1
|
Hill AD, Okonechnikov K, Herr MK, Thomas C, Thongjuea S, Hasselblatt M, Patrizi A. Single-nucleus RNA-seq dissection of choroid plexus tumor cell heterogeneity. EMBO J 2024; 43:6766-6791. [PMID: 39482394 PMCID: PMC11649822 DOI: 10.1038/s44318-024-00283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
The genomic, genetic and cellular events regulating the onset, growth and survival of rare, choroid plexus neoplasms remain poorly understood. Here, we examine the heterogeneity of human choroid plexus tumors by single-nucleus transcriptome analysis of 23,906 cells from four disease-free choroid plexus and eleven choroid plexus tumors. The resulting expression atlas profiles cellular and transcriptional diversity, copy number alterations, and cell-cell interaction networks in normal and cancerous choroid plexus. In choroid plexus tumor epithelial cells, we observe transcriptional changes that correlate with genome-wide methylation profiles. We further characterize tumor type-specific stromal microenvironments that include altered macrophage and mesenchymal cell states, as well as changes in extracellular matrix components. This first single-cell dataset resource from such scarce samples should be valuable for divising therapies against these little-studied neoplasms.
Collapse
Affiliation(s)
- Anthony D Hill
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Konstantin Okonechnikov
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Marla K Herr
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Supat Thongjuea
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Yang G, Huang S, Hu K, Lu A, Yang J, Meroueh N, Dang P, Wang Y, Zhu H, Cao S, Zhang C. Flux estimation analysis systematically characterizes the metabolic shifts of the central metabolism pathway in human cancer. Front Oncol 2023; 13:1117810. [PMID: 37377905 PMCID: PMC10291142 DOI: 10.3389/fonc.2023.1117810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Glucose and glutamine are major carbon and energy sources that promote the rapid proliferation of cancer cells. Metabolic shifts observed on cell lines or mouse models may not reflect the general metabolic shifts in real human cancer tissue. Method In this study, we conducted a computational characterization of the flux distribution and variations of the central energy metabolism and key branches in a pan-cancer analysis, including the glycolytic pathway, production of lactate, tricarboxylic acid (TCA) cycle, nucleic acid synthesis, glutaminolysis, glutamate, glutamine, and glutathione metabolism, and amino acid synthesis, in 11 cancer subtypes and nine matched adjacent normal tissue types using TCGA transcriptomics data. Result Our analysis confirms the increased influx in glucose uptake and glycolysis and decreased upper part of the TCA cycle, i.e., the Warburg effect, in almost all the analyzed cancer. However, increased lactate production and the second half of the TCA cycle were only seen in certain cancer types. More interestingly, we failed to detect significantly altered glutaminolysis in cancer tissues compared to their adjacent normal tissues. A systems biology model of metabolic shifts through cancer and tissue types is further developed and analyzed. We observed that (1) normal tissues have distinct metabolic phenotypes; (2) cancer types have drastically different metabolic shifts compared to their adjacent normal controls; and (3) the different shifts in tissue-specific metabolic phenotypes result in a converged metabolic phenotype through cancer types and cancer progression. Discussion This study strongly suggests the possibility of having a unified framework for studies of cancer-inducing stressors, adaptive metabolic reprogramming, and cancerous behaviors.
Collapse
Affiliation(s)
- Grace Yang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Carmel High School, Carmel, IN, United States
| | - Shaoyang Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Carmel High School, Carmel, IN, United States
| | - Kevin Hu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Carmel High School, Carmel, IN, United States
| | - Alex Lu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Park Tudor School, Indianapolis, IN, United States
| | - Jonathan Yang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Carmel High School, Carmel, IN, United States
| | - Noah Meroueh
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Carmel High School, Carmel, IN, United States
| | - Pengtao Dang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN, United States
| | - Yijie Wang
- Department of Computer Science, Indiana University, Bloomington, IN, United States
| | - Haiqi Zhu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Computer Science, Indiana University, Bloomington, IN, United States
| | - Sha Cao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Hatami H, Sajedi A, Mir SM, Memar MY. Importance of lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) in cancer cells. Health Sci Rep 2023; 6:e996. [PMID: 36570342 PMCID: PMC9768844 DOI: 10.1002/hsr2.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Background In most regions, cancer ranks the second most frequent cause of death following cardiovascular disorders. Aim In this article, we review the various aspects of glycolysis with a focus on types of MCTs and the importance of lactate in cancer cells. Results and Discussion Metabolic changes are one of the first and most important alterations in cancer cells. Cancer cells use different pathways to survive, energy generation, growth, and proliferation compared to normal cells. The increase in glycolysis, which produces substances such as lactate and pyruvate, has an important role in metastases and invasion of cancer cells. Two important cellular proteins that play a role in the production and transport of lactate include lactate dehydrogenase and monocarboxylate transporters (MCTs). These molecules by their various isoforms and different tissue distribution help to escape the immune system and expansion of cancer cells under different conditions.
