1
|
Hassan OI, Takamiya S, Asgarihafshejani A, Fehlings MG. Bridging the gap: a translational perspective in spinal cord injury. Exp Biol Med (Maywood) 2024; 249:10266. [PMID: 39391076 PMCID: PMC11464315 DOI: 10.3389/ebm.2024.10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating and complex condition to treat with no curative options. In the past few decades, rapid advancements in our understanding of SCI pathophysiology as well as the mergence of new treatments has created more optimism. Focusing on clinical translation, this paper provides a comprehensive overview of SCI through its epidemiology, pathophysiology, currently employed management strategies, and emerging therapeutic approaches. Additionally, it emphasizes the importance of addressing the heavy quality of life (QoL) challenges faced by SCI patients and their desires, providing a basis to tailor patient-centric forms of care. Furthermore, this paper discusses the frequently encountered barriers in translation from preclinical models to clinical settings. It also seeks to summarize significant completed and ongoing SCI clinical trials focused on neuroprotective and neuroregenerative strategies. While developing a cohesive regenerative treatment strategy remains challenging, even modest improvements in sensory and motor function can offer meaningful benefits and motivation for patients coping with this highly debilitating condition.
Collapse
Affiliation(s)
- Omar Imad Hassan
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Soichiro Takamiya
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Zhang W, Lan R, Shen T, Qin J, Wang Z, Chen J, Wang J, Wu Z, Xu Y, Shen Y, Lin Q, Chen Y, Wei Y, Liu Y, Ning Y, Zhou Y, Deng L, Han L, Wu X, Deng H, Cao Z, Yao X, Ren X. A novel strategy for spinal cord reconstruction via vascularized allogeneic spinal cord transplantation combine spinal cord fusion. CNS Neurosci Ther 2024; 30:e70020. [PMID: 39312474 PMCID: PMC11418822 DOI: 10.1111/cns.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
AIMS Spinal cord injuries (SCI) pose persistent challenges in clinical practice due to the secondary injury. Drawing from our experience in spinal cord fusion (SCF), we propose vascularized allogeneic spinal cord transplantation (vASCT) as a novel approach for SCI, much like organ transplantation has revolutionized organ failure treatment and vascularized composite-tissue allotransplantation has addressed limb defects. MATERIALS AND METHODS In this study, 24 dogs were paired and underwent vASCT, with donor spinal cord grafts and polyethylene glycol (PEG) application for SCF. The experimental group (n = 8) received tacrolimus and methylprednisolone, while the control group (n = 4) received only methylprednisolone. Safety and efficacy of vASCT were evaluated through electrophysiology, imaging, and 6-month follow-up. RESULTS The experimental group showed substantial recovery in hind limb motor function. Imaging revealed robust survival of spinal cord grafts and restoration of spinal cord continuity. In contrast, the control group maintained hind limb paralysis, with imaging confirming spinal cord graft necrosis and extensive defects. Electrophysiologically, the experimental group exhibited restored motor evoked potential signal conduction postoperatively, unlike the control group. Notably, PEG application during vASCT led to signal conduction recovery in intraoperative spinal cord evoked potential examinations for all dogs. CONCLUSION In the vASCT surgical model, the combination of PEG with tacrolimus has demonstrated the ability to reconstruct spinal cord continuity and restore hind limb motor function in beagles. Notably, a low dose of tacrolimus has also exhibited an excellent anti-immune rejection effect. These findings highlight vASCT's potential promise as a therapeutic strategy for addressing irreversible SCI.
Collapse
Affiliation(s)
- Weihua Zhang
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| | - Rongyu Lan
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| | - Tingting Shen
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Jie Qin
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| | - Zhihui Wang
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Jiayang Chen
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Jiaxing Wang
- Department of Medicine SchoolGuangxi UniversityNanningGuangxiChina
| | - Zhuotan Wu
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yudong Xu
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yangyang Shen
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Qikai Lin
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yuan Chen
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yi Wei
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Yiwen Liu
- Department of Anatomy and Cell BiologyMcGill UniversityMontrealQuebecCanada
| | - Yuance Ning
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Yiyan Zhou
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Liji Deng
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Linxuan Han
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| | - Xiaofei Wu
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| | - Haixuan Deng
- Department of ImagingRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Zhenbin Cao
- Department of ImagingRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
| | - Xianping Yao
- Hangzhou Research Institute of Chemical IndustryHangzhouZhejiangChina
| | - Xiaoping Ren
- Department of OrthopedicsRuikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Institute of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese MedicineNanningGuangxiChina
- Global Initiative to Cure Paralysis (GICUP Alliance)ColumbusOhioUSA
| |
Collapse
|
3
|
Quddusi A, Pedro KM, Alvi MA, Hejrati N, Fehlings MG. Early surgical intervention for acute spinal cord injury: time is spine. Acta Neurochir (Wien) 2023; 165:2665-2674. [PMID: 37468659 DOI: 10.1007/s00701-023-05698-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Acute traumatic spinal cord injury (tSCI) is a devastating occurrence that significantly contributes to global morbidity and mortality. Surgical decompression with stabilization is the most effective way to minimize the damaging sequelae that follow acute tSCI. In recent years, strong evidence has emerged that supports the rationale that early surgical intervention, within 24 h following the initial injury, is associated with a better prognosis and functional outcomes. In this review, we have summarized the evidence and elaborated on the nuances of this concept. Additionally, we have reviewed further concepts that stem from "time is spine," including earlier cutoffs less than 24 h and the challenging entity of central cord syndrome, as well as the emerging concept of adequate surgical decompression. Lastly, we identify barriers to early surgical care for acute tSCI, a key aspect of spine care that needs to be globally addressed via research and policy on an urgent basis.
Collapse
Affiliation(s)
- Ayesha Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karlo M Pedro
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nader Hejrati
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Toronto Western Hospital, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada.
| |
Collapse
|
4
|
Sarkar A, Kim KT, Tsymbalyuk O, Keledjian K, Wilhelmy BE, Sherani NA, Jia X, Gerzanich V, Simard JM. A Direct Comparison of Physical Versus Dihydrocapsaicin-Induced Hypothermia in a Rat Model of Traumatic Spinal Cord Injury. Ther Hypothermia Temp Manag 2022; 12:90-102. [PMID: 35675523 PMCID: PMC9231662 DOI: 10.1089/ther.2021.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological condition with no effective treatment. Hypothermia induced by physical means (cold fluid) is established as an effective therapy in animal models of SCI, but its clinical translation to humans is hampered by several constraints. Hypothermia induced pharmacologically may be noninferior or superior to physically induced hypothermia for rapid, convenient systemic temperature reduction, but it has not been investigated previously in animal models of SCI. We used a rat model of SCI to compare outcomes in three groups: (1) normothermic controls; (2) hypothermia induced by conventional physical means; (3) hypothermia induced by intravenous (IV) dihydrocapsaicin (DHC). Male rats underwent unilateral lower cervical SCI and were treated after a 4-hour delay with physical cooling or IV DHC (∼0.60 mg/kg total) cooling (both 33.0 ± 1.0°C) lasting 4 hours; controls were kept normothermic. Telemetry was used to monitor temperature and heart rate during and after treatments. In two separate experiments, one ending at 48 hours, the other at 6 weeks, “blinded” investigators evaluated rats in the three groups for neurological function followed by histopathological evaluation of spinal cord tissues. DHC reliably induced systemic cooling to 32–33°C. At both the time points examined, the two modes of hypothermia yielded similar improvements in neurological function and lesion size compared with normothermic controls. Our results indicate that DHC-induced hypothermia may be comparable with physical hypothermia in efficacy, but more clinically feasible to administer than physical hypothermia.
