1
|
Volpe JJ, El-Dib M. Injuries of Extracranial, Cranial, Intracranial, Spinal Cord, and Peripheral Nervous System Structures. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1253-1282.e6. [DOI: 10.1016/b978-0-443-10513-5.00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Fukumitsu H, Soumiya H, Nakamura K, Nagashima K, Yamada M, Kobayashi H, Miwa T, Tsunoda A, Takeda-Kawaguchi T, Tezuka KI, Furukawa S. Effects of FGF2 Priming and Nrf2 Activation on the Antioxidant Activity of Several Human Dental Pulp Cell Clones Derived From Distinct Donors, and Therapeutic Effects of Transplantation on Rodents With Spinal Cord Injury. Cell Transplant 2024; 33:9636897241264979. [PMID: 39076100 PMCID: PMC11289817 DOI: 10.1177/09636897241264979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/31/2024] Open
Abstract
In recent years, the interest in cell transplantation therapy using human dental pulp cells (DPCs) has been increasing. However, significant differences exist in the individual cellular characteristics of human DPC clones and in their therapeutic efficacy in rodent models of spinal cord injury (SCI); moreover, the cellular properties associated with their therapeutic efficacy for SCI remain unclear. Here, using DPC clones from seven different donors, we found that most of the clones were highly resistant to H2O2 cytotoxicity if, after transplantation, they significantly improved the locomotor function of rats with complete SCI. Therefore, we examined the effects of the basic fibroblast growth factor 2 (FGF2) and bardoxolone methyl (RTA402), which is a nuclear factor erythroid 2-related factor 2 (Nrf2) chemical activator, on the total antioxidant capacity (TAC) and the resistance to H2O2 cytotoxicity. FGF2 treatment enhanced the resistance of a subset of clones to H2O2 cytotoxicity. Regardless of FGF2 priming, RTA402 markedly enhanced the resistance of many DPC clones to H2O2 cytotoxicity, concomitant with the upregulation of heme oxygenase-1 (HO-1) and NAD(P)H-quinone dehydrogenase 1 (NQO1). With the exception of a subset of clones, the TAC was not increased by either FGF2 priming or RTA402 treatment alone, whereas it was significantly upregulated by both treatments in each clone, or among all seven DPC clones together. Thus, the TAC and resistance to H2O2 cytotoxicity were, to some extent, independently regulated and were strongly enhanced by both FGF2 priming and RTA402 treatment. Moreover, even a DPC clone that originally exhibited no therapeutic effect on SCI improved the locomotor function of mice with SCI after transplantation under both treatment regimens. Thus, combined with FGF2, RTA402 may increase the number of transplanted DPCs that migrate into and secrete neurotrophic factors at the lesion epicenter, where reactive oxygen species are produced at a high level.
Collapse
Affiliation(s)
- Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kaito Nakamura
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Kosuke Nagashima
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Makoto Yamada
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroyuki Kobayashi
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Takahiro Miwa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Atsuki Tsunoda
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoko Takeda-Kawaguchi
- Department of Oral and Maxillofacial Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ken-ichi Tezuka
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
3
|
Wang A, Clark K, Amador A. Convergence of human and veterinary medicine: leveraging canine naturally occurring neurological disorders to develop regenerative treatments. Neural Regen Res 2023; 18:541-542. [DOI: 10.4103/1673-5374.350195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Giraldo E, Bonilla P, Mellado M, Garcia-Manau P, Rodo C, Alastrue A, Lopez E, Moratonas EC, Pellise F, Đorđević S, Vicent MJ, Moreno Manzano V. Transplantation of Human-Fetal-Spinal-Cord-Derived NPCs Primed with a Polyglutamate-Conjugated Rho/Rock Inhibitor in Acute Spinal Cord Injury. Cells 2022; 11:cells11203304. [PMID: 36291170 PMCID: PMC9600863 DOI: 10.3390/cells11203304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2022] Open
Abstract