Collapse
Affiliation(s)
- Hamed Hatami
- Department of Immunology, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Atefe Sajedi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
| | - Seyed Mostafa Mir
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Clinical Biochemistry, Faculty of MedicineGolestan University of Medical SciencesGorganIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Wilczyński B, Dąbrowska A, Saczko J, Kulbacka J. The Role of Chloride Channels in the Multidrug Resistance. MEMBRANES 2021; 12:38. [PMID: 35054564 PMCID: PMC8781147 DOI: 10.3390/membranes12010038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Nowadays, one of medicine's main and most challenging aims is finding effective ways to treat cancer. Unfortunately, although there are numerous anti-cancerous drugs, such as cisplatin, more and more cancerous cells create drug resistance. Thus, it is equally important to find new medicines and research the drug resistance phenomenon and possibilities to avoid this mechanism. Ion channels, including chloride channels, play an important role in the drug resistance phenomenon. Our article focuses on the chloride channels, especially the volume-regulated channels (VRAC) and CLC chloride channels family. VRAC induces multidrug resistance (MDR) by causing apoptosis connected with apoptotic volume decrease (AVD) and VRAC are responsible for the transport of anti-cancerous drugs such as cisplatin. VRACs are a group of heterogenic complexes made from leucine-rich repetition with 8A (LRRC8A) and a subunit LRRC8B-E responsible for the properties. There are probably other subunits, which can create those channels, for example, TTYH1 and TTYH2. It is also known that the ClC family is involved in creating MDR in mainly two mechanisms-by changing the cell metabolism or acidification of the cell. The most researched chloride channel from this family is the CLC-3 channel. However, other channels are playing an important role in inducing MDR as well. In this paper, we review the role of chloride channels in MDR and establish the role of the channels in the MDR phenomenon.
Collapse
Affiliation(s)
- Bartosz Wilczyński
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Alicja Dąbrowska
- Faculty of Medicine, Wroclaw Medical University, L. Pasteura 1, 50-367 Wroclaw, Poland; (B.W.); (A.D.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland;
| |
Collapse
|
6
|
Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021; 9:biomedicines9121942. [PMID: 34944758 PMCID: PMC8698563 DOI: 10.3390/biomedicines9121942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.
Collapse
|
7
|
Rauschner M, Lange L, Hüsing T, Reime S, Nolze A, Maschek M, Thews O, Riemann A. Impact of the acidic environment on gene expression and functional parameters of tumors in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:10. [PMID: 33407762 PMCID: PMC7786478 DOI: 10.1186/s13046-020-01815-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
Background The low extracellular pH (pHe) of tumors resulting from glycolytic metabolism is a stress factor for the cells independent from concomitant hypoxia. The aim of the study was to analyze the impact of acidic pHe on gene expression on mRNA and protein level in two experimental tumor lines in vitro and in vivo and were compared to hypoxic conditions as well as combined acidosis+hypoxia. Methods Gene expression was analyzed in AT1 prostate and Walker-256 mammary carcinoma of the rat by Next Generation Sequencing (NGS), qPCR and Western blot. In addition, the impact of acidosis on tumor cell migration, adhesion, proliferation, cell death and mitochondrial activity was analyzed. Results NGS analyses revealed that 147 genes were uniformly regulated in both cell lines (in vitro) and 79 genes in both experimental tumors after 24 h at low pH. A subset of 25 genes was re-evaluated by qPCR and Western blot. Low pH consistently upregulated Aox1, Gls2, Gstp1, Ikbke, Per3, Pink1, Tlr5, Txnip, Ypel3 or downregulated Acat2, Brip1, Clspn, Dnajc25, Ercc6l, Mmd, Rif1, Zmpste24 whereas hypoxia alone led to a downregulation of most of the genes. Direct incubation at low pH reduced tumor cell adhesion whereas acidic pre-incubation increased the adhesive potential. In both tumor lines acidosis induced a G1-arrest (in vivo) of the cell cycle and a strong increase in necrotic cell death (but not in apoptosis). The mitochondrial O2 consumption increased gradually with decreasing pH. Conclusions These data show that acidic pHe in tumors plays an important role for gene expression independently from hypoxia. In parallel, acidosis modulates functional properties of tumors relevant for their malignant potential and which might be the result of pH-dependent gene expression.
