1
|
Suzuki H, Cuiné S, Légeret B, Wijffels RH, Hulatt CJ, Li‐Beisson Y, Kiron V. Phosphorus starvation induces the synthesis of novel lipid class diacylglyceryl glucuronide and diacylglyceryl-N,N,N-trimethylhomoserine in two species of cold-adapted microalgae Raphidonema (Chlorophyta). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17227. [PMID: 39868466 PMCID: PMC11771548 DOI: 10.1111/tpj.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Microalgae possess diverse lipid classes as components of structural membranes and have adopted various lipid remodeling strategies involving phospholipids to cope with a phosphorus (P)-limited environment. Here, we report a unique adaptative strategy to P deficient conditions in two cold-adapted microalgae, Raphidonema monicae and Raphidonema nivale, involving the lipid class diacylglyceryl glucuronide (DGGA) and the betaine lipid diacylglyceryl-N,N,N-trimethylhomoserine. Lipidomic analyses showed that these two lipid classes were present only in trace amounts in nutrient replete conditions, whereas they significantly increased under P-starvation concomitant with a reduction in phospholipids, suggesting a physiological significance of these lipid classes to combat P-starvation. Additionally, we found two putative sulfoquinovosyldiacylglycerol (SQDG) synthases, known to be involved in DGGA synthesis in higher plants, in the draft genome of R. monicae, and compared it with SQDG synthases found in other organisms such as higher plants, Streptophyta, and Chlorophyta. DGGA has not been previously recognized in Chlorophyta, and our findings suggest that the lipid class may be present in other closely related green algae too. Thus, this study expands our knowledge on diverse lipid remodeling responses of Chlorophycean algae to adapt to low P environments.
Collapse
Affiliation(s)
- Hirono Suzuki
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Stéphan Cuiné
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Bertrand Légeret
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - René H. Wijffels
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenthe Netherlands
| | - Chris J. Hulatt
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Yonghua Li‐Beisson
- Aix Marseille Univ, CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix‐Marseille, CEA CadaracheSaint Paul‐Lez‐DuranceFrance
| | - Viswanath Kiron
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
2
|
Ugya AY, Hasan DB, Ari HA, Sheng Y, Chen H, Wang Q. Antibiotic synergistic effect surge bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. ENVIRONMENTAL RESEARCH 2024; 259:119521. [PMID: 38960350 DOI: 10.1016/j.envres.2024.119521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Tetracycline (TC) and ciprofloxacin (CF) induce a synergistic effect that alters the biochemical composition, leading to a decrease in the growth and photosynthetic efficiency of microalgae. But the current study provides a novel insight into stress-inducing techniques that trigger a change in macromolecules, leading to an increase in the bioenergy potential and pathogen resistance of Chlorella variabilis biofilm. The study revealed that in a closed system, a light intensity of 167 μmol/m2/s causes 93.5% degradation of TC and 16% degradation of CF after 7 days of exposure, hence availing the products for utilization by C. variabilis biofilm. The resistance to pathogens invasion was linked to 85% and 40% increase in the expression level of photosystem II oxygen-evolving enhancer protein 3 (PsbQ), and mitogen activated kinase (MAK) respectively. The results also indicate that a surge in light intensity triggers 49% increase in the expression level of lysophosphatidylcholine (LPC) (18:2), which is an important lipidomics that can easily undergo transesterification into bioenergy. The thermogravimetric result indicates that the biomass sample of C. variabilis biofilm cultivated under light intensity of 167 μmol/m2/s produces a higher residual mass of 45.5% and 57.5 under air and inert conditions, respectively. The Fourier transform infrared (FTIR) indicates a slight shift in the major functional groups, while the energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) indicate clear differences in the morphology and elemental composition of the biofilm biomass in support of the increase bioenergy potential of C. variabilis biofilm. The current study provides a vital understanding of a innovative method of cultivation of C. variabilis biofilm, which is resistant to pathogens and controls the balance between fatty acid and TAG synthesis leading to surge in bioenergy potential and environmental sustainability.
