates targeting cell-surface antigens have demonstrated clinical activity to enable regulatory approval in several solid and hematologic malignancies. We hypothesize that a rigorous and comprehensive surfaceome profiling approach to identify osteosarcoma-specific cell-surface antigens can similarly enable development of effective therapeutics in this disease. Herein, we describe an integrated proteomic and transcriptomic surfaceome profiling approach to identify cell-surface proteins that are highly expressed in osteosarcoma but minimally expressed on normal tissues. Using this approach, we identified targets that are highly expressed in osteosarcoma. Three targets, MT1-MMP, CD276, and MRC2, were validated as overexpressed in osteosarcoma. Further, we tested BT1769, an MT1-MMP-targeted Bicycle toxin conjugate, in osteosarcoma PDX models. The results showed BT1769 had encouraging anti-tumor activity, high affinity for its target and a favorable pharmacokinetic profile. This confirms the hypothesis that our approach identifies novel targets with significant therapeutic potential in osteosarcoma.
Collapse
Affiliation(s)
- Yifei Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiangjun Tian
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wendong Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhongting Zhang
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rossana Lazcano
- The University of Texas MD Anderson Cancer Center, United States
| | - Pooja Hingorani
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael E Roth
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan D Gill
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Douglas J Harrison
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhaohui Xu
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sylvester Jusu
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jing Wang
- The University of Texas MD Anderson Cancer Center, ´Houston, TX, United States
| | - Alexander J Lazar
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eric J Earley
- RTI International, Research Triangle Park, NC, United States
| | | | - Tara Gelb
- Bicycle Therapeutics, Lexington, MA, United States
| | | | | | - Gemma Mudd
- Bicycle Therapeutics, Cambridge, United Kingdom
| | - Raushan T Kurmasheva
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Peter J Houghton
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | | | - Edward A Kolb
- Nemours Children's Health System, Wilmington, DE, United States
| | - Richard Gorlick
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Xie D, Wang Z, Li J, Guo DA, Lu A, Liang C. Targeted Delivery of Chemotherapeutic Agents for Osteosarcoma Treatment. Front Oncol 2022; 12:843345. [PMID: 35311145 PMCID: PMC8931218 DOI: 10.3389/fonc.2022.843345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Since osteosarcoma (OS) is an aggressive bone cancer with unknown molecular pathways of etiology and pathophysiology, improving patient survival has long been a challenge. The conventional therapy is a complex multidisciplinary management that include radiotherapy, chemotherapy which followed by surgery and then post-operative adjuvant chemotherapy. However, they have severe side effects because the majority of the medicines used have just a minor selectivity for malignant tissue. As a result, treating tumor cells specifically without damaging healthy tissue is currently a primary goal in OS therapy. The coupling of chemotherapeutic drugs with targeting ligands is a unique therapy method for OS that, by active targeting, can overcome the aforementioned hurdles. This review focuses on advances in ligands and chemotherapeutic agents employed in targeted delivery to improve the capacity of active targeting and provide some insight into future therapeutic research for OS.
Collapse
Affiliation(s)
- Duoli Xie
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - De-an Guo
- National Engineering Laboratory for Standardization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica of the Chinese Academy of Sciences, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- *Correspondence: Chao Liang, ; Aiping Lu,
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Chao Liang, ; Aiping Lu,
| |
Collapse
|
33
|
Meftahpour V, Aghebati-Maleki A, Fotouhi A, Safarzadeh E, Aghebati-Maleki L. Prognostic significance and therapeutic potentials of immune checkpoints in osteosarcoma. EXCLI JOURNAL 2022; 21:250-268. [PMID: 35145371 PMCID: PMC8822307 DOI: 10.17179/excli2021-4094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
Although there exist manifold strategies for cancer treatment, researchers are obliged to develop novel treatments based on the challenges that arise. One of these recent treatment approaches is cancer immunotherapy, which enjoys various types of strategies itself. However, one of the most significant methods, in this regard, is employing immune checkpoint proteins (ICPs). Bone sarcomas have several subtypes, with the most common ones being chordoma, chondrosarcoma, Ewing sarcoma, and osteosarcoma. Although many aggressive treatment approaches, including radiotherapy, chemotherapy, and surgical resection, have been employed over the last decades, significantly improved outcomes have not been observed for Ewing sarcoma or osteosarcoma patients. Additionally, chordoma and chdrosarcoma resist against both radiation and chemotherapy. Accordingly, elucidating how recent therapies could affect bone sarcomas is necessary. Checkpoint inhibitors have attracted great attention for the treatment of several cancer types, including bone sarcoma. Herein, the recent advances of current immune checkpoint targets, such as anti-PD-1/PD-L1 and anti-CTLA-4 blockade, for the treatment of bone sarcoma have been reviewed.