Collapse
Affiliation(s)
- Mandy Rauschner
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Luisa Lange
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Thea Hüsing
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Sarah Reime
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Alexander Nolze
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Marcel Maschek
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Oliver Thews
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany
| | - Anne Riemann
- Institute of Physiology, University Halle-Wittenberg, Magdeburger Str. 6, 06112, Halle (Saale), Germany.
| |
Collapse
|
8
|
Raudenska M, Balvan J, Fojtu M, Gumulec J, Masarik M. Unexpected therapeutic effects of cisplatin. Metallomics 2020; 11:1182-1199. [PMID: 31098602 DOI: 10.1039/c9mt00049f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent that is clinically approved to fight both carcinomas and sarcomas. It has relatively high efficiency in treating ovarian cancers and metastatic testicular cancers. It is generally accepted that the major mechanism of cisplatin anti-cancer action is DNA damage. However, cisplatin is also effective in metastatic cancers and should, therefore, affect slow-cycling cancer stem cells in some way. In this review, we focused on the alternative effects of cisplatin that can support a good therapeutic response. First, attention was paid to the effects of cisplatin at the cellular level such as changes in intracellular pH and cellular mechanical properties. Alternative cellular targets of cisplatin, and the effects of cisplatin on cancer cell metabolism and ER stress were also discussed. Furthermore, the impacts of cisplatin on the tumor microenvironment and in the whole organism context were reviewed. In this review, we try to reveal possible causes of the unexpected effectiveness of this anti-cancer drug.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michaela Fojtu
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Jaromir Gumulec
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, CZ-612 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic. and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic and BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, CZ-252 50 Vestec, Czech Republic
| |
Collapse
|
9
|
Paškevičiūtė M, Petrikaitė V. Overcoming transporter-mediated multidrug resistance in cancer: failures and achievements of the last decades. Drug Deliv Transl Res 2019; 9:379-393. [PMID: 30194528 DOI: 10.1007/s13346-018-0584-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is a complex phenomenon caused by numerous reasons in cancer chemotherapy. It is related to the abnormal tumor metabolism, precisely increased glycolysis and lactic acid production, extracellular acidification, and drug efflux caused by transport proteins. There are few strategies to increase drug delivery into cancer cells. One of them is the inhibition of carbonic anhydrases or certain proton transporters that increase extracellular acidity by proton extrusion from the cells. This prevents weakly basic chemotherapeutic drugs from ionization and increases their penetration through the cancer cell membrane. Another approach is the inhibition of MDR proteins that pump the anticancer agents into the extracellular milieu and decrease their intracellular concentration. Physical methods, such as ultrasound-mediated sonoporation, are being developed, as well. To increase the efficacy of sonoporation, various microbubbles are used. Ultrasound causes microbubble cavitation, i.e., periodical pulsation of the microbubble, and destruction which results in formation of temporary pores in the cellular membrane and increased permeabilization to drug molecules. This review summarizes the main approaches to reverse MDR related to the drug penetration along with its applications in preclinical and clinical studies.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT-50162, Kaunas, Lithuania. .,Institute of Biotechnology, Vilnius University, Saulėtekio Ave. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
10
|
Sonehara NM, Lacerda JZ, Jardim-Perassi BV, de Paula Jr R, Moschetta-Pinheiro MG, Souza YST, de Andrade JCJ, De Campos Zuccari DAP. Melatonin regulates tumor aggressiveness under acidosis condition in breast cancer cell lines. Oncol Lett 2018; 17:1635-1645. [PMID: 30675223 PMCID: PMC6341749 DOI: 10.3892/ol.2018.9758] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer progression is composed of multiple steps that are influenced by tumor cell adaptations to survive under acidic conditions in the tumor microenvironment. Regulation of this cell survival behavior is a promising strategy to avoid cancer development. Melatonin is a natural hormone produced and secreted by the pineal gland capable of modulating different biological pathways in cancer. Although the anti-cancer effects of melatonin are currently widespread, its role in the acid tumor microenvironment remains poorly understood. The aim of the present study was to investigate the effect of low pH (6.7) on human breast cancer cell lines MCF-7 and MDA-MB-231, and the effectiveness of melatonin in acute acidosis survival mechanisms. Cell viability was measured by a MTT assay and the protein expression of glucose transporter (GLUT)-1, Ki-67 and caspase-3 was evaluated by immunocytochemical (ICC) analysis following low pH media and melatonin treatment. In both cell lines the viability was decreased after melatonin treatment (1 mM) under acidosis conditions for 24 h. ICC analysis showed a significant increase in GLUT-1 and Ki-67 expression at pH 6.7, and a decrease after treatment with melatonin for 12 and 24 h. The low pH media decreased the expression of caspase-3, which was increased after melatonin treatment for 12 and 24 h. Overall, the results of the present study revealed melatonin treatment increases apoptosis, as indicated by changes in caspase-3, and decreases proliferation, indicated by changes to Ki-67, and GLUT-1 protein expression under acute acidosis conditions in breast cancer cell lines.