Collapse
Affiliation(s)
- Adamu Yunusa Ugya
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China; Department of Environmental Management, Kaduna State University, Kaduna State, Nigeria
| | - Diya'uddeen Basheer Hasan
- Centre for Energy Research and Training (CERT), Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Yangyang Sheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Calderón-Vergara LA, Díaz-Sánchez LM, Blanco-Tirado C, Combariza MY. Comparative profiling of Chlorella vulgaris cells, extracts, and intact chloroplasts using electron transfer matrix-assisted laser desorption/ionization mass spectrometry (ET-MALDI-MS). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5652-5664. [PMID: 39109659 DOI: 10.1039/d4ay00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The intricate composition of microalgal pigments plays a crucial role in various biological processes, from photosynthesis to biomarker identification. Traditional pigment analysis methods involve complex extraction techniques, posing challenges in maintaining analyte integrity. In this study, we employ Electron Transfer Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (ET-MALDI-MS) to compare the pigmentary profiles of Chlorella vulgaris intact cells, chloroplasts, and solvent extracts. We aim to obtain comprehensive extracts rich in polar and non-polar compounds using ultrasound-assisted and supercritical fluid extraction methods. Additionally, intact chloroplasts are isolated using a lysis buffer and sucrose density gradient centrifugation. Our ET-MALDI-MS analysis reveals distinct compositional differences, highlighting the impact of extraction protocols on microalgal pigment identification. We observe prominent signals corresponding to radical cations of key pigments, including chlorophylls and carotenoids, which are crucial for C. vulgaris identification. Furthermore, ET-MALDI-MS facilitates the identification of specific lipids within chloroplast membranes and other organelles. This study underscores the rapid and precise nature of ET-MALDI-MS in microalgal biomarker analysis, providing valuable insights into phytoplankton dynamics, trophic levels, and environmental processes. C. vulgaris emerges as a promising model for studying pigment composition and membrane lipid diversity, enhancing our understanding of microalgal ecosystems.
Collapse
Affiliation(s)
- Luz A Calderón-Vergara
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia.
| | - Luis M Díaz-Sánchez
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia.
| | - Cristian Blanco-Tirado
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia.
| | - Marianny Y Combariza
- Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Santander, 680002, Colombia.
| |
Collapse
|
4
|
Toustou C, Boulogne I, Gonzalez AA, Bardor M. Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View. Mar Drugs 2024; 22:353. [PMID: 39195469 DOI: 10.3390/md22080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Isabelle Boulogne
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Muriel Bardor
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
- ALGA BIOLOGICS, CURIB, 25 rue Tesnières, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
5
|
Ezhumalai G, Arun M, Manavalan A, Rajkumar R, Heese K. A Holistic Approach to Circular Bioeconomy Through the Sustainable Utilization of Microalgal Biomass for Biofuel and Other Value-Added Products. MICROBIAL ECOLOGY 2024; 87:61. [PMID: 38662080 PMCID: PMC11045622 DOI: 10.1007/s00248-024-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Emissions from transportation and industry primarily cause global warming, leading to floods, glacier melt, and rising seas. Widespread greenhouse gas emissions and resulting global warming pose significant risks to the environment, economy, and society. The need for alternative fuels drives the development of third-generation feedstocks: microalgae, seaweed, and cyanobacteria. These microalgae offer traits like rapid growth, high lipid content, non-competition with human food, and growth on non-arable land using brackish or waste water, making them promising for biofuel. These unique phototrophic organisms use sunlight, water, and carbon dioxide (CO2) to produce biofuels, biochemicals, and more. This review delves into the realm of microalgal biofuels, exploring contemporary methodologies employed for lipid extraction, significant value-added products, and the challenges inherent in their commercial-scale production. While the cost of microalgae bioproducts remains high, utilizing wastewater nutrients for cultivation could substantially cut production costs. Furthermore, this review summarizes the significance of biocircular economy approaches, which encompass the utilization of microalgal biomass as a feed supplement and biofertilizer, and biosorption of heavy metals and dyes. Besides, the discussion extends to the in-depth analysis and future prospects on the commercial potential of biofuel within the context of sustainable development. An economically efficient microalgae biorefinery should prioritize affordable nutrient inputs, efficient harvesting techniques, and the generation of valuable by-products.