Collapse
Affiliation(s)
- Amrita Sarkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kevin T Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bradley E Wilhelmy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nageen A Sherani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - J Marc Simard
- Department of Neurosurgery, Pathology and Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Effectiveness of biomaterial-based combination strategies for spinal cord repair – a systematic review and meta-analysis of preclinical literature. Spinal Cord 2022; 60:1041-1049. [DOI: 10.1038/s41393-022-00811-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Study design
Systematic review and meta-analysis of preclinical literature.
Objectives
To assess the effects of biomaterial-based combination (BMC) strategies for the treatment of Spinal Cord Injury (SCI), the effects of individual biomaterials in the context of BMC strategies, and the factors influencing their efficacy. To assess the effects of different preclinical testing paradigms in BMC strategies.
Methods
We performed a systematic literature search of Embase, Web of Science and PubMed. All controlled preclinical studies describing an in vivo or in vitro model of SCI that tested a biomaterial in combination with at least one other regenerative strategy (cells, drugs, or both) were included. Two review authors conducted the study selection independently, extracted study characteristics independently and assessed study quality using a modified CAMARADES checklist. Effect size measures were combined using random-effects models and heterogeneity was explored using meta-regression with tau2, I2 and R2 statistics. We tested for small-study effects using funnel plot–based methods.
Results
134 publications were included, testing over 100 different BMC strategies. Overall, treatment with BMC therapies improved locomotor recovery by 25.3% (95% CI, 20.3–30.3; n = 102) and in vivo axonal regeneration by 1.6 SD (95% CI 1.2–2 SD; n = 117) in comparison with injury only controls.
Conclusion
BMC strategies improve locomotor outcomes after experimental SCI. Our comprehensive study highlights gaps in current knowledge and provides a foundation for the design of future experiments.
Collapse
|
6
|
Hypothermia as a potential remedy for canine and feline acute spinal cord injury: a review. ACTA VET BRNO 2022. [DOI: 10.2754/avb202291020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Severe spinal cord injury (SCI) resulting in permanent sensory-motor and autonomic dysfunction caudal to a damaged spinal cord (SC) segment is a catastrophic event in human as well as in veterinary medicine. The situation of paraplegic/tetraplegic people or animals is further impaired by serious complications and often displays an image of permanent suffering. Therapeutic hypothermia (TH) has shown neuroprotective capacity in numerous experimental and several clinical studies or case reports. Hence, the method draws increasing attention of neuroscientists as well as health care workers. While systemic TH is a too complex procedure for veterinary practice, local application of TH with a reduced risk of the whole body temperature fluctuations and minimal side effects can become one of the therapeutic tools considered in the treatment of acute traumatic SCIs in bigger animals, especially when surgical decompression of spinal medulla and vertebral column reconstruction is indicated. Still, additional large prospective randomized studies are essential for the standardization of therapeutic protocols and the introduction of the method into therapeutic armamentarium in canine and feline spinal traumatology. The research strategy involved a PubMed, MEDLINE (Ovid), EMBASE (Ovid), and ISI Web of Science search from January 2000 to July 2021 using the terms “canine and feline spinal cord injuryˮ, “hypothermiaˮ, and “targeted temperature managementˮ in the English language literature; also references from selected studies were scanned and relevant articles included.
Collapse
|
7
|
Markowitz M, Woods B. On-Field Management of Suspected Spinal Cord Injury. Clin Sports Med 2021; 40:445-462. [PMID: 34051939 DOI: 10.1016/j.csm.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Acute spinal cord injuries in athletes are rare. However, on-field management of such injuries requires a well-planned approach from a team of well-trained medical staff. Athletes wearing protective gear should be handled with care; a primary survey should be conducted to rule out life-threatening injury while concomitantly immobilizing the spine. Treatment with steroids or hypothermia have not been shown to be beneficial, ultimately time to surgery provides the athlete with the best chance of a good outcome.
Collapse
Affiliation(s)
- Michael Markowitz
- Rowan University School of Osteopathic Medicine Orthopedic Surgery, Stratford, NJ, USA
| | - Barrett Woods
- The Rothman Institute at Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Abstract
Neuroprotection after acute spinal cord injury is an important strategy to limit secondary injury. Animal studies have shown that systemic hypothermia is an effective neuroprotective strategy that can be combined with other therapies. Systemic hypothermia affects several processes at the cellular level to reduce metabolic activity, oxidative stress, and apoptotic neuronal cell death. Modest systemic hypothermia has been shown to be safe and feasible in the acute phase after cervical spinal cord injury. These data have provided the impetus for an active multicenter randomized controlled trial for modest systemic hypothermia in acute cervical spinal cord injury.
Collapse
|
9
|
A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
MicroRNA-92a-3p enhances functional recovery and suppresses apoptosis after spinal cord injury via targeting phosphatase and tensin homolog. Biosci Rep 2021; 40:222664. [PMID: 32297644 PMCID: PMC7199448 DOI: 10.1042/bsr20192743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury (SCI) is a neurological disease commonly caused by traumatic events on spinal cords. MiRNA-92a-3p is reported to be down-regulated after SCI. Our study investigated the effects of up-regulated miR-92a-3p on SCI and the underlying mechanisms. SCI mice model was established to evaluate the functional recovery of hindlimbs of mice through open-field locomotion and scored by Basso, Beattie, and Bresnahan (BBB) locomotion scale. Apoptosis of spinal cord cells was determined by flow cytometry. The effects of miR-92a-3p on SCI were detected by intrathecally injecting miR-92a-3p agomiR (agomiR-92) into the mice prior to the establishment of SCI. Phosphatase and tensin homolog (PTEN) was predicted as a target of miR-29a-3p by TargetScan. We further assessed the effects of agomiR-92 or/and overexpressed PTEN on apoptosis rates and apoptotic protein expressions in SCI mice. Moreover, the activation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling was determined by Western blot. The results showed that compared with the sham-operated mice, SCI mice had much lower BBB scores, and theapoptosis rate of spinal cord cells was significantly increased. After SCI, the expression of miR-92a-3p was down-regulated, and increased expression of miR-92a-3p induced by agomiR-92 further significantly increased the BBB score and decreased apoptosis. PTEN was specifically targeted by miR-92a-3p. In addition, the phosphorylation levels of Akt and mTOR were up-regulated under the treatment of agomiR-92. Our data demonstrated that the neuroprotective effects of miR-92a-3p on spinal cord safter SCI were highly associated with the activation of the PTEN/AKT/mTOR pathway.