Collapse
Affiliation(s)
- Nathália Martins Sonehara
- Faculty of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, SP 15090-000, Brazil.,Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Jéssica Zani Lacerda
- Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil.,Sao Paulo State University 'Julio de Mesquita Filho' (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| | - Bruna Victorasso Jardim-Perassi
- Faculty of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, SP 15090-000, Brazil.,Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Rubens de Paula Jr
- Faculty of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, SP 15090-000, Brazil.,Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Marina Gobbe Moschetta-Pinheiro
- Faculty of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, SP 15090-000, Brazil.,Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Ynaiá Santos Traba Souza
- Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Júlia Carolina Junqueira de Andrade
- Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil
| | - Debora Aparecida Pires De Campos Zuccari
- Faculty of Medicine of São José do Rio Preto (FAMERP), Department of Molecular Biology, São José do Rio Preto, SP 15090-000, Brazil.,Laboratory of Cancer Molecular Investigation (LIMC), Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto, SP 15090-000, Brazil.,Sao Paulo State University 'Julio de Mesquita Filho' (UNESP), São José do Rio Preto, SP 15054-000, Brazil
| |
Collapse
|
11
|
Gwangwa MV, Joubert AM, Visagie MH. Crosstalk between the Warburg effect, redox regulation and autophagy induction in tumourigenesis. Cell Mol Biol Lett 2018; 23:20. [PMID: 29760743 PMCID: PMC5935986 DOI: 10.1186/s11658-018-0088-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Tumourigenic tissue uses modified metabolic signalling pathways in order to support hyperproliferation and survival. Cancer-associated aerobic glycolysis resulting in lactic acid production was described nearly 100 years ago. Furthermore, increased reactive oxygen species (ROS) and lactate quantities increase metabolic, survival and proliferation signalling, resulting in increased tumourigenesis. In order to maintain redox balance, the cell possesses innate antioxidant defence systems such as superoxide dismutase, catalase and glutathione. Several stimuli including cells deprived of nutrients or failure of antioxidant systems result in oxidative stress and cell death induction. Among the cell death machinery is autophagy, a compensatory mechanism whereby energy is produced from damaged and/or redundant organelles and proteins, which prevents the accumulation of waste products, thereby maintaining homeostasis. Furthermore, autophagy is maintained by several pathways including phosphoinositol 3 kinases, the mitogen-activated protein kinase family, hypoxia-inducible factor, avian myelocytomatosis viral oncogene homolog and protein kinase receptor-like endoplasmic reticulum kinase. The persistent potential of cancer metabolism, redox regulation and the crosstalk with autophagy in scientific investigation pertains to its ability to uncover essential aspects of tumourigenic transformation. This may result in clinical translational possibilities to exploit tumourigenic oxidative status and autophagy to advance our capabilities to diagnose, monitor and treat cancer.
Collapse
Affiliation(s)
- Mokgadi Violet Gwangwa
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Anna Margaretha Joubert
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| | - Michelle Helen Visagie
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007 South Africa
| |
Collapse
|
12
|
Chano T, Avnet S, Kusuzaki K, Bonuccelli G, Sonveaux P, Rotili D, Mai A, Baldini N. Tumour-specific metabolic adaptation to acidosis is coupled to epigenetic stability in osteosarcoma cells. Am J Cancer Res 2016; 6:859-875. [PMID: 27186436 PMCID: PMC4859889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023] Open
Abstract
The glycolytic-based metabolism of cancers promotes an acidic microenvironment that is responsible for increased aggressiveness. However, the effects of acidosis on tumour metabolism have been almost unexplored. By using capillary electrophoresis with time-of-flight mass spectrometry, we observed a significant metabolic difference associated with glycolysis repression (dihydroxyacetone phosphate), increase of amino acid catabolism (phosphocreatine and glutamate) and urea cycle enhancement (arginino succinic acid) in osteosarcoma (OS) cells compared with normal fibroblasts. Noteworthy, metabolites associated with chromatin modification, like UDP-glucose and N(8)-acetylspermidine, decreased more in OS cells than in fibroblasts. COBRA assay and acetyl-H3 immunoblotting indicated an epigenetic stability in OS cells than in normal cells, and OS cells were more sensitive to an HDAC inhibitor under acidosis than under neutral pH. Since our data suggest that acidosis promotes a metabolic reprogramming that can contribute to the epigenetic maintenance under acidosis only in tumour cells, the acidic microenvironment should be considered for future therapies.