Collapse
Affiliation(s)
- Ganesan Ezhumalai
- Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Muthukrishnan Arun
- Department of Biotechnology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Renganathan Rajkumar
- Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133791, Republic of Korea.
| |
Collapse
|
6
|
Zibarev N, Toumi A, Politaeva N, Iljin I. Nutrients recovery from dairy wastewater by Chlorella vulgaris and comparison of the lipid's composition with various chlorella strains for biodiesel production. PLoS One 2024; 19:e0297464. [PMID: 38598537 PMCID: PMC11006192 DOI: 10.1371/journal.pone.0297464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/05/2024] [Indexed: 04/12/2024] Open
Abstract
Microalgae biomass is regarded as a promising feedstock for biodiesel production. The biomass lipid content and fatty acids composition are among the main selective criteria when screening microalgae strains for biodiesel production. In this study, three strains of Chlorella microalgae (C. kessleri, C. sorokiniana, C. vulgaris) were cultivated nutrient media with different nitrogen contents, and on a medium with the addition of dairy wastewater. Moreover, microalgae grown on dairy wastewater allowed the removal of azote and phosphorous. The removal efficiency of 90%, 53% and 95% of ammonium nitrogen, total nitrogen and phosphate ions, respectively, were reached. The efficiency of wastewater treatment from inorganic carbon was 55%, while the maximum growth of biomass was achieved. All four samples of microalgae had a similar fatty acid profile. Palmitic acid (C16:0) was the most abundant saturated fatty acid (SFA), and is suitable for the production of biodiesel. The main unsaturated fatty acids (UFA) present in the samples were oleic acid (C18:1 n9); linoleic acid (C18:2 n6) and alpha-linolenic acid (C18:3 n3), which belong to omega-9, omega-6, omega-3, respectively.
Collapse
Affiliation(s)
- Nikita Zibarev
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Amira Toumi
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Natalia Politaeva
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Igor Iljin
- Laboratory "Interdisciplinary Research and Education on Technological and Economic Problems of Energy Transition (CIRETEC-GT)", Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Song K, Zhou Z, Huang Y, Chen L, Cong W. Multi-omics insights into the mechanism of the high-temperature tolerance in a thermotolerant Chlorella sorokiniana. BIORESOURCE TECHNOLOGY 2023; 390:129859. [PMID: 37832851 DOI: 10.1016/j.biortech.2023.129859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Improving high-temperature tolerance of microalgae is crucial to enhance the robustness and economy of microalgae industrial production. Herein, a continuous adaptive laboratory evolution (ALE) system was developed to generate the thermotolerant strain of Chlorella sorokiniana. The resulting thermotolerant strain TR42 exhibited excellent cell growth and biomass production at 42 °C, the temperature that the original strain (OS) could not survive. The high-temperature resistant mechanism of TR42 was investigated by integrating the physiology, transcriptome, proteome and metabolome analyses, which involved enhancing antioxidant capacity, maintaining protein homeostasis, remodeling photosynthetic metabolism, and regulating the synthesis of heat-stress related metabolites. The proof-of-concept high-temperature outdoor cultivation demonstrated that TR42 exhibited 1.15- to 5.72-fold increases in biomass production and 1.62- to 7.04-fold increases in lipid productivity compared to those of OS, respectively, which provided a promising platform for microalgae industrial production. Thus, the multi-system thermotolerant mechanism of TR42 offered potential targets for enhancing high-temperature tolerance of microalgae.