Collapse
|
11
|
Yousefifard M, Vazirizadeh-Mahabadi MH, Haghani L, Shokraneh F, Vaccaro AR, Rahimi-Movaghar V, Hosseini M. Early General Hypothermia Improves Motor Function after Spinal Cord Injury in Rats; a Systematic Review and Meta-Analysis. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2020; 8:e80. [PMID: 33251525 PMCID: PMC7682943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION There is still controversy about the effect of early hypothermia on the outcome of spinal cord injury (SCI). The aim of this review article is to investigate the effect of local or general hypothermia on improving the locomotion after traumatic SCI. METHODS Electronic databases (Medline and Embase) were searched from inception until May 7, 2018. Two independent reviewers screened and summarized the relevant experimental studies on hypothermia efficacy in traumatic SCI. The data were analyzed and the findings were presented as pooled standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS 20 papers containing 30 separate experiments were included in meta-analysis. The onset of hypothermia varied between 0 and 240 minutes after SCI. Administration of hypothermia has a positive effect on locomotion following SCI (SMD=0.56 95% CI: 0.18-0.95, p=0.004). Subgroup analysis showed that general hypothermia improves locomotion recovery (SMD =0.89, 95% CI: 0.42 to 1.36; p <0.0001), while local hypothermia does not have a significant effect on motor recovery (SMD=0.20, 95 % CI: -0.36-0.76, p=0.478). In addition, general hypothermia was found to affect motor recovery only if its duration was between 2 and 8 hours (SMD=0.89; p<0.0001) and the target temperature for induction of hypothermia was between 32 and 35° C (SMD=0.83; p<0.0001). CONCLUSION We found that general hypothermia improves locomotion after SCI in rats. Duration of induction and the target temperature are two essential considerations for general therapeutic hypothermia.
Collapse
Affiliation(s)
- Mahmoud Yousefifard
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Haghani
- School of Medicine, International Campus, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Shokraneh
- Cochrane Schizophrenia Group, Institute of Mental Health, University of Nottingham, Nottingham, UK
| | - Alexander R. Vaccaro
- Department of Orthopedics and Neurosurgery, Rothman Institute, Thomas Jefferson University, Philadelphia, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Injuries Research Center (BASIR), Neuroscience Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding authors: 1- Mostafa Hosseini ,Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran; ; Tel: +982188989125; Fax: +982188989127. 2- Vafa Rahimi-Movaghar, Professor of Neurosurgery, Department of Neurosurgery, Sina Trauma and Surgery Research Center, Sina Hospital, Tel: +98216675002 Fax: +982166757009, E-mail: ;
| | - Mostafa Hosseini
- Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding authors: 1- Mostafa Hosseini ,Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Poursina Ave, Tehran, Iran; ; Tel: +982188989125; Fax: +982188989127. 2- Vafa Rahimi-Movaghar, Professor of Neurosurgery, Department of Neurosurgery, Sina Trauma and Surgery Research Center, Sina Hospital, Tel: +98216675002 Fax: +982166757009, E-mail: ;
| |
Collapse
|
12
|
Strain MM, Hook MA, Reynolds JD, Huang YJ, Henwood MK, Grau JW. A brief period of moderate noxious stimulation induces hemorrhage and impairs locomotor recovery after spinal cord injury. Physiol Behav 2019; 212:112695. [PMID: 31647990 DOI: 10.1016/j.physbeh.2019.112695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Spinal cord injury (SCI) is often accompanied by additional tissue damage (polytrauma) that provides a source of pain input. Our studies suggest that this pain input may be detrimental to long-term recovery. In a rodent model, we have shown that engaging pain (nociceptive) fibers caudal to a lower thoracic contusion SCI impairs recovery of locomotor function and increases tissue loss (secondary injury) and hemorrhage at the site of injury. In these studies, nociceptive fibers were activated using intermittent electrical stimulation. The stimulation parameters were derived from earlier studies demonstrating that 6 min of noxious stimulation, at an intensity (1.5 mA) that engages unmyelinated C (pain) fibers, induces a form of maladaptive plasticity within the lumbosacral spinal cord. We hypothesized that both shorter bouts of nociceptive input and lower intensities of stimulation will decrease locomotor function and increase spinal cord hemorrhage when rats have a spinal cord contusion. To test this, the present study exposed rats to electrical stimulation 24 h after a moderate lower thoracic contusion SCI. One group of rats received 1.5 mA stimulation for 0, 14.4, 72, or 180 s. Another group received six minutes of stimulation at 0, 0.17, 0.5, and 1.5 mA. Just 72 s of stimulation induced an acute disruption in motor performance, increased hemorrhage, and undermined the recovery of locomotor function. Likewise, less intense (0.5 mA) stimulation produced an acute disruption in motor performance, fueled hemorrhage, and impaired long-term recovery. The results imply that a brief period of moderate pain input can trigger hemorrhage after SCI and undermine long-term recovery. This highlights the importance of managing nociceptive signals after concurrent peripheral and central nervous system injuries.
Collapse
Affiliation(s)
- Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Michelle A Hook
- Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Joshua D Reynolds
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Yung-Jen Huang
- ChemPartner, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, 201203 China
| | - Melissa K Henwood
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Watzlawick R, Antonic A, Sena ES, Kopp MA, Rind J, Dirnagl U, Macleod M, Howells DW, Schwab JM. Outcome heterogeneity and bias in acute experimental spinal cord injury: A meta-analysis. Neurology 2019; 93:e40-e51. [PMID: 31175207 DOI: 10.1212/wnl.0000000000007718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/11/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE To determine whether and to what degree bias and underestimated variability undermine the predictive value of preclinical research for clinical translation. METHODS We investigated experimental spinal cord injury (SCI) studies for outcome heterogeneity and the impact of bias. Data from 549 preclinical SCI studies including 9,535 animals were analyzed with meta-regression to assess the effect of various study characteristics and the quality of neurologic recovery. RESULTS Overall, the included interventions reported a neurobehavioral outcome improvement of 26.3% (95% confidence interval 24.3-28.4). Response to treatment was dependent on experimental modeling paradigms (neurobehavioral score, site of injury, and animal species). Applying multiple outcome measures was consistently associated with smaller effect sizes compared with studies applying only 1 outcome measure. More than half of the studies (51.2%) did not report blinded assessment, constituting a likely source of evaluation bias, with an overstated effect size of 7.2%. Assessment of publication bias, which extrapolates to identify likely missing data, suggested that between 2% and 41% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested an overestimation of efficacy, reducing the effect sizes by between 0.9% and 14.3%. CONCLUSIONS We provide empirical evidence of prevalent bias in the design and reporting of experimental SCI studies, resulting in overestimation of the effectiveness. Bias compromises the internal validity and jeopardizes the successful translation of SCI therapies from the bench to bedside.