Collapse
Affiliation(s)
- Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical ScienceOtsu, Shiga, Japan
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico RizzoliBologna, Italy
| | - Katsuyuki Kusuzaki
- Department of Musculoskeletal Oncology, Takai HospitalTennri, Nara, Japan
| | - Gloria Bonuccelli
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico RizzoliBologna, Italy
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology (FATH), Université Catholique de Louvain (UCL)Brussels, Belgium
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of RomaRoma, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of RomaRoma, Italy
- Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of RomaRoma, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico RizzoliBologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
13
|
Alfarouk KO. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem 2016; 31:859-66. [PMID: 26864256 DOI: 10.3109/14756366.2016.1140753] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram their metabolic machineries to enter into permanent glycolytic pathways. The full reason for such reprogramming takes place is unclear. However, this metabolic switch is not made in vain for the lactate that is generated and exported outside cells is reused by other cells. This results in the generation of a pH gradient between the low extracellular pH that is acidic (pHe) and the higher cytosolic alkaline or near neutral pH (pHi) environments that are tightly regulated by the overexpression of several pumps and ion channels (e.g. NHE-1, MCT-1, V-ATPase, CA9, and CA12). The generation of this unique pH gradient serves as a determining factor in defining "tumor fitness". Tumor fitness is the capacity of the tumor to invade and metastasize due to its ability to reduce the efficiency of the immune system and confer resistance to chemotherapy. In this article, we highlight the importance of tumor microenvironment in mediating the failure of chemotherapeutic agents.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- a Department of Pharmacology , Faculty of Pharmacy, AL-Neelain University , Khartoum , Sudan
| |
Collapse
|
14
|
Gupta SC, Singh R, Pochampally R, Watabe K, Mo YY. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway. Oncotarget 2015; 5:12070-82. [PMID: 25504433 PMCID: PMC4322981 DOI: 10.18632/oncotarget.2514] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/24/2014] [Indexed: 01/24/2023] Open
Abstract
It is well known that acidic microenvironment promotes tumorigenesis, however, the underlying mechanism remains largely unknown. In the present study, we show that acidosis promotes invasiveness of breast cancer cells through a series of signaling events. First, our study indicates that NF-κB is a key factor for acidosis-induced cell invasion. Acidosis activates NF-κB without affecting STAT3 activity; knockdown of NF-κB p65 abrogates the acidosis-induced invasion activity. Next, we show that the activation of NF-κB is mediated through phosphorylation and degradation of IκBα; and phosphorylation and nuclear translocation of p65. Upstream to NF-κB signaling, AKT is activated under acidic conditions. Moreover, acidosis induces generation of reactive oxygen species (ROS) which can be suppressed by ROS scavengers, reversing the acidosis-induced activation of AKT and NF-κB, and invasiveness. As a negative regulator of AKT, PTEN is oxidized and inactivated by the acidosis-induced ROS. Finally, inhibition of NADPH oxidase (NOX) suppresses acidosis-induced ROS production, suggesting involvement of NOX in acidosis-induced signaling cascade. Of considerable interest, acidosis-induced ROS production and activation of AKT and NF-κB can be only detected in cancer cells, but not in non-malignant cells. Together, these results demonstrate a cancer specific acidosis-induced signaling cascade in breast cancer cells, leading to cell invasion.