Collapse
Affiliation(s)
- Vafa Meftahpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fotouhi
- Department of Orthopedic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy 2022; 24:567-576. [DOI: 10.1016/j.jcyt.2021.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/11/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
|
35
|
Hu J, Yang Q, Zhang W, Du H, Chen Y, Zhao Q, Dao L, Xia X, Natalie Wall F, Zhang Z, Mahadeo K, Gorlick R, Kopetz S, Dotti G, Li S. Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. J Immunother Cancer 2022; 10:jitc-2021-003633. [PMID: 35027427 PMCID: PMC8762133 DOI: 10.1136/jitc-2021-003633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Adoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors, but its clinical application has been stalled because of toxicity. Here, we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors. METHODS We generated a cell membrane-anchored IL-12 (aIL12), a tumor-targeted IL-12 (ttIL12), and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells, chimeric antigen receptor-T cells, and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells. RESULTS attIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically, attIL12-T cells targeted tumor cells expressing cell-surface vimentin, enriching effector T cell and interferon γ production in tumors, which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects. CONCLUSIONS This novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.
Collapse
Affiliation(s)
- Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Yang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendong Zhang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongwei Du
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuhui Chen
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qingnan Zhao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long Dao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fowlkes Natalie Wall
- Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongting Zhang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kris Mahadeo
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gianpietro Dotti
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
36
|
The perplexing role of immuno-oncology drugs in osteosarcoma. J Bone Oncol 2021; 31:100400. [PMID: 34786332 PMCID: PMC8577488 DOI: 10.1016/j.jbo.2021.100400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma outcomes have not improved since use of cytotoxic chemotherapy. Addition of macrophage activators and interferon have been disappointing. Combination therapies may be needed to exploit the role of the immune system.
Osteosarcoma is a rare, primary tumour of bone. Curative treatment consists of multi-agent chemotherapy and complete surgical resection. Despite the use of multi-agent chemotherapy, the risk of recurrence is high. Survival outcomes for patients with osteosarcoma have not changed since the 1980′s. Based on biologic rationale, there has been interest in adding immunotherapies to upfront curative intent chemotherapy, including mifamurtide (a macrophage activator) and interferon. However, results to date have been disappointing. In the metastatic setting, checkpoint inhibitors alone have not proven effective. Ongoing translational work is needed to further understand which patients may benefit from immune-oncology approaches with standard cytotoxic chemotherapy.
Collapse
|
37
|
Rijs Z, Jeremiasse B, Shifai N, Gelderblom H, Sier CFM, Vahrmeijer AL, van Leeuwen FWB, van der Steeg AFW, van de Sande MAJ. Introducing Fluorescence-Guided Surgery for Pediatric Ewing, Osteo-, and Rhabdomyosarcomas: A Literature Review. Biomedicines 2021; 9:biomedicines9101388. [PMID: 34680505 PMCID: PMC8533294 DOI: 10.3390/biomedicines9101388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcomas are a rare heterogeneous group of malignant neoplasms of mesenchymal origin which represent approximately 13% of all cancers in pediatric patients. The most prevalent pediatric bone sarcomas are osteosarcoma (OS) and Ewing sarcoma (ES). Rhabdomyosarcoma (RMS) is the most frequently occurring pediatric soft tissue sarcoma. The median age of OS and ES is approximately 17 years, so this disease is also commonly seen in adults while non-pleiomorphic RMS is rare in the adult population. The mainstay of all treatment regimens is multimodal treatment containing chemotherapy, surgical resection, and sometimes (neo)adjuvant radiotherapy. A clear resection margin improves both local control and overall survival and should be the goal during surgery with a curative intent. Real-time intraoperative fluorescence-guided imaging could facilitate complete resections by visualizing tumor tissue during surgery. This review evaluates whether non-targeted and targeted fluorescence-guided surgery (FGS) could be beneficial for pediatric OS, ES, and RMS patients. Necessities for clinical implementation, current literature, and the positive as well as negative aspects of non-targeted FGS using the NIR dye Indocyanine Green (ICG) were evaluated. In addition, we provide an overview of targets that could potentially be used for FGS in OS, ES, and RMS. Then, due to the time- and cost-efficient translational perspective, we elaborate on the use of antibody-based tracers as well as their disadvantages and alternatives. Finally, we conclude with recommendations for the experiments needed before FGS can be implemented for pediatric OS, ES, and RMS patients.