Collapse
Affiliation(s)
- Ralf Watzlawick
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Ana Antonic
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Emily S Sena
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Marcel A Kopp
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Julian Rind
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Ulrich Dirnagl
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Malcolm Macleod
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - David W Howells
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus
| | - Jan M Schwab
- From Charité-Universitätsmedizin Berlin (R.W., M.A.K., J.R., U.D., J.M.S.), corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology and Experimental Neurology (R.W., M.A.K., J.R., J.M.S.), Charité Campus Mitte, Clinical and Experimental Spinal Cord Injury Research Laboratory (Neuroparaplegiology), Charité-Universitätsmedizin Berlin; Department of Neurosurgery (R.W.), Freiburg University Medical Center, Germany; Department of Neuroscience (A.A.), Central Clinical School, Monash University, Melbourne; Stroke Division (E.S.S., M.M., D.W.H.), Melbourne, Victoria, Australia; Departments of Neurology and Clinical Neurosciences (E.S.S., M.M.), University of Edinburgh, UK; Center for Stroke Research Berlin (U.D.) and Excellence Cluster Neurocure (U.D.), Charité-Universitätsmedizin, Berlin, Germany; German Center for Neurodegenerative Diseases (U.D.), Bonn; Berlin Institute of Health (M.A.K., U.D.), Germany; University of Tasmania (D.W.H.), School of Medicine, Faculty of Health, Medical Sciences Precinct, Hobart, Australia; Department of Neurology (J.M.S.), Spinal Cord Injury Medicine (Paraplegiology), and Belford Center for Spinal Cord Injury (J.M.S.), Departments of Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus.
| |
Collapse
|
14
|
Jorge A, Fish EJ, Dixon CE, Hamilton KD, Balzer J, Thirumala P. The Effect of Prophylactic Hypothermia on Neurophysiological and Functional Measures in the Setting of Iatrogenic Spinal Cord Impact Injury. World Neurosurg 2019; 129:e607-e613. [PMID: 31158549 DOI: 10.1016/j.wneu.2019.05.229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Iatrogenic spinal cord injury (iSCI) during spinal corrective surgery can result in devastating complications, such as paraplegia or paraparesis. Perioperatively, iSCI often occurs as a direct injury during spinal cord instrumentation placement. Currently, treatment of iSCI remains limited to posttraumatic hypothermia, which has demonstrated some value in recent clinical trials. Here we report the outcomes of preinjury hypothermia initiated preprocedurally and maintained for a considerable time after iSCI. METHODS Twenty-six female Sprague-Dawley rats were assigned at random to either a normothermic group (36 °C) or a hypothermic group (32 °C) and then underwent a laminectomy procedure at the T8 level. Each group was further divided at random to receive a 200-kdyn force contusive spinal cord injury or a sham impact. Hypothermic rats were then rewarmed after 2 hours of hypothermic treatment. Behavioral scores, temperature profiles, weights, and somatosensory evoked potentials were obtained at baseline and at specified time points after the procedure. RESULTS The median survival was 42 days for the iSCI hypothermic group and 11 days for the iSCI normothermic group (hazard ratio, 3.82; 95% confidence interval, 1.52-9.57). The probability of survival was significantly higher in the iSCI hypothermic group compared with the iSCI normothermic group (χ2 = 4.18; P = 0.040). The hypothermic group exhibited a higher Basso, Beattie and Bresnahan (BBB) locomotor rating scale score (17 vs. 14; P < 0.01), lower normalized latencies (1.06 ± 0.16 seconds vs. 1.34 ± 0.17 seconds; P = 0.04), and higher peak-to-peak amplitudes (0.32 ± 0.10 μV vs. 0.12 ± 0.09 μV; P = 0.005). CONCLUSIONS The use of prophylactic hypothermia before iSCI was significantly associated with an increased survival rate, higher BBB scores, and improved neurophysiological measures.
Collapse
Affiliation(s)
- Ahmed Jorge
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Erika J Fish
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - C Edward Dixon
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Kojo D Hamilton
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Balzer
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parthasarathy Thirumala
- Department of Neurologic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Züchner M, Lervik A, Kondratskaya E, Bettembourg V, Zhang L, Haga HA, Boulland JL. Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals. Front Neurol 2019; 10:223. [PMID: 30941086 PMCID: PMC6433700 DOI: 10.3389/fneur.2019.00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023] Open
Abstract
Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Lervik
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Vanessa Bettembourg
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Henning A Haga
- Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Yuan H, Hu Y, Jiang L, Wang T. The research progress of miRNA/lncRNA associated with spinal cord injury. IBRAIN 2019. [DOI: 10.1002/j.2769-2795.2019.tb00042.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hao Yuan
- Department of Spinal SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yue Hu
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ling Jiang
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology and Institute of Neurological DiseaseTranslational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Neuroscience, Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
17
|
Abstract
Traumatic spinal cord injury (SCI) results in impaired neurologic function that for many individuals is permanent and significantly impacts health, function, quality of life, and life expectancy. Many efforts have been taken to develop effective treatments for SCI; nevertheless, proven therapies targeting neurologic regeneration and functional recovery have been limited. Existing therapeutic approaches, including early surgery, strict blood pressure control, and consideration of treatment with steroids, remain debated and largely focus on mitigating secondary injury after the primary trauma has occurred. Today, there is more research being performed in SCI than ever before. Current clinical trials are exploring pharmacologic, cell-based, physiologic, and rehabilitation approaches to reduce secondary injury and also overcome barriers to neurorecovery. In the future, it is likely that tailored treatments combining many of these strategies will offer significant benefits for persons with SCI. This article aims to review key past, current and emerging neurologic and rehabilitation therapeutic approaches for adults with traumatic SCI.
Collapse
Affiliation(s)
- Jayne Donovan
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA.
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
- Rutgers New Jersey Medical School, 183 South Orange Avenue, Newark, New Jersey, 07101, USA
- The Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey, 07052, USA
| |
Collapse
|
18
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Fang H, Wang ZH, Bu YJ, Yuan ZJ, Wang GQ, Guo Y, Cheng XY, Qiu WJ. Repeated inhalation of sevoflurane inhibits the information transmission of Purkinje cells and delays motor development via the GABAA receptor ε subunit in neonatal mice. Mol Med Rep 2017; 17:1083-1092. [PMID: 29115488 PMCID: PMC5780070 DOI: 10.3892/mmr.2017.7941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/19/2017] [Indexed: 11/21/2022] Open
Abstract
General anesthesia is widely used in pediatric surgery, although the influence of general anesthesia on cerebellar information transmission and motor function is unclear. In the present study, neonatal mice received repeated inhalation of sevoflurane, and electrophysiological alterations in Purkinje cells (PCs) and the development of motor functions were detected. In addition, γ-aminobutyric acidA receptor ε (GABAA-R ε) subunit knockout mice were used to investigate the mechanism of action of sevoflurane on cerebellar function. In the neonatal mice, the field potential response of PCs induced by sensory stimulation and the motor function indices were markedly inhibited by sevoflurane, and the inhibitory effect was positively associated with the number of repetitions of anesthesia. In additional the GABAA-R ε subunit level of PCs was promoted by sevoflurane in a dose-dependent manner, and the inhibitory effects of sevoflurane on PC field potential response and motor function were alleviated in GABAA-R ε subunit knockout mice. The GABAA-R ε subunit was activated by sevoflurane, leading to inhibition of sensory information transmission in the cerebellar cortex, field potential responses of PCs and the development of cerebellar motor function. The present study provided experimental evidence for the safe usage of sevoflurane in clinical anesthesia, and suggested that GABAA-R ε subunit antagonists may be considered for combined application with general anesthesia with repeated inhalation of sevoflurane, for adverse effect prevention in the clinic.