Collapse
Affiliation(s)
- Subash C Gupta
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Ramesh Singh
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Microbiology, University of Mississippi Medical Center, Jackson, MS
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
15
|
Fais S, Venturi G, Gatenby B. Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy. Cancer Metastasis Rev 2015; 33:1095-108. [PMID: 25376898 PMCID: PMC4244550 DOI: 10.1007/s10555-014-9531-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Much effort is currently devoted to developing patient-specific cancer therapy based on molecular characterization of tumors. In particular, this approach seeks to identify driver mutations that can be blocked through small molecular inhibitors. However, this approach is limited by extensive intratumoral genetic heterogeneity, and, not surprisingly, even dramatic initial responses are typically of limited duration as resistant tumor clones rapidly emerge and proliferate. We propose an alternative approach based on observations that while tumor evolution produces genetic divergence, it is also associated with striking phenotypic convergence that loosely correspond to the well-known cancer “hallmarks”. These convergent properties can be described as driver phenotypes and may be more consistently and robustly expressed than genetic targets. To this purpose, it is necessary to identify strategies that are critical for cancer progression and metastases, and it is likely that these driver phenotypes will be closely related to cancer “hallmarks”. It appears that an antiacidic approach, by targetting a driver phenotype in tumors, may be thought as a future strategy against tumors in either preventing the occurrence of cancer or treating tumor patients with multiple aims, including the improvement of efficacy of existing therapies, possibly reducing their systemic side effects, and controlling tumor growth, progression, and metastasis. This may be achieved with existing molecules such as proton pump inhibitors (PPIs) and buffers such as sodium bicarbonate, citrate, or TRIS.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
- Department of Drug Research and Medicines Evaluation, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Bob Gatenby
- Radiology Department, Cancer Biology and Evolution Program Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
16
|
Zhang C, Liu C, Cao S, Xu Y. Elucidation of drivers of high-level production of lactates throughout a cancer development. J Mol Cell Biol 2015; 7:267-79. [PMID: 26003569 DOI: 10.1093/jmcb/mjv031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/07/2015] [Indexed: 01/31/2023] Open
Abstract
Lactates play key roles in facilitating or protecting the development of a cancer in most cancer types. While its beneficial effects to cancer development have been extensively studied, very little is known about what derives the high-level production of lactates in a cancer throughout its entire development. Here we present a novel computational analysis of transcriptomic data of nine primary cancer types, plus a few precancerous and metastatic cancer, to address this issue. Our approach is to identify stress types, which are known to play key roles in cancer development and show strong co-expressions with lactate dehydrogenase-A (LDHA), at different stages of cancer development. A number of interesting observations are made through our analyses, including (i) all nine primary cancer types show similar association patterns between stresses and LDHA, namely the strengths of the associations increase from early- to intermediate-stage cancer tissues but then make a substantial down turn at the most advanced stage; (ii) while the detailed stress types associated with LDHA may vary across different cancer types, stresses induced by apoptosis and adaptive immune responses are present universally, suggesting that these two stresses are possibly two key drivers to keep the high-level production of lactates; and (iii) there is a clear distinction between stress types associated with LDHA in precancerous tissues vs. cancer and metastasis tissues. We anticipate that the analyses can provide highly useful information for designing personalized treatments for different cancers at different stages, as stopping lactate production could have devastating effects on a cancer development.
Collapse
Affiliation(s)
- Chi Zhang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Chao Liu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Sha Cao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA, USA College of Computer Science and Technology, Jilin University, Changchun, China School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
17
|
Bellenghi M, Puglisi R, Pedini F, De Feo A, Felicetti F, Bottero L, Sangaletti S, Errico MC, Petrini M, Gesumundo C, Denaro M, Felli N, Pasquini L, Tripodo C, Colombo MP, Carè A, Mattia G. SCD5-induced oleic acid production reduces melanoma malignancy by intracellular retention of SPARC and cathepsin B. J Pathol 2015; 236:315-25. [PMID: 25802234 DOI: 10.1002/path.4535] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 01/17/2023]
Abstract
A proper balance between saturated and unsaturated fatty acids (FAs) is required for maintaining cell homeostasis. The increased demand of FAs to assemble the plasma membranes of continuously dividing cancer cells might unbalance this ratio and critically affect tumour outgrowth. We unveiled the role of the stearoyl-CoA desaturase SCD5 in converting saturated FAs into mono-unsaturated FAs during melanoma progression. SCD5 is down-regulated in advanced melanoma and its restored expression significantly reduced melanoma malignancy, both in vitro and in vivo, through a mechanism governing the secretion of extracellular matrix proteins, such as secreted protein acidic and rich in cysteine (SPARC) and collagen IV and of their proteases, such as cathepsin B. Enforced expression of SCD5 or supplementation of its enzymatic product, oleic acid, reduced the intracellular pH (pHe > pHi) and, in turn, vesicular trafficking across plasma membranes as well as melanoma dissemination. This intracellular acidification appears also to depend on SCD5-induced reduction of the C2 subunit of the vacuolar H(+) -ATPase, a proton pump whose inhibition changes the secretion profile of cancer cells. Our data support a role for SCD5 and its enzymatic product, oleic acid, in protection against malignancy, offering an explanation for the beneficial Mediterranean diet. Furthermore, SCD5 appears to functionally connect tumour cells and the surrounding stroma toward modification of the tumour microenvironment, with consequences on tumour spread and resistance to treatment.
