1
|
Girmaw F. Review on allosteric modulators of dopamine receptors so far. Health Sci Rep 2024; 7:e1984. [PMID: 38505681 PMCID: PMC10948587 DOI: 10.1002/hsr2.1984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/21/2024] Open
Abstract
Background Contemporary research is predominantly directed towards allosteric modulators, a class of compounds designed to interact with specific sites distinct from the orthosteric site on G protein-coupled receptors. These allosteric modulators play a pivotal role in influencing diverse pharmacological effects, such as agonism/inverse agonism, efficacy modulation, and affinity modulation. One particularly intriguing aspect is the demonstrated capacity of allosteric modulation to enhance drug selectivity for therapeutic purposes, potentially leading to a reduction in serious side effects associated with traditional approaches. Allosteric ligands, a majority of which fall into the categories of negative allosteric modulators or positive allosteric modulators, exhibit the unique ability to either diminish or enhance the effects of endogenous ligands. Negative allosteric modulators weaken the response, while positive allosteric modulators intensify it. Additionally, silent allosteric modulators represent a distinct class that neither activates nor blocks the effects of endogenous ligands, adding complexity to the spectrum of allosteric modulation. In the broader context of central nervous system disorders, allosteric modulation takes center stage, particularly in the realm of dopamine receptors specifically, D1, D2, and D3 receptors. These receptors hold immense therapeutic potential for a range of conditions spanning neurodegenerative disorders to neurobehavioral and psychiatric disorders. The intricate modulation of dopamine receptors through allosteric mechanisms offers a nuanced and versatile approach to drug development. As research endeavors continue to unfold, the exploration of allosteric modulation stands as a promising frontier, holding the potential to reshape the landscape of drug discovery and therapeutic interventions in the field of neurology and psychiatry.
Collapse
Affiliation(s)
- Fentaw Girmaw
- Department of Pharmacy, College of Health ScienceWoldia UniversityWoldiaEthiopia
| |
Collapse
|
2
|
Tian Y, Daya R, Bhandari J, Joshi H, Thomson S, Patel V, Mishra R. Effect of Chronic Treatment with D2 Allosteric Modulator PAOPA on the Expression of Cerebral Dopamine Neurotrophic Factor (CDNF) in Select Brain Regions. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Majcher MJ, Babar A, Lofts A, Leung A, Li X, Abu-Hijleh F, Smeets NMB, Mishra RK, Hoare T. In situ-gelling starch nanoparticle (SNP)/O-carboxymethyl chitosan (CMCh) nanoparticle network hydrogels for the intranasal delivery of an antipsychotic peptide. J Control Release 2020; 330:738-752. [PMID: 33383097 DOI: 10.1016/j.jconrel.2020.12.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023]
Abstract
Existing oral or injectable antipsychotic drug delivery strategies typically demonstrate low bioavailability to targeted brain regions, incentivizing the development of alternative delivery strategies. Delivery via the nasal cavity circumvents multiple barriers for reaching the brain but requires drug delivery vehicles with very specific properties to be effective. Herein, we report in situ-gelling and degradable bulk nanoparticle network hydrogels consisting of oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) that enable intranasal delivery via spray, high nasal mucosal retention, and functional controlled release of the peptide drug PAOPA, a positive allosteric modulator of dopamine D2 receptor. PAOPA-loaded SNP-CMCh hydrogels can alleviate negative symptoms like behavioural abnormalities associated with schizophrenia (i.e. decreased social interaction time) for up to 72 h in an MK-801-induced pre-clinical rat model of schizophrenia at a low drug dosage (0.5 mg/kg); in comparison, conventional PAOPA administration via the intraperitoneal route requires twice the PAOPA dose to achieve a therapeutic effect that persists for only a few hours. This strategy offers potential for substantially decreasing re-administration frequencies and overall drug doses (and thus side-effects) of a range of potential antipsychotic drugs via a minimally-invasive administration route.