Collapse
Affiliation(s)
- Hong Fang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ze-Hua Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Ying-Jiang Bu
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Zhi-Jun Yuan
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Guo-Qiang Wang
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Yan Guo
- Department of Anesthesiology, The Affiliated Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, P.R. China
| | - Xiao-Yun Cheng
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| | - Wen-Jie Qiu
- Department of Anesthesiology, The Suburban People's Hospital, Changzhi, Shanxi 046011, P.R. China
| |
Collapse
|
20
|
Battistuzzo CR, Smith K, Skeers P, Armstrong A, Clark J, Agostinello J, Cox S, Bernard S, Freeman BJ, Dunlop SA, Batchelor PE. Early Rapid Neurological Assessment for Acute Spinal Cord Injury Trials. J Neurotrauma 2016; 33:1936-1945. [DOI: 10.1089/neu.2015.4360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Camila R. Battistuzzo
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, Australia
| | - Karen Smith
- Department of Epidemiology and Preventive Medicine, Monash University and Ambulance Victoria, Melbourne VIC, Australia
| | - Peta Skeers
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, Australia
| | - Alex Armstrong
- School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Jillian Clark
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jacqui Agostinello
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, Australia
| | - Shelley Cox
- Department of Epidemiology and Preventive Medicine, Monash University and Ambulance Victoria, Melbourne VIC, Australia
| | - Stephen Bernard
- Department of Epidemiology and Preventive Medicine, Monash University and Ambulance Victoria, Melbourne VIC, Australia
| | - Brian J.C. Freeman
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia
- Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Sarah A. Dunlop
- School of Animal Biology, The University of Western Australia, Perth, WA, Australia
| | - Peter E. Batchelor
- Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Luan Y, Chen M, Zhou L. MiR-17 targets PTEN and facilitates glial scar formation after spinal cord injuries via the PI3K/Akt/mTOR pathway. Brain Res Bull 2016; 128:68-75. [PMID: 27693649 DOI: 10.1016/j.brainresbull.2016.09.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES We attempted to discover the regulatory role of miR-17 and PTEN in glial scar formation accompanied with spinal cord injuries. METHODS We established a spinal cord injury (SCI) model in mice which were transfected with different groups of adenoviruses: miR-17 mimics, miR-17 inhibitors and PTEN cDNAs. The improvement of hind limb functions was assessed using the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale. Immunohistochemistry was used to detect the expression levels of glial fibrillary acidic protein (GFAP), Vimentin and neurofilaments. The expression of miR-17 was quantified using Real time-PCR (RT-PCR). Western blot was conducted to detect the expressions of PTEN, PI3K, Akt, mTOR and S6. Finally, dual luciferase reporter gene assay was conducted to confirm the target relationship between miR-17 and PTEN. RESULTS The model group exhibited significantly increased expression levels of GFAP, Vimentin, miR-17, PTEN, PI3K, Akt and mTOR. The above trend was enhanced by the transfection of miR-17 mimics (P<0.05). By contrast, the transfection of miR-17 inhibitors significantly down-regulated the expression of GFAP, Vimentin, PTEN, PI3K, Akt, mTOR and p-S6 whereas the expression of GFAP, Vimentin, PI3K, Akt, mTOR and p-S6 in the cells transfected with PTEN cDNAs significantly decreased (P<0.05). Also, the transfection of miR-17 inhibitors and PTEN cDNAs alleviated the astrogliosis in SCI lesions, contributed to the regeneration of nerve filament and improved the functional recovery of the hind limb of mice. Finally, the targeting relationship between miR-17 and PTEN was verified by the dual luciferase reporter gene assay. CONCLUSION MiR-17 is able to target PTEN and stimulate the PI3K/Akt/mTOR pathway. The formation of glial scar resulted from spinal cord injuries can be reduced either by inhibiting miR-17 or by overexpressing PTEN.
Collapse
Affiliation(s)
- Yongxin Luan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin, China
| | - Mo Chen
- Jilin Province People's Hospital, Changchun, 130000 Jilin, China
| | - Lixiang Zhou
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021 Jilin, China.
| |
Collapse
|
22
|
Elevated Serum Insulin-Like Growth Factor 1 Levels in Patients with Neurological Remission after Traumatic Spinal Cord Injury. PLoS One 2016; 11:e0159764. [PMID: 27447486 PMCID: PMC4957810 DOI: 10.1371/journal.pone.0159764] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023] Open
Abstract
After traumatic spinal cord injury, an acute phase triggered by trauma is followed by a subacute phase involving inflammatory processes. We previously demonstrated that peripheral serum cytokine expression changes depend on neurological outcome after spinal cord injury. In a subsequent intermediate phase, repair and remodeling takes place under the mediation of growth factors such as Insulin-like Growth Factor 1 (IGF-1). IGF-1 is a promising growth factor which is thought to act as a neuroprotective agent. Since previous findings were taken from animal studies, our aim was to investigate this hypothesis in humans based on peripheral blood serum. Forty-five patients after traumatic spinal cord injury were investigated over a period of three months after trauma. Blood samples were taken according to a fixed schema and IGF-1 levels were determined. Clinical data including AIS scores at admission to the hospital and at discharge were collected and compared with IGF-1 levels. In our study, we could observe distinct patterns in the expression of IGF-1 in peripheral blood serum after traumatic spinal cord injury regardless of the degree of plegia. All patients showed a marked increase of levels seven days after injury. IGF-1 serum levels were significantly different from initial measurements at four and nine hours and seven and 14 days after injury, as well as one, two and three months after injury. We did not detect a significant correlation between fracture and the IGF-1 serum level nor between the quantity of operations performed after trauma and the IGF-1 serum level. Patients with clinically documented neurological remission showed consistently higher IGF-1 levels than patients without neurological remission. This data could be the base for the establishment of animal models for further and much needed research in the field of spinal cord injury.