Neural precursor cell (NPC) transplantation represents a promising therapy for treating spinal cord injuries (SCIs); however, despite successful results obtained in preclinical models, the clinical translation of this approach remains challenging due, in part, to the lack of consensus on an optimal cell source for human neuronal cells. Depending on the cell source, additional limitations to NPC-based therapies include high tumorigenic potential, alongside poor graft survival and engraftment into host spinal tissue. We previously demonstrated that NPCs derived from rat fetal spinal cords primed with a polyglutamate (PGA)-conjugated form of the Rho/Rock inhibitor fasudil (PGA-SS-FAS) displayed enhanced neuronal differentiation and graft survival when compared to non-primed NPCs. We now conducted a similar study of human-fetal-spinal-cord-derived NPCs (hfNPCs) from legal gestational interruptions at the late gestational stage, at 19-21.6 weeks. In vitro, expanded hfNPCs retained neural features, multipotency, and self-renewal, which supported the development of a cell banking strategy. Before transplantation, we established a simple procedure to prime hfNPCs by overnight incubation with PGA-SS-FAS (at 50 μM FAS equiv.), which improved neuronal differentiation and overcame neurite-like retraction after lysophosphatidic-acid-induced Rho/Rock activation. The transplantation of primed hfNPCs into immune-deficient mice (NU(NCr)-Foxn1nu) immediately after the eighth thoracic segment compression prompted enhanced migration of grafted cells from the dorsal to the ventral spinal cord, increased preservation of GABAergic inhibitory Lbx1-expressing and glutamatergic excitatory Tlx3-expressing somatosensory interneurons, and elevated the numbers of preserved, c-Fos-expressing, activated neurons surrounding the injury epicenter, all in a low percentage. Overall, the priming procedure using PGA-SS-FAS could represent an alternative methodology to improve the capabilities of the hfNPC lines for a translational approach for acute SCI treatment.
Collapse
Affiliation(s)
- Esther Giraldo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Department of Biotechnology. Universitat Politècnica de València, E-46022 Valencia, Spain
- UPV-CIPF Joint Research Unit Disease Mechanisms and Nanomedicine, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Bonilla
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Mara Mellado
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Pablo Garcia-Manau
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Carlota Rodo
- Maternal-Foetal Medicine Unit, Vall d’Hebron Hospital Campus, E-08035 Barcelona, Spain
| | - Ana Alastrue
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | - Eric Lopez
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
| | | | - Ferran Pellise
- Spine Surgery Unit, Hospital Universitari Vall d’Hebron, E-08035 Barcelona, Spain
| | - Snežana Đorđević
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, E-46012, Valencia, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, E-46012 Valencia, Spain
- Correspondence:
| |
Collapse
|
5
|
Ikeda-Yorifuji I, Tsujioka H, Sakata Y, Yamashita T. Single-nucleus RNA sequencing identified cells with ependymal cell-like features enriched in neonatal mice after spinal cord injury. Neurosci Res 2022; 181:22-38. [PMID: 35452717 DOI: 10.1016/j.neures.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
The adult mammalian central nervous system has limited regenerative ability, and spinal cord injury (SCI) often causes lifelong motor disability. While regeneration is limited in adults, injured spinal cord tissue can be regenerated and neural function can be almost completely restored in neonates. However, difference of cellular composition in lesion has not been well characterized. To gain insight into the age-dependent cellular reaction after SCI, we performed single-nucleus RNA sequencing, analyzing 4,076 nuclei from sham and injured spinal cords from adult and neonatal mice. Clustering analysis identified 18 cell populations. We identified previously undescribed cells with ependymal cell-like gene expression profile, the number of which was increased in neonates after SCI. Histological analysis revealed that these cells line the central canal under physiological conditions in both adults and neonates. We confirmed that they were enriched in the lesion only in neonates. We further showed that these cells were positive for the cellular markers of ependymal cells, astrocytes and radial glial cells. This study provides a deeper understanding of neonate-specific cellular responses after SCI, which may determine regenerative capacity.