Collapse
Affiliation(s)
- Zeger Rijs
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
- Correspondence: ; Tel.: +31-641-637-074
| | - Bernadette Jeremiasse
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Naweed Shifai
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
- Percuros BV, 2333 CL Leiden, The Netherlands
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (C.F.M.S.); (A.L.V.)
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands;
| | - Alida F. W. van der Steeg
- Department of Surgery, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (B.J.); (A.F.W.v.d.S.)
| | - Michiel A. J. van de Sande
- Department of Orthopedic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (N.S.); (M.A.J.v.d.S.)
| |
Collapse
|
38
|
Zhang LY, Jin Y, Xia PH, Lin J, Ma JC, Li T, Liu ZQ, Xiang HL, Cheng C, Xu ZJ, Zhou H, Qian J. Integrated analysis reveals distinct molecular, clinical, and immunological features of B7-H3 in acute myeloid leukemia. Cancer Med 2021; 10:7831-7846. [PMID: 34562306 PMCID: PMC8559480 DOI: 10.1002/cam4.4284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/25/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
The role of B7‐H3 in acute myeloid leukemia (AML) is not fully understood. Two previous studies investigating its expression and significances in AML are partially different. In this study, we aimed to systematically characterize the genomic and immune landscape in AML patients with altered B7‐H3 expression using multi‐omics data in the public domain. We found significantly increased B7‐H3 expression in AML compared to either other hematological malignancies or healthy controls. Clinically, high B7‐H3 expression was associated with old age, TP53 mutations, wild‐type WT1 and CEBPA, and the M3 and M5 FAB subtypes. Moreover, we observed that increased B7‐H3 expression correlated significantly with a poor outcome of AML patients in four independent datasets. Gene set enrichment analysis (GSEA) revealed the enrichment of the “EMT” oncogenic gene signatures in high B7‐H3 expressers. Further investigation suggested that B7‐H3 was more likely to be associated with immune‐suppressive cells (macrophages, neutrophils, dendritic cells, and Th17 cells). B7‐H3 was also positively associated with a number of checkpoint genes, such as VISTA (B7‐H5), CD80 (B7‐1), CD86 (B7‐2), and CD70. In summary, we uncovered distinct genomic and immunologic features associated with B7‐H3 expression in AML. This may lead to a better understanding of the molecular mechanisms underlying B7‐H3 dysregulation in AML and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ling-Yi Zhang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Pei-Hui Xia
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Ting Li
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Zi-Qi Liu
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - He-Lin Xiang
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| | - Chen Cheng
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Jiangsu, China.,Zhenjiang Clinical Research Center of Hematology, Jiangsu, China
| | - Hong Zhou
- School of Medical Science and Laboratory Medicine, Jiangsu University, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Jiangsu, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Jiangsu, China
| |
Collapse
|
39
|
Kanayama T, Miyachi M, Sugimoto Y, Yagyu S, Kikuchi K, Tsuchiya K, Iehara T, Hosoi H. Reduced B7-H3 expression by PAX3-FOXO1 knockdown inhibits cellular motility and promotes myogenic differentiation in alveolar rhabdomyosarcoma. Sci Rep 2021; 11:18802. [PMID: 34552155 PMCID: PMC8458399 DOI: 10.1038/s41598-021-98322-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022] Open
Abstract
B7-H3 (also known as CD276) is associated with aggressive characteristics in various cancers. Meanwhile, in alveolar rhabdomyosarcoma (ARMS), PAX3-FOXO1 fusion protein is associated with increased aggressiveness and poor prognosis. In the present study, we explored the relationship between PAX3-FOXO1 and B7-H3 and the biological roles of B7-H3 in ARMS. Quantitative real time PCR and flow cytometry revealed that PAX3-FOXO1 knockdown downregulated B7-H3 expression in all the selected cell lines (Rh-30, Rh-41, and Rh-28), suggesting that PAX3-FOXO1 positively regulates B7-H3 expression. Gene expression analysis revealed that various genes and pathways involved in chemotaxis, INF-γ production, and myogenic differentiation were commonly affected by the knockdown of PAX3-FOXO1 and B7-H3. Wound healing and transwell migration assays revealed that both PAX3-FOXO1 and B7-H3 were associated with cell migration. Furthermore, knockdown of PAX3-FOXO1 or B7-H3 induced myogenin expression in all cell lines, although myosin heavy chain induction varied depending on the cellular context. Our results indicate that PAX3-FOXO1 regulates B7-H3 expression and that PAX3-FOXO1 and B7-H3 are commonly associated with multiple pathways related to an aggressive phenotype in ARMS, such as cell migration and myogenic differentiation block.