Collapse
|
23
|
Kochanek P, Kitagawa RS, Batchelor P, Thoresen M. Central Nervous System Injury and Temperature Management. Ther Hypothermia Temp Manag 2016; 6:112-5. [PMID: 27447753 DOI: 10.1089/ther.2016.29014.pjk] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Patrick Kochanek
- 1 Department of Critical Care Medicine, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Ryan S Kitagawa
- 2 The Vivian L. Smith Department of Neurosurgery, University of Texas , Houston, Texas
| | - Peter Batchelor
- 3 Department of Medicine, University of Melbourne , Melbourne, Australia
| | - Marianne Thoresen
- 4 Department of Physiology, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
24
|
Battistuzzo CR, Armstrong A, Clark J, Worley L, Sharwood L, Lin P, Rooke G, Skeers P, Nolan S, Geraghty T, Nunn A, Brown DJ, Hill S, Alexander J, Millard M, Cox SF, Rao S, Watts A, Goods L, Allison GT, Agostinello J, Cameron PA, Mosley I, Liew SM, Geddes T, Middleton J, Buchanan J, Rosenfeld JV, Bernard S, Atresh S, Patel A, Schouten R, Freeman BJ, Dunlop SA, Batchelor PE. Early Decompression following Cervical Spinal Cord Injury: Examining the Process of Care from Accident Scene to Surgery. J Neurotrauma 2016; 33:1161-9. [DOI: 10.1089/neu.2015.4207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Camila R. Battistuzzo
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Alex Armstrong
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Jillian Clark
- Center for Orthopedic and Trauma Research, the University of Adelaide, Adelaide, Australia
| | - Laura Worley
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Lisa Sharwood
- John Walsh Center for Rehabilitation Research, the University of Sydney, Sydney, Australia
| | - Peny Lin
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - Gareth Rooke
- Orthopedic Department, Christchurch Hospital, Christchurch, New Zealand
| | - Peta Skeers
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Sherilyn Nolan
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Timothy Geraghty
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Andrew Nunn
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | | | - Steven Hill
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Janette Alexander
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Melinda Millard
- Victorian Spinal Cord Service, Austin Hospital, Melbourne, Australia
| | - Susan F. Cox
- Neuroscience Trials Australia, the Florey Institute of Neuroscience, Melbourne, Australia
| | - Sudhakar Rao
- Trauma Service, Royal Perth Hospital, Perth, Australia
| | - Ann Watts
- Spinal Unit, Royal Perth Hospital, Perth, Australia
| | - Louise Goods
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Garry T. Allison
- School of Physiotherapy and Exercise Science, Curtin University, Bentley, Australia
| | - Jacqui Agostinello
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| | - Peter A. Cameron
- Emergency and Trauma Center, the Alfred Hospital, Melbourne, Australia
| | - Ian Mosley
- College of Science, Health and Engineering, La Trobe University, Melbourne, Australia
| | - Susan M. Liew
- Department of Orthopedic Surgery, the Alfred Hospital, Melbourne, Australia
| | - Tom Geddes
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - James Middleton
- John Walsh Center for Rehabilitation Research, the University of Sydney, Sydney, Australia
| | - John Buchanan
- Department of Physiotherapy, Royal Perth Hospital, Perth, Australia
| | | | - Stephen Bernard
- Intensive Care Unit, the Alfred Hospital, Melbourne, Australia
| | - Sridhar Atresh
- Queensland Spinal Injuries Service, Princess Alexandra Hospital, Woolloongabba, Australia
| | - Alpesh Patel
- Orthopedic Department, Middlemore Hospital, Auckland, New Zealand
| | - Rowan Schouten
- Orthopedic Department, Christchurch Hospital, Christchurch, New Zealand
| | - Brian J.C. Freeman
- Department of Orthopedics and Trauma, the University of Adelaide, Adelaide, Australia
| | - Sarah A. Dunlop
- School of Animal Biology, the University of Western Australia, Perth Australia
| | - Peter E. Batchelor
- Department of Medicine (Royal Melbourne Hospital), the University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Batchelor P, Dietrich WD, Kochanek PM, Lundbye J. Secondary Changes After Injury and Temperature. Ther Hypothermia Temp Manag 2016; 6:58-62. [PMID: 27249580 DOI: 10.1089/ther.2016.29013.pjb] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Peter Batchelor
- 1 Department of Medicine, University of Melbourne , Melbourne, Australia
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | - Patrick M Kochanek
- 3 Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Justin Lundbye
- 4 Department of Cardiology, Hospital of Central Connecticut , New Britain, Connecticut
| |
Collapse
|
26
|
Abstract
Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital; Norwegian Center for Stem Cell Research, Oslo University Hospital
| | - Joel C Glover
- Norwegian Center for Stem Cell Research, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, University of Oslo
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, University of Oslo;
| |
Collapse
|
27
|
Potential variables affecting the quality of animal studies regarding pathophysiology of traumatic spinal cord injuries. Spinal Cord 2015; 54:579-83. [DOI: 10.1038/sc.2015.215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/17/2015] [Accepted: 11/06/2015] [Indexed: 12/09/2022]
|
28
|
Tracy B, Armola R, Micham J. The "cold cord": a review of therapeutic hypothermia for traumatic spinal cord injuries. Am J Crit Care 2015; 24:540-3. [PMID: 26523013 DOI: 10.4037/ajcc2015879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brett Tracy
- Brett Tracy is a third-year general surgery resident at Memorial Health University Medical Center, Savannah, Georgia. Rochelle Armola is director of trauma and The Ochsner Institute for Injury Research and Prevention, Memorial Health University Medical Center, Savannah, Georgia. Jennifer Micham is the NICHE coordinator at ProMedica Toledo Hospital, Toledo, Ohio
| | - Rochelle Armola
- Brett Tracy is a third-year general surgery resident at Memorial Health University Medical Center, Savannah, Georgia. Rochelle Armola is director of trauma and The Ochsner Institute for Injury Research and Prevention, Memorial Health University Medical Center, Savannah, Georgia. Jennifer Micham is the NICHE coordinator at ProMedica Toledo Hospital, Toledo, Ohio
| | - Jennifer Micham
- Brett Tracy is a third-year general surgery resident at Memorial Health University Medical Center, Savannah, Georgia. Rochelle Armola is director of trauma and The Ochsner Institute for Injury Research and Prevention, Memorial Health University Medical Center, Savannah, Georgia. Jennifer Micham is the NICHE coordinator at ProMedica Toledo Hospital, Toledo, Ohio
| |
Collapse
|
29
|
Otto KA. Therapeutic hypothermia applicable to cardiac surgery. Vet Anaesth Analg 2015; 42:559-69. [PMID: 26361886 DOI: 10.1111/vaa.12299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/19/2015] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To review the beneficial and adverse effects of therapeutic hypothermia (TH) applicable to cardiac surgery with cardiopulmonary bypass (CPB) in the contexts of various temperature levels and techniques for achieving TH. DATABASES USED Multiple electronic literature searches were performed using PubMed and Google for articles published from June 2012 to December 2014. Relevant terms (e.g. 'hypothermia', 'cardiopulmonary bypass', 'cardiac surgery', 'neuroprotection') were used to search for original articles, letters and reviews without species limitation. Reviews were included despite potential publication bias. References from the studies identified were also searched to find other potentially relevant citations. Abstracts, case reports, conference presentations, editorials and expert opinions were excluded. CONCLUSIONS Therapeutic hypothermia is an essential measure of neuroprotection during cardiac surgery that may be achieved most effectively by intravascular cooling using hypothermic CPB. For most cardiac surgical procedures, mild to modest (32-36 °C) TH will be sufficient to assure neuroprotection and will avoid most of the adverse effects of hypothermia that occur at lower body core temperatures.
Collapse
Affiliation(s)
- Klaus A Otto
- Central Laboratory Animal Facility, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
31
|
Dietrich WD. Protection and Repair After Spinal Cord Injury: Accomplishments and Future Directions. Top Spinal Cord Inj Rehabil 2015; 21:174-87. [PMID: 26364287 DOI: 10.1310/sci2102-174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It was an honor for me to present the 2014 G. Heiner Sell Memorial Lecture at the annual American Spinal Injury Association (ASIA) meeting in San Antonio. For this purpose, I provided a comprehensive review of the scope of research targeting discovery and translational and clinical investigations into spinal cord injury (SCI) research. Indeed, these are exciting times in the area of spinal cord research and clinical initiatives. Many laboratories and clinical programs throughout the world are publishing data related to the pathophysiology of SCI and new strategies for protecting and promoting recovery in both animal models and humans. For this lecture, several topics were discussed including neuroprotective and reparative strategies, neurorehabilitation, quality of life issues, and future directions. In the area of neuroprotection, pathophysiological events that may be targeted with therapeutic strategies, including pharmacological and targeted temperature management were reviewed. For reparative approaches, the importance of both intrinsic and extrinsic mechanisms of axonal regeneration was highlighted. Various cell therapies currently being tested in preclinical and clinical arenas were reviewed as well as ongoing US Food and Drug Administration approved trials for SCI patients. Neurorehabilitation is an evolving research field with locomotive training strategies, electrical stimulation, and brain-machine interface programs targeting various types of SCI. The importance of testing combination approaches including neuroprotective, reparative, and rehabilitative strategies to maximize recovery mechanisms was therefore emphasized. Finally, quality of life issues that affect thousands of individuals living with paralysis were also presented. Future directions and specific obstacles that require attention as we continue to move the SCI field forward were discussed.