Collapse
Affiliation(s)
- Maria Bellenghi
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pedini
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra De Feo
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Felicetti
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lisabianca Bottero
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sabina Sangaletti
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Maria Cristina Errico
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Petrini
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Gesumundo
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Denaro
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | - Nadia Felli
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Pasquini
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Mario Paolo Colombo
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alessandra Carè
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
18
|
Graham RM, Thompson JW, Webster KA. Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget 2015; 5:1162-73. [PMID: 24811485 PMCID: PMC4012732 DOI: 10.18632/oncotarget.1699] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pro-apoptotic protein Bnip3 is induced by hypoxia and is present in the core regions of most solid tumors. Bnip3 induces programmed necrosis by an intrinsic caspase independent mitochondrial pathway. Many tumor cells have evolved pathways to evade Bnip3-mediated death attesting to the physiological relevance of the survival threat imposed by Bnip3. We have reported that acidosis can trigger the Bnip3 death pathway in hypoxic cells therefore we hypothesized that manipulation of intracellular pH by pharmacological inhibition of the vacuolar (v)ATPase proton pump, a significant pH control pathway, may activate Bnip3 and promote death of hypoxic cells within the tumor. Here we confirm that bafilomycin A1 (BafA1), a selective vATPase inhibitor, significantly increased death of breast cancer cells in a hypoxia and Bnip3-dependent manner and significantly reduced tumor growth in MCF7 and MDA-MB-231 mouse xenografts. Combined treatment of cells with BafA1 and the ERK1/2 inhibitor U0126 further augmented cell death. Combined treatment of mice containing MDA-MB-231 xenografts with BafA1 and the ERK1/2 inhibitor sorafenib was superior to either treatment alone and supported tumor regression. BafA1 and sorafenib treatments alone reduced MDA-MB-231 cell metastasis and again the combination was significantly more effective than either treatment alone and was without apparent side effects. These results present a novel mechanism to destroy hypoxic tumor cells that may help reverse the resistance of hypoxic tumors to radiation and chemotherapy and perhaps target tumor stem cells.
Collapse
|
19
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
20
|
Meijer TWH, Bussink J, Zatovicova M, Span PN, Lok J, Supuran CT, Kaanders JHAM. Tumor microenvironmental changes induced by the sulfamate carbonic anhydrase IX inhibitor S4 in a laryngeal tumor model. PLoS One 2014; 9:e108068. [PMID: 25225880 PMCID: PMC4167542 DOI: 10.1371/journal.pone.0108068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 08/25/2014] [Indexed: 12/26/2022] Open
Abstract
Background and Purpose Carbonic anhydrase IX (CAIX) plays a pivotal role in pH homeostasis, which is essential for tumor cell survival. We examined the effect of the CAIX inhibitor 4-(3′(3″,5″-dimethylphenyl)-ureido)phenyl sulfamate (S4) on the tumor microenvironment in a laryngeal tumor model by analyzing proliferation, apoptosis, necrosis, hypoxia, metabolism and CAIX ectodomain shedding. Methods SCCNij202 tumor bearing-mice were treated with S4 for 1, 3 or 5 days. CAIX ectodomain shedding was measured in the serum after therapy. Effects on tumor cell proliferation, apoptosis, necrosis, hypoxia (pimonidazole) and CAIX were investigated with quantitative immunohistochemistry. Metabolic transporters and enzymes were quantified with qPCR. Results CAIX ectodomain shedding decreased after treatment with S4 (p<0.01). S4 therapy did neither influence tumor cell proliferation nor the amount of apoptosis and necrosis. Hypoxia (pimonidazole) and CAIX expression were also not affected by S4. CHOP and MMP9 mRNA as a reference of intracellular pH did not change upon treatment with S4. Compensatory mechanisms of pH homeostasis at the mRNA level were not observed. Conclusion As the clinical and biological meaning of the decrease in CAIX ectodomain shedding after S4 therapy is not clear, studies are required to elucidate whether the CAIX ectodomain has a paracrine or autocrine signaling function in cancer biology. S4 did not influence the amount of proliferation, apoptosis, necrosis and hypoxia. Therefore, it is unlikely that S4 can be used as single agent to influence tumor cell kill and proliferation, and to target primary tumor growth.