Collapse
Affiliation(s)
- Takuyo Kanayama
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Mitsuru Miyachi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Yohei Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Shigeki Yagyu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ken Kikuchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kunihiko Tsuchiya
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
40
|
Terry RL, Meyran D, Fleuren EDG, Mayoh C, Zhu J, Omer N, Ziegler DS, Haber M, Darcy PK, Trapani JA, Neeson PJ, Ekert PG. Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers (Basel) 2021; 13:cancers13184704. [PMID: 34572932 PMCID: PMC8465026 DOI: 10.3390/cancers13184704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review explores the current trials using cellular immunotherapies in pediatric sarcoma and describes examples of promising new CAR T targets in sarcoma that are in preclinical development. We provide insights into the ways in which the immunosuppressive tumor immune microenvironment can impact on CAR T cell therapy, highlighting specific mechanisms by which the tumor microenvironment may limit CAR T efficacy. Appreciation of these mechanisms may lead to rational combinations of immunotherapies, for example, the combination of CAR T cells with checkpoint inhibitor drugs. We also describe innovations in CAR T cell generation and combination therapies that may pave the way to better clinical outcomes for these patients. Abstract Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
Collapse
Affiliation(s)
- Rachael L. Terry
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Emmy D. G. Fleuren
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Joe Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children Hospital, Brisbane 4101, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2145, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Phillip K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
- Correspondence:
| |
Collapse
|
41
|
Wang J, Chen X, Xie C, Sun M, Hu C, Zhang Z, Luan L, Zhou J, Zhou J, Zhu X, Ouyang J, Dong X, Li D, Zhang J, Zhao X. MicroRNA miR-29a Inhibits Colon Cancer Progression by Downregulating B7-H3 Expression: Potential Molecular Targets for Colon Cancer Therapy. Mol Biotechnol 2021; 63:849-861. [PMID: 34100183 DOI: 10.1007/s12033-021-00348-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
MiR-29a belongs to one of the subtypes of miRNAs known as non-coding single-stranded RNAs and is preferentially expressed in normal tissues. B7-H3, a member of the B7/CD28 immunoglobulin superfamily, was shown to be overexpressed in several solid malignant tumors, including colon cancer. In addition, it is associated with tumor progression and poor prognosis. We used immunohistochemical and Western blotting to assess B7-H3 protein expression levels in colon cancer and adjacent normal tissues and then compared their relationships with clinicopathological factors. Quantitative real-time reverse-transcription PCR was used to assess B7-H3 and miRNA-29a mRNA expression levels, and then their relationship and clinical significance were evaluated. In addition, colon cancer Caco-2 cells, which constitutively overexpress B7-H3, were transfected with lentivirus particles for miR-29a upregulation. Invasion and migration assays were carried out in vitro along with the establishment of a subcutaneous xenograft model in vivo to determine the role of miRNA-29a in colon cancer progression. The B7-H3 protein showed elevated expression in colon carcinoma and was relevant to TNM staging, lymph node metastasis, and reduced survival. Meanwhile, miR-29a was preferentially expressed in normal colon tissues, while B7-H3 transcript levels had no marked differences between tumor and normal tissue specimens. In vitro, miR-29a upregulation resulted in reduced B7-H3 expression. Furthermore, miR-29a upregulation reduced the invasive and migratory abilities of colon carcinoma cells. In animal models, upregulation of miR-29a slowed down the growth of subcutaneous xenotransplanted tumors and resulted in prolonged survival time. MiR-29a downregulates B7-H3 expression and accordingly inhibits colon cancer progression, invasion, and migration, indicating miR-29a and B7-H3 might represent novel molecular targets for advanced immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Jin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Suzhou Dushu Lake Hospital (Dushu Lake Hospital Affiliated to Soochow University), Suzhou, China
- Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojuan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Xie