Collapse
Affiliation(s)
- W Dalton Dietrich
- The Miami Project to Cure Paralysis and the Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
32
|
Wang D, Liang J, Zhang J, Liu S, Sun W. Mild hypothermia combined with a scaffold of NgR-silenced neural stem cells/Schwann cells to treat spinal cord injury. Neural Regen Res 2015; 9:2189-96. [PMID: 25657741 PMCID: PMC4316453 DOI: 10.4103/1673-5374.147952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/24/2022] Open
Abstract
Because the inhibition of Nogo proteins can promote neurite growth and nerve cell differentiation, a cell-scaffold complex seeded with Nogo receptor (NgR)-silenced neural stem cells and Schwann cells may be able to improve the microenvironment for spinal cord injury repair. Previous studies have found that mild hypothermia helps to attenuate secondary damage in the spinal cord and exerts a neuroprotective effect. Here, we constructed a cell-scaffold complex consisting of a poly(D,L-lactide-co-glycolic acid) (PLGA) scaffold seeded with NgR-silenced neural stem cells and Schwann cells, and determined the effects of mild hypothermia combined with the cell-scaffold complexes on the spinal cord hemi-transection injury in the T9 segment in rats. Compared with the PLGA group and the NgR-silencing cells + PLGA group, hindlimb motor function and nerve electrophysiological function were clearly improved, pathological changes in the injured spinal cord were attenuated, and the number of surviving cells and nerve fibers were increased in the group treated with the NgR-silenced cell scaffold + mild hypothermia at 34°C for 6 hours. Furthermore, fewer pathological changes to the injured spinal cord and more surviving cells and nerve fibers were found after mild hypothermia therapy than in injuries not treated with mild hypothermia. These experimental results indicate that mild hypothermia combined with NgR gene-silenced cells in a PLGA scaffold may be an effective therapy for treating spinal cord injury.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jinhua Liang
- Department of Clinical Detection, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, Heilongjiang Province, China
| | - Jianjun Zhang
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| | - Shuhong Liu
- Department of Epidemiology, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wenwen Sun
- Department of Neurosurgery, the Fourth Center Clinical College of Tianjin Medical University, Tianjin Fourth Central Hospital, Tianjin, China
| |
Collapse
|
33
|
Yao M, Yang L, Wang J, Sun YL, Dun RL, Wang YJ, Cui XJ. Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review. J Neurotrauma 2015; 32:381-91. [PMID: 25141070 DOI: 10.1089/neu.2014.3520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition affecting young, healthy individuals worldwide. Existing agents have inadequate therapeutic efficacy, and some are associated with side effects. Our objective is to summarize and critically assess the neurological recovery and antioxidant effects of curcumin for treatment of SCI in rat models. PubMed, Embase, and Chinese databases were searched from their inception date to February 2014. Two reviewers independently selected animal studies that evaluated neurological recovery and antioxidant effects of curcumin, compared to placebo, in rats with SCI, extracted data, and assessed the methodological quality. A pair-wise analysis and a network meta-analysis were performed. Eight studies with adequate randomization were selected and included in the systematic review. Two studies had a higher methodological quality. Overall, curcumin appears to significantly improve neurological function, as assessed using the Basso, Beattie, Bresnahan (BBB) locomotor rating scale (four studies, n=132; pooled mean difference [MD]=3.09; 95% confidence interval [CI], 3.40-4.45; p=0.04), in a random-effects model and decrease malondialdehyde (MDA) using a fixed-effects model (four studies, n=56; pooled MD=-1.00; 95% CI=-1.59 to -0.42; p=0.00008). Effect size, assessed using the BBB scale, increased gradually with increasing curcumin dosage. The difference between low- and high-dose curcumin using the BBB scale was statistically significant. Neurological recovery and antioxidant effects of curcumin were observed in rats with SCI despite poor study methodological quality.
Collapse
Affiliation(s)
- Min Yao
- 1 Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Grau JW, Huie JR, Lee KH, Hoy KC, Huang YJ, Turtle JD, Strain MM, Baumbauer KM, Miranda RM, Hook MA, Ferguson AR, Garraway SM. Metaplasticity and behavior: how training and inflammation affect plastic potential within the spinal cord and recovery after injury. Front Neural Circuits 2014; 8:100. [PMID: 25249941 PMCID: PMC4157609 DOI: 10.3389/fncir.2014.00100] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/31/2014] [Indexed: 12/30/2022] Open
Abstract
Research has shown that spinal circuits have the capacity to adapt in response to training, nociceptive stimulation and peripheral inflammation. These changes in neural function are mediated by physiological and neurochemical systems analogous to those that support plasticity within the hippocampus (e.g., long-term potentiation and the NMDA receptor). As observed in the hippocampus, engaging spinal circuits can have a lasting impact on plastic potential, enabling or inhibiting the capacity to learn. These effects are related to the concept of metaplasticity. Behavioral paradigms are described that induce metaplastic effects within the spinal cord. Uncontrollable/unpredictable stimulation, and peripheral inflammation, induce a form of maladaptive plasticity that inhibits spinal learning. Conversely, exposure to controllable or predictable stimulation engages a form of adaptive plasticity that counters these maladaptive effects and enables learning. Adaptive plasticity is tied to an up-regulation of brain derived neurotrophic factor (BDNF). Maladaptive plasticity is linked to processes that involve kappa opioids, the metabotropic glutamate (mGlu) receptor, glia, and the cytokine tumor necrosis factor (TNF). Uncontrollable nociceptive stimulation also impairs recovery after a spinal contusion injury and fosters the development of pain (allodynia). These adverse effects are related to an up-regulation of TNF and a down-regulation of BDNF and its receptor (TrkB). In the absence of injury, brain systems quell the sensitization of spinal circuits through descending serotonergic fibers and the serotonin 1A (5HT 1A) receptor. This protective effect is blocked by surgical anesthesia. Disconnected from the brain, intracellular Cl- concentrations increase (due to a down-regulation of the cotransporter KCC2), which causes GABA to have an excitatory effect. It is suggested that BDNF has a restorative effect because it up-regulates KCC2 and re-establishes GABA-mediated inhibition.