Collapse
Affiliation(s)
- Kejing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenzhen Zhou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaxin Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Chen
- Key Laboratory of Biofuels, Key Laboratory of Shandong Energy Biological Genetic Resources, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wei Cong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
8
|
Mora-Godínez S, Rodríguez-López CE, Senés-Guerrero C, Treviño V, Díaz de la Garza R, Pacheco A. Effect of high CO2 concentrations on Desmodesmus abundans RSM lipidome. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Bao Z, Zhu Y, Zhang K, Feng Y, Zhang M, Li R, Yu L. New insights into phenotypic heterogeneity for the distinct lipid accumulation of Schizochytrium sp. H016. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:33. [PMID: 35337369 PMCID: PMC8957170 DOI: 10.1186/s13068-022-02126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Schizochytrium sp. is a marine heterotrophic protist and an important sustainable resource for high value-added docosahexaenoic acid in the future. The production of different phenotypes during the continuous subculture of Schizochytrium sp. results in a serious reduction in lipid yield and complicates the used of this strain in scientific research and industrial production. Hence, obtaining an improved understanding of the phenotypic differences and molecular mechanisms underlying the cell-to-cell heterogeneity of Schizochytrium sp. is necessary. RESULTS After continuous culture passage, Schizochytrium sp. H016 differentiated into two subpopulations with different morphologies and showed decreased capacity for lipid production. The presence of cell subpopulations with degraded lipid droplets led to a substantial decrease in overall lipid yield. Here, a rapid screening strategy based on fluorescence-activated cell sorting was proposed to classify and isolate subpopulations quickly in accordance with their lipid-producing capability. The final biomass and lipid yield of the subpopulation with high cell lipid content (i.e., H016-H) were 38.83 and 17.22 g/L, respectively, which were 2.07- and 5.38-fold higher than those of the subpopulation with low lipid content (i.e., H016-L), respectively. Subsequently, time‑resolved transcriptome analysis was performed to elucidate the mechanism of phenotypic heterogeneity in different subpopulations. Results showed that the expression of genes related to the cell cycle and lipid degradation was significantly upregulated in H016-L, whereas the metabolic pathways related to fatty acid synthesis and glyceride accumulation were remarkably upregulated in H016-H. CONCLUSION This study innovatively used flow cytometry combined with transcriptome technology to provide new insights into the phenotypic heterogeneity of different cell subpopulations of Schizochytrium sp. Furthermore, these results lay a strong foundation for guiding the breeding of oleaginous microorganisms with high lipid contents.
Collapse
Affiliation(s)
- Zhendong Bao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Kai Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Yumei Feng
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Meng Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China.,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China.,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China
| | - Ruili Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, China. .,Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, 430074, China. .,Hubei Engineering Research Center for Both Edible and Medicinal Resources, Wuhan, 430074, China.
| |
Collapse
|
10
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
11
|
Abstract
In recent years, there has been considerable interest in using microalgal lipids in the food, chemical, pharmaceutical, and cosmetic industries. Several microalgal species can accumulate appreciable lipid quantities and therefore are characterized as oleaginous. In cosmetic formulations, lipids and their derivatives are one of the main ingredients. Different lipid classes are great moisturizing, emollient, and softening agents, work as surfactants and emulsifiers, give consistence to products, are color and fragrance carriers, act as preservatives to maintain products integrity, and can be part of the molecules delivery system. In the past, chemicals have been widely used but today’s market and customers’ demands are oriented towards natural products. Microalgae are an extraordinary source of lipids and other many bioactive molecules. Scientists’ attention to microalgae cultivation for their industrial application is increasing. For the high costs associated, commercialization of microalgae and their products is still not very widespread. The possibility to use biomass for various industrial purposes could make microalgae more economically competitive.