Collapse
Affiliation(s)
- Tineke W. H. Meijer
- Department of Radiation Oncology, 874 Radboud university medical center, HB Nijmegen, The Netherlands
- * E-mail:
| | - Johan Bussink
- Department of Radiation Oncology, 874 Radboud university medical center, HB Nijmegen, The Netherlands
| | - Miriam Zatovicova
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Paul N. Span
- Department of Radiation Oncology, 874 Radboud university medical center, HB Nijmegen, The Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, 874 Radboud university medical center, HB Nijmegen, The Netherlands
| | - Claudiu T. Supuran
- Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
21
|
Bicarbonate transport inhibitor SITS modulates pH homeostasis triggering apoptosis of Dalton's lymphoma: implication of novel molecular mechanisms. Mol Cell Biochem 2014; 397:167-78. [PMID: 25123669 DOI: 10.1007/s11010-014-2184-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 08/08/2014] [Indexed: 12/30/2022]
Abstract
Bicarbonate transporter (BCT) plays a crucial role in maintaining pH homeostasis of tumor cells by import of HCO3(-). This helps the tumor cells in manifesting extracellular tumor acidosis, accompanied by a relative intracellular alkalinization, which in turn promotes tumor progression. Therefore, blocking BCT-mediated HCO3(-) transport is envisaged as a promising anticancer therapeutic approach. Thus, using a murine model of a T cell lymphoma, designated as Dalton's lymphoma (DL), in the present in vitro investigation the antitumor consequences of blocking BCT function by its inhibitor 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) were explored. Treatment of DL cells with SITS resulted in an increase in the extracellular pH, associated with a decline in DL cell survival and augmented induction of apoptosis. BCT inhibition also elevated the expression of cytochrome c, caspase-9, caspase-3, Bax, reactive oxygen species, and nitric oxide along with inhibition of HSP-70 and Bcl2, which regulate tumor cell survival and apoptosis. SITS-treated DL cells displayed upregulated production of IFN-γ and IL-6 along with a decline of IL-10. Treatment of DL cells with SITS also inhibited the expression of fatty acid synthase, which is crucial for membrane biogenesis in neoplastic cells. The expression of lactate transporter MCT-1 and multidrug resistance regulating protein MRP-1 got inhibited along with hampered uptake of glucose and lactate production in SITS-treated DL cells. Thus, the declined tumor cell survival following inhibition of BCT could be the consequence of interplay of several inter-connected regulatory molecular events. The outcome of this study indicates the potential of BCT inhibition as a novel therapeutic approach for treatment of hematological malignancies.
Collapse
|
22
|
Moreno-Sánchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 2014; 50:10-23. [PMID: 24513530 DOI: 10.1016/j.biocel.2014.01.025] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
Abstract
Applying basic biochemical principles, this review analyzes data that contrasts with the Warburg hypothesis that glycolysis is the exclusive ATP provider in cancer cells. Although disregarded for many years, there is increasing experimental evidence demonstrating that oxidative phosphorylation (OxPhos) makes a significant contribution to ATP supply in many cancer cell types and under a variety of conditions. Substrates oxidized by normal mitochondria such as amino acids and fatty acids are also avidly consumed by cancer cells. In this regard, the proposal that cancer cells metabolize glutamine for anabolic purposes without the need for a functional respiratory chain and OxPhos is analyzed considering thermodynamic and kinetic aspects for the reductive carboxylation of 2-oxoglutarate catalyzed by isocitrate dehydrogenase. In addition, metabolic control analysis (MCA) studies applied to energy metabolism of cancer cells are reevaluated. Regardless of the experimental/environmental conditions and the rate of lactate production, the flux-control of cancer glycolysis is robust in the sense that it involves the same steps: glucose transport, hexokinase, hexosephosphate isomerase and glycogen degradation, all at the beginning of the pathway; these steps together with phosphofructokinase 1 also control glycolysis in normal cells. The respiratory chain complexes exert significantly higher flux-control on OxPhos in cancer cells than in normal cells. Thus, determination of the contribution of each pathway to ATP supply and/or the flux-control distribution of both pathways in cancer cells is necessary in order to identify differences from normal cells which may lead to the design of rational alternative therapies that selectively target cancer energy metabolism.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico.
| | - Alvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico
| | - Juan P Pardo
- Universidad Nacional Autónoma de México, Facultad de Medicina, Departamento de Bioquímica, México D.F., Mexico
| | - Stephen J Ralph
- School of Medical Sciences, Griffith University, Gold Coast Campus, Qld, Australia
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México D.F., Mexico; Instituto Nacional de Cancerología, Laboratorio de Medicina Translacional, Tlalpan, México D.F., Mexico
| |
Collapse
|
23
|
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 2013; 11:282. [PMID: 24195657 PMCID: PMC3826530 DOI: 10.1186/1479-5876-11-282] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/25/2013] [Indexed: 02/04/2023] Open
Abstract
In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
Collapse
Affiliation(s)
- Salvador Harguindey
- Instituto de Biología Clínica y Metabolismo (IBCM), Postas 13-01004, Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|