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingbing Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenrui Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lipeng Luan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Ouyang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianglei Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Jiangsu Institute of Clinical Immunology, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
42
|
CD276 is an important player in macrophage recruitment into the tumor and an upstream regulator for PAI-1. Sci Rep 2021; 11:14849. [PMID: 34290311 PMCID: PMC8295264 DOI: 10.1038/s41598-021-94360-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
More than 70% of colorectal, prostate, ovarian, pancreatic and breast cancer specimens show expression of CD276 (B7–H3), a potential immune checkpoint family member. Several studies have shown that high CD276 expression in cancer cells correlates with a poor clinical prognosis. This has been associated with the presence of lower tumor infiltrating leukocytes. Among those, tumor-associated macrophages can comprise up to 50% of the tumor mass and are thought to support tumor growth through various mechanisms. However, a lack of information on CD276 function and interaction partner(s) impedes rigorous evaluation of CD276 as a therapeutic target in oncology. Therefore, we aimed to understand the relevance of CD276 in tumor-macrophage interaction by employing a 3D spheroid coculture system with human cells. Our data show a role for tumor-expressed CD276 on the macrophage recruitment into the tumor spheroid, and also in regulation of the extracellular matrix modulator PAI-1. Furthermore, our experiments focusing on macrophage-expressed CD276 suggest that the antibody-dependent CD276 engagement triggers predominantly inhibitory signaling networks in human macrophages.
Collapse
|
43
|
Rafael MS, Cohen-Gogo S, Irwin MS, Vali R, Shammas A, Morgenstern DA. Theranostics in Neuroblastoma. PET Clin 2021; 16:419-427. [PMID: 34053585 DOI: 10.1016/j.cpet.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Theranostics combines diagnosis and targeted therapy, achieved by the use of the same or similar molecules labeled with different radiopharmaceuticals or identical with different dosages. One of the best examples is the use of metaiodobenzylguanidine (MIBG). In the management of neuroblastoma-the most common extracranial solid tumor in children. MIBG has utility not only for diagnosis, risk-stratification, and response monitoring but also for cancer therapy, particularly in the setting of relapsed/refractory disease. Improved techniques and new emerging radiopharmaceuticals likely will strengthen the role of nuclear medicine in the management of neuroblastoma.
Collapse
Affiliation(s)
- Margarida Simao Rafael
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Sarah Cohen-Gogo
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Meredith S Irwin
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Reza Vali
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada.
| | - Amer Shammas
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| | - Daniel A Morgenstern
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
44
|
Abstract
Improving the survival of patients with osteosarcoma has long proved challenging, although the treatment of this disease is on the precipice of advancement. The increasing feasibility of molecular profiling together with the creation of both robust model systems and large, well-annotated tissue banks has led to an increased understanding of osteosarcoma biology. The historical invariability of survival outcomes and the limited number of agents known to be active in the treatment of this disease facilitate clinical trials designed to identify efficacious novel therapies using small cohorts of patients. In addition, trial designs will increasingly consider the genetic background of the tumour through biomarker-based patient selection, thereby enriching for clinical activity. Indeed, osteosarcoma cells are known to express a number of surface proteins that might be of therapeutic relevance, including B7-H3, GD2 and HER2, which can be targeted using antibody-drug conjugates and/or adoptive cell therapies. In addition, immune-checkpoint inhibition might augment the latter approach by helping to overcome the immunosuppressive tumour microenvironment. In this Review, we provide a brief overview of current osteosarcoma therapy before focusing on the biological insights from the molecular profiling and preclinical modelling studies that have opened new therapeutic opportunities in this disease.