Collapse
Affiliation(s)
- Michael J Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ali Babar
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Andrew Lofts
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Ashlyn Leung
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Xiaoyun Li
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Niels M B Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada
| | - Ram K Mishra
- School of Biomedical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
4
|
Boursier ME, Levin S, Zimmerman K, Machleidt T, Hurst R, Butler BL, Eggers CT, Kirkland TA, Wood KV, Friedman Ohana R. The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells. J Biol Chem 2020; 295:5124-5135. [PMID: 32107310 DOI: 10.1074/jbc.ra119.011952] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are prominent targets to new therapeutics for a range of diseases. Comprehensive assessments of their cellular interactions with bioactive compounds, particularly in a kinetic format, are imperative to the development of drugs with improved efficacy. Hence, we developed complementary cellular assays that enable equilibrium and real-time analyses of GPCR ligand engagement and consequent activation, measured as receptor internalization. These assays utilize GPCRs genetically fused to an N-terminal HiBiT peptide (1.3 kDa), which produces bright luminescence upon high-affinity complementation with LgBiT, an 18-kDa subunit derived from NanoLuc. The cell impermeability of LgBiT limits signal detection to the cell surface and enables measurements of ligand-induced internalization through changes in cell-surface receptor density. In addition, bioluminescent resonance energy transfer is used to quantify dynamic interactions between ligands and their cognate HiBiT-tagged GPCRs through competitive binding with fluorescent tracers. The sensitivity and dynamic range of these assays benefit from the specificity of bioluminescent resonance energy transfer and the high signal intensity of HiBiT/LgBiT without background luminescence from receptors present in intracellular compartments. These features allow analyses of challenging interactions having low selectivity or affinity and enable studies using endogenously tagged receptors. Using the β-adrenergic receptor family as a model, we demonstrate the versatility of these assays by utilizing the same HiBiT construct in analyses of multiple aspects of GPCR pharmacology. We anticipate that this combination of target engagement and proximal functional readout will prove useful to the study of other GPCR families and the development of new therapeutics.
Collapse
Affiliation(s)
| | - Sergiy Levin
- Promega Biosciences LLC, San Luis Obispo, California 93401
| | | | | | - Robin Hurst
- Promega Corporation, Fitchburg, Wisconsin 53711
| | | | | | | | | | | |
Collapse
|
5
|
Mos I, Jacobsen SE, Foster SR, Bräuner-Osborne H. Calcium-Sensing Receptor Internalization Isβ-Arrestin–Dependent and Modulated by Allosteric Ligands. Mol Pharmacol 2019; 96:463-474. [DOI: 10.1124/mol.119.116772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
|
6
|
Zhukovsky D, Dar'in D, Krasavin M. Rh2
(esp)2
-Catalyzed Coupling of α-Diazo-γ-butyrolactams with Aromatic Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniil Zhukovsky
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Dmitry Dar'in
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| | - Mikhail Krasavin
- Saint Petersburg State University; 199034 Saint Petersburg Russian Federation
| |
Collapse
|
7
|
Bonifazi A, Yano H, Guerrero AM, Kumar V, Hoffman AF, Lupica CR, Shi L, Newman AH. Novel and Potent Dopamine D 2 Receptor Go-Protein Biased Agonists. ACS Pharmacol Transl Sci 2019; 2:52-65. [PMID: 30775693 PMCID: PMC6371206 DOI: 10.1021/acsptsci.8b00060] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/18/2022]
Abstract
![]()
The
discovery of functionally biased and physiologically beneficial
ligands directed toward G-protein coupled receptors (GPCRs) has provided
the impetus to design dopamine D2 receptor (D2R) targeted molecules that may be therapeutically advantageous for
the treatment of certain neuropsychiatric or basal ganglia related
disorders. Here we describe the synthesis of a novel series of D2R agonists linking the D2R unbiased agonist sumanirole
with privileged secondary molecular fragments. The resulting ligands
demonstrate improved D2R affinity and selectivity over
sumanirole. Extensive in vitro functional studies
and bias factor analysis led to the identification of a novel class
of highly potent Go-protein biased full D2R agonists with
more than 10-fold and 1000-fold bias selectivity toward activation
of specific G-protein subtypes and β-arrestin, respectively.
Intracellular electrophysiological recordings from midbrain dopamine
neurons demonstrated that Go-protein selective agonists can elicit
prolonged ligand-induced GIRK activity via D2Rs, which
may be beneficial in the treatment of dyskinesias associated with
dopamine system dysfunction.