Collapse
|
12
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
13
|
Azizan A, Maulidiani M, R. R, Shaari K, Ismail IS, Nagao N, Abas F. Mass Spectrometry-Based Metabolomics Combined with Quantitative Analysis of the Microalgal Diatom ( Chaetoceros calcitrans). Mar Drugs 2020; 18:md18080403. [PMID: 32751412 PMCID: PMC7459737 DOI: 10.3390/md18080403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Although many metabolomics studies of higher land plant species have been conducted, similar studies of lower nonland plant species, which include microalgae, are still developing. The present study represents an attempt to characterize the metabolic profile of a microalgal diatom Chaetoceros calcitrans, by applying high-resolution mass spectrometry detection, via Q-ExactiveTM Plus Orbitrap mass spectrometry. The results showed that 54 metabolites of various classes were tentatively identified. Experimentally, the chloroform and acetone extracts were clearly distinguished from other solvent extracts in chemometric regression analysis using PLS, showing the differences in the C. calcitrans metabolome between the groups. In addition, specific metabolites were evaluated, which supported the finding of antioxidant and anti-inflammatory activities. This study also provides data on the quantitative analysis of four carotenoids based on the identification results. Therefore, these findings could serve as a reliable tool for identifying and quantifying the metabolome that could reflect the metabolic activities of C. calcitrans.
Collapse
Affiliation(s)
- Awanis Azizan
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
| | - M. Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Rudiyanto R.
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norio Nagao
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698343
| |
Collapse
|
14
|
Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL. The lipid biochemistry of eukaryotic algae. Prog Lipid Res 2019; 74:31-68. [PMID: 30703388 DOI: 10.1016/j.plipres.2019.01.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Algal lipid metabolism fascinates both scientists and entrepreneurs due to the large diversity of fatty acyl structures that algae produce. Algae have therefore long been studied as sources of genes for novel fatty acids; and, due to their superior biomass productivity, algae are also considered a potential feedstock for biofuels. However, a major issue in a commercially viable "algal oil-to-biofuel" industry is the high production cost, because most algal species only produce large amounts of oils after being exposed to stress conditions. Recent studies have therefore focused on the identification of factors involved in TAG metabolism, on the subcellular organization of lipid pathways, and on interactions between organelles. This has been accompanied by the development of genetic/genomic and synthetic biological tools not only for the reference green alga Chlamydomonas reinhardtii but also for Nannochloropsis spp. and Phaeodactylum tricornutum. Advances in our understanding of enzymes and regulatory proteins of acyl lipid biosynthesis and turnover are described herein with a focus on carbon and energetic aspects. We also summarize how changes in environmental factors can impact lipid metabolism and describe present and potential industrial uses of algal lipids.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- Aix-Marseille Univ, CEA, CNRS, BIAM, UMR7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - Eric Fedosejevs
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, MO 65211, United States.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
15
|
Stimulation of Hydrogen Photoproduction in Chlorella sorokiniana Subjected to Simultaneous Nitrogen Limitation and Sulfur- and/or Phosphorus-Deprivation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Rashel RH, Patiño R. Influence of genetic background, salinity, and inoculum size on growth of the ichthyotoxic golden alga (Prymnesium parvum). HARMFUL ALGAE 2017; 66:97-104. [PMID: 28602258 DOI: 10.1016/j.hal.2017.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 05/22/2023]
Abstract
Salinity (5-30) effects on golden alga growth were determined at a standard laboratory temperature (22°C) and one associated with natural blooms (13°C). Inoculum-size effects were determined over a wide size range (100-100,000cellsml-1). A strain widely distributed in the USA, UTEX-2797 was the primary study subject but another of limited distribution, UTEX-995 was used to evaluate growth responses in relation to genetic background. Variables examined were exponential growth rate (r), maximum cell density (max-D) and, when inoculum size was held constant (100cellsml-1), density at onset of exponential growth (early-D). In UTEX-2797, max-D increased as salinity increased from 5 to ∼10-15 and declined thereafter regardless of temperature but r remained generally stable and only declined at salinity of 25-30. In addition, max-D correlated positively with r and early-D, the latter also being numerically highest at salinity of 15. In UTEX-995, max-D and r responded similarly to changes in salinity - they remained stable at salinity of 5-10 and 5-15, respectively, and declined at higher salinity. Also, max-D correlated with r but not early-D. Inoculum size positively and negatively influenced max-D and r, respectively, in both strains and these effects were significant even when the absolute size difference was small (100 versus 1000 cells ml-1). When cultured under similar conditions, UTEX-2797 grew faster and to much higher density than UTEX-995. In conclusion, (1) UTEX-2797's superior growth performance may explain its relatively wide distribution in the USA, (2) the biphasic growth response of UTEX-2797 to salinity variation, with peak abundance at salinity of 10-15, generally mirrors golden alga abundance-salinity associations in US inland waters, and (3) early cell density - whether artificially manipulated or naturally attained - can influence UTEX-2797 bloom potential.