Collapse
Affiliation(s)
- Jonathan Gill
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
He J, Ling L, Liu Z, Ren X, Wan L, Tu C, Li Z. Functional interplay between long non-coding RNAs and the Wnt signaling cascade in osteosarcoma. Cancer Cell Int 2021; 21:313. [PMID: 34130697 PMCID: PMC8207720 DOI: 10.1186/s12935-021-02013-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a common and highly malignant bone tumor among children, adolescents and young adults. However, the underlying molecular mechanisms remain largely unexplored. LncRNAs are transcripts with no or limited protein-coding capacity in human genomes, and have been demonstrated to play crucial functions in initiation, progression, therapeutic resistance, recurrence and metastasis of tumor. Considerable studies revealed a dysregulated lncRNA expression pattern in osteosarcoma, which may act as oncogenes or suppressors to regulate osteosarcoma progression. Wnt signaling pathway is an important cascade in tumorigenesis by modulation of pleiotropic biological functions including cell proliferation, apoptosis, differentiation, stemness, genetic stability and chemoresistance. Hyperactivation or deficiency of key effectors in Wnt cascade is a common event in many osteosarcoma patients. Recently, increasing evidences have suggested that lncRNAs could interplay with component of Wnt pathway, and thereby contribute to osteosarcoma onset, progression and dissemination. In this review, we briefly summarize Wnt signaling-related lncRNAs in osteosarcoma progression, aiming to gain insights into their underlying crosstalk as well as clinical application in osteosarcoma therapeutic modalities.
Collapse
Affiliation(s)
- Jieyu He
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lin Ling
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, No 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
46
|
Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S, DeRenzo C. A Novel Orthotopic Implantation Technique for Osteosarcoma Produces Spontaneous Metastases and Illustrates Dose-Dependent Efficacy of B7-H3-CAR T Cells. Front Immunol 2021; 12:691741. [PMID: 34211478 PMCID: PMC8239305 DOI: 10.3389/fimmu.2021.691741] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022] Open
Abstract
The outcome for metastatic pediatric osteosarcoma (OS) remains poor. Thus, there is an urgent need to develop novel therapies, and immunotherapy with CAR T cells has the potential to meet this challenge. However, there is a lack of preclinical models that mimic salient features of human disease including reliable development of metastatic disease post orthotopic OS cell injection. To overcome this roadblock, and also enable real-time imaging of metastatic disease, we took advantage of LM7 OS cells expressing firefly luciferase (LM7.ffLuc). LM7.ffLuc were implanted in a collagen mesh into the tibia of mice, and mice reliably developed orthotopic tumors and lung metastases as judged by bioluminescence imaging and histopathological analysis. Intratibial implantation also enabled surgical removal by lower leg amputation and monitoring for metastases development post-surgery. We then used this model to evaluate the antitumor activity of CAR T cells targeting B7-H3, an antigen that is expressed in a broad range of solid tumors including OS. B7-H3-CAR T cells had potent antitumor activity in a dose-dependent manner and inhibited the development of pulmonary metastases resulting in a significant survival advantage. In contrast T cells expressing an inactive B7-H3-CAR had no antitumor activity. Using unmodified LM7 cells also enabled us to demonstrate that B7-H3-CAR T cells traffic to orthotopic tumor sites. Hence, we have developed an orthotopic, spontaneously metastasizing OS model. This model may improve our ability not only to predict the safety and efficacy of current and next generation CAR T cell therapies but also other treatment modalities for metastatic OS.