Collapse
Affiliation(s)
- Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Hideaki Yano
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Adrian M Guerrero
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vivek Kumar
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
8
|
Daya RP, Bhandari J, Kooner SK, Ho J, Rowley CD, Bock NA, Farncombe T, Mishra RK. The Dopamine Allosteric Agent, PAOPA, Demonstrates Therapeutic Potential in the Phencyclidine NMDA Pre-clinical Rat Model of Schizophrenia. Front Behav Neurosci 2019; 12:302. [PMID: 30618660 PMCID: PMC6299008 DOI: 10.3389/fnbeh.2018.00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
PAOPA, a potent analog of prolyl-leucyl-glycinamide, has shown therapeutic potential at the preclinical stage for dopaminergic related illnesses, including animal models of schizophrenia, Parkinson’s disease and haloperidol-induced extrapyramidal movement disorders. PAOPA’s unique allosteric mechanism and dopamine D2 receptor specificity provide a unique composition of properties for the development of potential therapeutics for neuropsychiatric illnesses. We sought to investigate PAOPA’s therapeutic prospects across the spectrum of schizophrenia-like symptoms represented in the established phencyclidine-induced rat model of schizophrenia, (5 mg/kg PCP twice daily for 7 days, followed by 7 days of drug withdrawal). PAOPA was assessed for its effect on brain metabolic activity and across a battery of behavioral tests including, hyperlocomotion, social withdrawal, sensorimotor gating, and novel object recognition. PAOPA showed therapeutic efficacy in behavioral paradigms representing the negative (social withdrawal) and cognitive-like (novel object recognition) symptoms of schizophrenia. Interestingly, some behavioral indices associated with the positive symptoms of schizophrenia that were ameliorated in PAOPA’s prior examination in the amphetamine-sensitized model of schizophrenia were not ameliorated in the PCP model; suggesting that the deficits induced by amphetamine and PCP—while phenotypically similar—are mechanistically different and that PAOPA’s effects are restricted to certain mechanisms and systems. These studies provide insight on the potential use of PAOPA for the safe and effective treatment of schizophrenia.
Collapse
Affiliation(s)
- Ritesh P Daya
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Sharnpreet K Kooner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Joella Ho
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Christopher D Rowley
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, Hamilton, ON, Canada
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Ferreira da Costa J, Silva D, Caamaño O, Brea JM, Loza MI, Munteanu CR, Pazos A, García-Mera X, González-Díaz H. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chem Neurosci 2018; 9:2572-2587. [PMID: 29791132 DOI: 10.1021/acschemneuro.8b00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Predicting drug-protein interactions (DPIs) for target proteins involved in dopamine pathways is a very important goal in medicinal chemistry. We can tackle this problem using Molecular Docking or Machine Learning (ML) models for one specific protein. Unfortunately, these models fail to account for large and complex big data sets of preclinical assays reported in public databases. This includes multiple conditions of assays, such as different experimental parameters, biological assays, target proteins, cell lines, organism of the target, or organism of assay. On the other hand, perturbation theory (PT) models allow us to predict the properties of a query compound or molecular system in experimental assays with multiple boundary conditions based on a previously known case of reference. In this work, we report the first PTML (PT + ML) study of a large ChEMBL data set of preclinical assays of compounds targeting dopamine pathway proteins. The best PTML model found predicts 50000 cases with accuracy of 70-91% in training and external validation series. We also compared the linear PTML model with alternative PTML models trained with multiple nonlinear methods (artificial neural network (ANN), Random Forest, Deep Learning, etc.). Some of the nonlinear methods outperform the linear model but at the cost of a notable increment of the complexity of the model. We illustrated the practical use of the new model with a proof-of-concept theoretical-experimental study. We reported for the first time the organic synthesis, chemical characterization, and pharmacological assay of a new series of l-prolyl-l-leucyl-glycinamide (PLG) peptidomimetic compounds. In addition, we performed a molecular docking study for some of these compounds with the software Vina AutoDock. The work ends with a PTML model predictive study of the outcomes of the new compounds in a large number of assays. Therefore, this study offers a new computational methodology for predicting the outcome for any compound in new assays. This PTML method focuses on the prediction with a simple linear model of multiple pharmacological parameters (IC50, EC50, Ki, etc.) for compounds in assays involving different cell lines used, organisms of the protein target, or organism of assay for proteins in the dopamine pathway.