Collapse
Affiliation(s)
- James W Grau
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - J Russell Huie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Kuan H Lee
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Kevin C Hoy
- Department of Neurosciences, MetroHealth Medical Center and Case Western Reserve University Cleveland, OH, USA
| | - Yung-Jen Huang
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Joel D Turtle
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | - Misty M Strain
- Cellular and Behavioral Neuroscience, Department of Psychology, Texas A&M University, College Station TX, USA
| | | | - Rajesh M Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center Bryan, TX, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California San Francisco San Francisco, CA, USA
| | - Sandra M Garraway
- Department of Physiology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
35
|
Iafarova GG, Tumakaev RF, Hazieva AR, Baltina TV. Effect of local hypothermia on H- and M-responses after spinal cord contusion in dogs. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Tan LA, Kasliwal MK, Fontes RBV, Fessler RG. Local cooling for traumatic spinal cord injury. J Neurosurg Spine 2014; 21:845-7. [PMID: 25170650 DOI: 10.3171/2014.5.spine14472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lee A Tan
- Rush University Medical Center, Chicago, IL
| | | | | | | |
Collapse
|
37
|
Gonzales-Portillo GS, Reyes S, Aguirre D, Pabon MM, Borlongan CV. Stem cell therapy for neonatal hypoxic-ischemic encephalopathy. Front Neurol 2014; 5:147. [PMID: 25161645 PMCID: PMC4130306 DOI: 10.3389/fneur.2014.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 11/27/2022] Open
Abstract
Treatments for neonatal hypoxic-ischemic encephalopathy (HIE) have been limited. The aim of this paper is to offer translational research guidance on stem cell therapy for neonatal HIE by examining clinically relevant animal models, practical stem cell sources, safety and efficacy of endpoint assays, as well as a general understanding of modes of action of this cellular therapy. In order to do so, we discuss the clinical manifestations of HIE, highlighting its overlapping pathologies with stroke and providing insights on the potential of cell therapy currently investigated in stroke, for HIE. To this end, we draw guidance from recommendations outlined in stem cell therapeutics as an emerging paradigm for stroke or STEPS, which have been recently modified to Baby STEPS to cater for the “neonatal” symptoms of HIE. These guidelines recognized that neonatal HIE exhibit distinct disease symptoms from adult stroke in need of an innovative translational approach that facilitates the entry of cell therapy in the clinic. Finally, new information about recent clinical trials and insights into combination therapy are provided with the vision that stem cell therapy may benefit from available treatments, such as hypothermia, already being tested in children diagnosed with HIE.
Collapse
Affiliation(s)
| | - Stephanny Reyes
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Daniela Aguirre
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Mibel M Pabon
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida , Tampa, FL , USA
| |
Collapse
|
38
|
Xing SM, Wang J, He X, Lai J, Shen L, Chen D, Fu K, Tan J. Identification of disease-related miRNAs based on co-expression network in spinal cord injury. Int J Neurosci 2014; 125:270-6. [DOI: 10.3109/00207454.2014.930741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
The need for randomization in animal trials: an overview of systematic reviews. PLoS One 2014; 9:e98856. [PMID: 24906117 PMCID: PMC4048216 DOI: 10.1371/journal.pone.0098856] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives Randomization, allocation concealment, and blind outcome assessment have been shown to reduce bias in human studies. Authors from the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Studies (CAMARADES) collaboration recently found that these features protect against bias in animal stroke studies. We extended the scope the work from CAMARADES to include investigations of treatments for any condition. Methods We conducted an overview of systematic reviews. We searched Medline and Embase for systematic reviews of animal studies testing any intervention (against any control) and we included any disease area and outcome. We included reviews comparing randomized versus not randomized (but otherwise controlled), concealed versus unconcealed treatment allocation, or blinded versus unblinded outcome assessment. Results Thirty-one systematic reviews met our inclusion criteria: 20 investigated treatments for experimental stroke, 4 reviews investigated treatments for spinal cord diseases, while 1 review each investigated treatments for bone cancer, intracerebral hemorrhage, glioma, multiple sclerosis, Parkinson's disease, and treatments used in emergency medicine. In our sample 29% of studies reported randomization, 15% of studies reported allocation concealment, and 35% of studies reported blinded outcome assessment. We pooled the results in a meta-analysis, and in our primary analysis found that failure to randomize significantly increased effect sizes, whereas allocation concealment and blinding did not. In our secondary analyses we found that randomization, allocation concealment, and blinding reduced effect sizes, especially where outcomes were subjective. Conclusions Our study demonstrates the need for randomization, allocation concealment, and blind outcome assessment in animal research across a wide range of outcomes and disease areas. Since human studies are often justified based on results from animal studies, our results suggest that unduly biased animal studies should not be allowed to constitute part of the rationale for human trials.
Collapse
|
40
|
Hansebout RR, Hansebout CR. Local cooling for traumatic spinal cord injury: outcomes in 20 patients and review of the literature. J Neurosurg Spine 2014; 20:550-61. [PMID: 24628130 DOI: 10.3171/2014.2.spine13318] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECT In this prospective study, the authors offered protocol-selected patients a combination of parenteral steroids, decompression surgery, and localized cooling to preserve viable spinal cord tissue and enhance functional recovery. METHODS After acquiring informed consent, the authors offered this regimen with localized deep cord cooling (dural temperature 6°C) to 20 patients with a neurologically complete spinal cord injury to begin within 8 hours of injury. After decompression, the cord was locally cooled through the intact dura using a suspended extradural saddle at the site of injury for up to 4 hours, during which time spinal fusion was performed. Sensation and motor function were evaluated directly after the injury and again over a year later. The patients were evaluated using the 2011 amendment to the American Spinal Injury Association (ASIA) Impairment Scale. RESULTS Eighty percent of the 20 patients (12 with cervical and 4 thoracic injuries) with an initial neurologically complete cord injury had some recovery of sensory or motor function. All patients initially had ASIA Grade A impairment. Of 14 patients with quadriplegia, 5 remained ASIA Grade A, 5 improved to ASIA Grade B, 3 to ASIA Grade C, and 1 to ASIA Grade D. The remaining 6 patients had suffered a thoracic spinal cord injury, and of these 2 remained ASIA Grade A, 1 recovered to ASIA Grade B, 2 to ASIA Grade C, and 1 ASIA Grade D. All considered, of 20 patients, 35% remained ASIA Grade A, 30% improved to ASIA Grade B, and 25% to ASIA Grade C. Impairment in 2 (10%) of 20 patients improved to ASIA Grade D. The mean improvement in neurological level of injury in all patients was 1.05, the mean improvement in motor level was 1.7, and the mean improvement in sensory level was 2.8. Two patients recovered the ability to walk, 2 could extend their legs, 5 could sense bladder fullness, and 3 had partial ability to void voluntarily. Four males recovered subnormal ability to have voluntary erection sufficient for limited sexual activity. CONCLUSIONS The authors present here results of 20 patients with neurologically complete spinal cord injury treated with a combination of surgical decompression, glucocorticoid administration, and regional hypothermia. These patients experienced a better recovery than might have been expected had traditional forms of treatment been used. The benefit of steroid treatment for cord injury has been debated in the last decade, but the authors feel that research into the effects of cord cooling should be expanded. Given that the optimal neuroprotective temperature after acute trauma has not yet been defined, and may well be below that which is considered safely approachable through systemic cooling, methods that allow for the early attainment of such a temperature locally should be further explored. The results are encouraging enough to suggest the undertaking of controlled clinical trials of treatment using localized spinal cord cooling, where such treatment can be instituted within hours following injury.
Collapse
Affiliation(s)
- Robert R Hansebout
- Department of Surgery, Division of Neurosurgery, McMaster University, Hamilton, Ontario, Canada; and
| | | |
Collapse
|
41
|
Does blast limb trauma constitute a multisystem critical illness? Crit Care Med 2014; 42:226-7. [PMID: 24346541 DOI: 10.1097/ccm.0000000000000008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Assenmacher B, Schroeder GD, Patel AA. On-Field Management of Spine and Spinal Cord Injuries. OPER TECHN SPORT MED 2013. [DOI: 10.1053/j.otsm.2013.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|