Collapse
Affiliation(s)
- Rakib H Rashel
- Department of Biological Sciences and Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | - Reynaldo Patiño
- U.S. Geological Survey, Texas Cooperative Fish and Wildlife Research Unit and Departments of Natural Resources Management and Biological Sciences, Texas Tech University, Lubbock, TX 79409-2120, USA.
| |
Collapse
|
17
|
Rai V, Muthuraj M, Gandhi MN, Das D, Srivastava S. Real-time iTRAQ-based proteome profiling revealed the central metabolism involved in nitrogen starvation induced lipid accumulation in microalgae. Sci Rep 2017; 7:45732. [PMID: 28378827 PMCID: PMC5381106 DOI: 10.1038/srep45732] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
To understand the post-transcriptional molecular mechanisms attributing to oleaginousness in microalgae challenged with nitrogen starvation (N-starvation), the longitudinal proteome dynamics of Chlorella sp. FC2 IITG was investigated using multipronged quantitative proteomics and multiple reaction monitoring assays. Physiological data suggested a remarkably enhanced lipid accumulation with concomitant reduction in carbon flux towards carbohydrate, protein and chlorophyll biosynthesis. The proteomics-based investigations identified the down-regulation of enzymes involved in chlorophyll biosynthesis (porphobilinogen deaminase) and photosynthetic carbon fixation (sedoheptulose-1,7 bisphosphate and phosphoribulokinase). Profound up-regulation of hydroxyacyl-ACP dehydrogenase and enoyl-ACP reductase ascertained lipid accumulation. The carbon skeletons to be integrated into lipid precursors were regenerated by glycolysis, β-oxidation and TCA cycle. The enhanced expression of glycolysis and pentose phosphate pathway enzymes indicates heightened energy needs of FC2 cells for the sustenance of N-starvation. FC2 cells strategically reserved nitrogen by incorporating it into the TCA-cycle intermediates to form amino acids; particularly the enzymes involved in the biosynthesis of glutamate, aspartate and arginine were up-regulated. Regulation of arginine, superoxide dismutase, thioredoxin-peroxiredoxin, lipocalin, serine-hydroxymethyltransferase, cysteine synthase, and octanoyltransferase play a critical role in maintaining cellular homeostasis during N-starvation. These findings may provide a rationale for genetic engineering of microalgae, which may enable synchronized biomass and lipid synthesis.
Collapse
Affiliation(s)
- Vineeta Rai
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Muthusivaramapandian Muthuraj
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mayuri N. Gandhi
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debasish Das
- Department of Biosciences and Bioengineering, Centre for Energy, Indian Institute of Technology Guwahati, Assam 781039, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Wadhwani Research Center for Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
- DBT PAN IIT Centre for Bioenergy, Indian Institute of Technology Bombay, Mumbai, Powai - 400067, India
| |
Collapse
|
18
|
Isolation of a euryhaline microalgal strain, Tetraselmis sp. CTP4, as a robust feedstock for biodiesel production. Sci Rep 2016; 6:35663. [PMID: 27767051 PMCID: PMC5073363 DOI: 10.1038/srep35663] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Bioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9–22 μm), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L−1 d−1) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with ≥4 double bonds (<1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.
Collapse
|
19
|
Nezammahalleh H, Ghanati F, Adams TA, Nosrati M, Shojaosadati SA. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. BIORESOURCE TECHNOLOGY 2016; 218:700-711. [PMID: 27420157 DOI: 10.1016/j.biortech.2016.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size.
Collapse
Affiliation(s)
- Hassan Nezammahalleh
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Science, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Thomas A Adams
- Department of Chemical Engineering, Faculty of Engineering, McMaster University, Ontario, Canada
| | - Mohsen Nosrati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|