Collapse
Affiliation(s)
- Joana Ferreira da Costa
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Silva
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olga Caamaño
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José M. Brea
- CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria Isabel Loza
- CIMUS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Cristian R. Munteanu
- Instituto de Investigacion Biomedica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15006, Spain
| | - Alejandro Pazos
- Instituto de Investigacion Biomedica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, 15006, Spain
- Computer Science Department, Faculty of Computer Science, University of A Coruna, 15071 A Coruña, Spain
| | - Xerardo García-Mera
- Department of Organic Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Humbert González-Díaz
- Department of Organic Chemistry II, University of Basque Country UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
10
|
Dai WL, Liu XT, Bao YN, Yan B, Jiang N, Yu BY, Liu JH. Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner. Exp Mol Med 2018; 50:1-12. [PMID: 30429454 PMCID: PMC6235923 DOI: 10.1038/s12276-018-0175-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 01/11/2023] Open
Abstract
Morphine tolerance remains a challenge in the management of chronic pain in the clinic. As shown in our previous study, the dopamine D2 receptor (D2DR) expressed in spinal cord neurons might be involved in morphine tolerance, but the underlying mechanisms remain to be elucidated. In the present study, selective spinal D2DR blockade attenuated morphine tolerance in mice by inhibiting phosphatidylinositol 3 kinase (PI3K)/serine–threonine kinase (Akt)-mitogen activated protein kinase (MAPK) signaling in a μ opioid receptor (MOR)-dependent manner. Levo-corydalmine (l-CDL), which exhibited micromolar affinity for D2DR in D2/CHO-K1 cell lines in this report and effectively alleviated bone cancer pain in our previous study, attenuated morphine tolerance in rats with chronic bone cancer pain at nonanalgesic doses. Furthermore, the intrathecal administration of l-CDL obviously attenuated morphine tolerance, and the effect was reversed by a D2DR agonist in mice. Spinal D2DR inhibition and l-CDL also inhibited tolerance induced by the MOR agonist DAMGO. l-CDL and a D2DR small interfering RNA (siRNA) decreased the increase in levels of phosphorylated Akt and MAPK in the spinal cord; these changes were abolished by a PI3K inhibitor. In addition, the activated Akt and MAPK proteins in mice exhibiting morphine tolerance were inhibited by a MOR antagonist. Intrathecal administration of a PI3K inhibitor also attenuated DAMGO-induced tolerance. Based on these results, l-CDL antagonized spinal D2DR to attenuate morphine tolerance by inhibiting PI3K/Akt-dependent MAPK phosphorylation through MOR. These findings provide insights into a more versatile treatment for morphine tolerance. By blocking dopamine receptors located in the spinal cord, a compound found in a traditional Chinese herbal medicine may help mitigate tolerance to morphine, a common problem among cancer patients who regularly take the opioid painkiller. A team led by Ji-Hua Liu and Bo-Yang Yu from China Pharmaceutical University in Nanjing had previously showed that inhibiting dopamine D2 receptors in spinal neurons prevented mice from developing morphine tolerance, but it wasn’t clear why. They have now demonstrated that blocking D2 receptors prevents the relay of cellular signals from morphine-binding “μ-opioid” receptors to mediators of drug tolerance. Levo-corydalmine, a compound isolated from the Asian Corydalis plant, binds and inhibits D2 receptors. When administered directly into the spinal cords of mice and rats, it blocked downstream signaling, reducing morphine tolerance.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xin-Tong Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yi-Ni Bao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bing Yan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Nan Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
11
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
12
|
Basu D, Tian Y, Hui P, Bhandari J, Johnson RL, Mishra RK. Change in expression of vesicular protein synapsin II by chronic treatment with D2 allosteric modulator PAOPA. Peptides 2015; 66:58-62. [PMID: 25703303 DOI: 10.1016/j.peptides.2015.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
The hallmark symptoms of schizophrenia include profound disturbances in thought, perception, cognition etc., which negatively impacts an individual's quality of life. Current antipsychotic drugs are not effective in treating all symptoms of this disorder, and often cause severe movement and metabolic side effects. Consequently, there remains a strong impetus to develop safer and more efficacious therapeutics for patients, as well as elucidating the etiology of schizophrenia. Previous work in our lab has introduced a novel candidate for the treatment of this disease: the dopamine D2 receptor (D2R) allosteric modulator, 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA). We have previously shown that PAOPA, by selectively modulating D2R, can ameliorate schizophrenia-like symptoms in animal models, although the precise mechanism is presently not understood. Synapsin II is a presynaptic vesicular protein which has been strongly implicated in schizophrenia, as it is reduced in the prefrontal cortex of patients, and knockdown of this protein elicits schizophrenia-like phenotypes in animal models. Given the therapeutic effects of PAOPA and the role of synapsin II in schizophrenia, the objective of this study was to investigate the effect of chronic administration of PAOPA (45 days) on neuronal synapsin II protein expression in rodents. Immunoblot results revealed that the synapsin IIa, but not the IIb isoform, was increased in the dopaminergic regions of the striatum, nucleus accumbens, and medial prefrontal cortex. The results of this study implicate a role for modulation of synapsin II as a possible therapeutic mechanism of action for potential antipsychotic drug PAOPA.
Collapse
Affiliation(s)
- Dipannita Basu
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Yuxin Tian
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Patricia Hui
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Jayant Bhandari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5
| | - Rodney L Johnson
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Ram K Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main St. W., Hamilton, ON, Canada L8N 3Z5.
| |
Collapse
|