Collapse
Affiliation(s)
- Lindsay Jones Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Amy Funk
- Department of Veterinary Medicine, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Phuong Nguyen
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Jessica Wagner
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Aaron Ross
- University of Tennessee Health Sciences School of Medicine, Memphis, TN, United States
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Andrew Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Stephen Gottschalk
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Christopher DeRenzo
- Department of Bone Marrow Transplant and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
47
|
Quintarelli C, Camera A, Ciccone R, Alessi I, Del Bufalo F, Carai A, Del Baldo G, Mastronuzzi A, De Angelis B. Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We? Front Immunol 2021; 12:634031. [PMID: 34163465 PMCID: PMC8216238 DOI: 10.3389/fimmu.2021.634031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are several immunotherapy approaches for the treatment of Central Nervous System (CNS) tumors under evaluation, currently none of these approaches have received approval from the regulatory agencies. CNS tumors, especially glioblastomas, are tumors characterized by highly immunosuppressive tumor microenvironment, limiting the possibility of effectively eliciting an immune response. Moreover, the peculiar anatomic location of these tumors poses relevant challenges in terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology consist of the use of autologous T cells redirected against tumor cells through chimeric antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on native or genetically engineered oncolytic viruses and on vaccination with tumor-associated antigen peptides are also under evaluation. Despite some sporadic complete remissions achieved in clinical trials, the outcome of patients with CNS tumors treated with different immunotherapeutic approaches remains poor. Based on the lessons learned from these unsatisfactory experiences, novel immune-therapy approaches aimed at overcoming the profound immunosuppressive microenvironment of these diseases are bringing new hope to reach the cure for CNS tumors.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Camera
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roselia Ciccone
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
48
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
49
|
Michelakos T, Kontos F, Barakat O, Maggs L, Schwab JH, Ferrone CR, Ferrone S. B7-H3 targeted antibody-based immunotherapy of malignant diseases. Expert Opin Biol Ther 2021; 21:587-602. [PMID: 33301369 PMCID: PMC8087627 DOI: 10.1080/14712598.2021.1862791] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Recent advances in immuno-oncology and bioengineering have rekindled the interest in monoclonal antibody (mAb)-based immunotherapies for malignancies. Crucial for their success is the identification of tumor antigens (TAs) that can serve as targets. B7-H3, a member of the B7 ligand family, represents such a TA. Although its exact functions and receptor(s) remain unclear, B7-H3 has predominantly a pro-tumorigenic effect mainly by suppressing the anti-tumor functions of T-cells.Areas covered: Initially we present a historical perspective on TA-specific antibodies for diagnosis and treatment of malignancies. Following a description of the TA requirements to be an attractive antibody-based immunotherapy target, we show that B7-H3 fulfills these criteria. We discuss its structure and functions. In a review and pooled analysis, we describe the limited B7-H3 expression in normal tissues and estimate B7-H3 expression frequency in tumors, tumor-associated vasculature and cancer initiating cells (CICs). Lastly, we discuss the association of B7-H3 expression in tumors with poor prognosis.Expert opinion: B7-H3 is an attractive target for mAb-based cancer immunotherapy. B7-H3-targeting strategies are expected to be highly effective and - importantly - safe. To fully exploit the diagnostic and therapeutic potential of B7-H3, its expression in pre-malignant lesions, serum, metastases, and CICs requires further investigation.
Collapse
Affiliation(s)
- Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Omar Barakat
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Luke Maggs
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Joseph H Schwab
- Department of Orthopaedic Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Cocco C, Morandi F, Airoldi I. Immune Checkpoints in Pediatric Solid Tumors: Targetable Pathways for Advanced Therapeutic Purposes. Cells 2021; 10:927. [PMID: 33920505 PMCID: PMC8074115 DOI: 10.3390/cells10040927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) represents a complex network between tumor cells and a variety of components including immune, stromal and vascular endothelial cells as well as the extracellular matrix. A wide panel of signals and interactions here take place, resulting in a bi-directional modulation of cellular functions. Many stimuli, on one hand, induce tumor growth and the spread of metastatic cells and, on the other hand, contribute to the establishment of an immunosuppressive environment. The latter feature is achieved by soothing immune effector cells, mainly cytotoxic T lymphocytes and B and NK cells, and/or through expansion of regulatory cell populations, including regulatory T and B cells, tumor-associated macrophages and myeloid-derived suppressor cells. In this context, immune checkpoints (IC) are key players in the control of T cell activation and anti-cancer activities, leading to the inhibition of tumor cell lysis and of pro-inflammatory cytokine production. Thus, these pathways represent promising targets for the development of effective and innovative therapies both in adults and children. Here, we address the role of different cell populations homing the TME and of well-known and recently characterized IC in the context of pediatric solid tumors. We also discuss preclinical and clinical data available using IC inhibitors alone, in combination with each other or administered with standard therapies.
Collapse
Affiliation(s)
| | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy; (C.C.); (F.M.)
| |
Collapse
|