Collapse
Affiliation(s)
- Iyo Ikeda-Yorifuji
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Tsujioka
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; WPI Immunology Frontier Research Center, Osaka University, Suita, Japan; Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
6
|
Wilm TP, Tanton H, Mutter F, Foisor V, Middlehurst B, Ward K, Benameur T, Hastie N, Wilm B. Restricted differentiative capacity of Wt1-expressing peritoneal mesothelium in postnatal and adult mice. Sci Rep 2021; 11:15940. [PMID: 34354169 PMCID: PMC8342433 DOI: 10.1038/s41598-021-95380-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/23/2021] [Indexed: 01/13/2023] Open
Abstract
Previously, genetic lineage tracing based on the mesothelial marker Wt1, appeared to show that peritoneal mesothelial cells have a range of differentiative capacities and are the direct progenitors of vascular smooth muscle in the intestine. However, it was not clear whether this was a temporally limited process or continued throughout postnatal life. Here, using a conditional Wt1-based genetic lineage tracing approach, we demonstrate that the postnatal and adult peritoneum covering intestine, mesentery and body wall only maintained itself and failed to contribute to other visceral tissues. Pulse-chase experiments of up to 6 months revealed that Wt1-expressing cells remained confined to the peritoneum and failed to differentiate into cellular components of blood vessels or other tissues underlying the peritoneum. Our data confirmed that the Wt1-lineage system also labelled submesothelial cells. Ablation of Wt1 in adult mice did not result in changes to the intestinal wall architecture. In the heart, we observed that Wt1-expressing cells maintained the epicardium and contributed to coronary vessels in newborn and adult mice. Our results demonstrate that Wt1-expressing cells in the peritoneum have limited differentiation capacities, and that contribution of Wt1-expressing cells to cardiac vasculature is based on organ-specific mechanisms.
Collapse
Affiliation(s)
- Thomas P Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Tanton
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Fiona Mutter
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,ZIK Plasmatis "Plasma Redox Effects", Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Veronica Foisor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Chemistry, University of Warwick, Coventry, UK
| | - Ben Middlehurst
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Kelly Ward
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Tarek Benameur
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, Kingdom of Saudi Arabia
| | - Nicholas Hastie
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Züchner M, Escalona MJ, Teige LH, Balafas E, Zhang L, Kostomitsopoulos N, Boulland JL. How to generate graded spinal cord injuries in swine - tools and procedures. Dis Model Mech 2021; 14:dmm049053. [PMID: 34464444 PMCID: PMC8419714 DOI: 10.1242/dmm.049053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) is a medically, psychologically and socially disabling condition. A large body of our knowledge on the basic mechanisms of SCI has been gathered in rodents. For preclinical validation of promising therapies, the use of animal models that are closer to humans has several advantages. This has promoted the more-intensive development of large-animal models for SCI during the past decade. We recently developed a multimodal SCI apparatus for large animals that generated biomechanically reproducible impacts in vivo. It is composed of a spring-load impactor and support systems for the spinal cord and the vertebral column. We now present the functional outcome of farm pigs and minipigs injured with different lesion strengths. There was a correlation between the biomechanical characteristics of the impact, the functional outcome and the tissue damage observed several weeks after injury. We also provide a detailed description of the procedure to generate such a SCI in both farm pigs and minipigs, in the hope to ease the adoption of the swine model by other research groups.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Manuel J. Escalona
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Lena Hammerlund Teige
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Evangelos Balafas
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - Jean-Luc Boulland
- Department for Immunology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
8
|
Tsata V, Wehner D. Know How to Regrow-Axon Regeneration in the Zebrafish Spinal Cord. Cells 2021; 10:cells10061404. [PMID: 34204045 PMCID: PMC8228677 DOI: 10.3390/cells10061404] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
The capacity for long-distance axon regeneration and functional recovery after spinal cord injury is poor in mammals but remarkable in some vertebrates, including fish and salamanders. The cellular and molecular basis of this interspecies difference is beginning to emerge. This includes the identification of target cells that react to the injury and the cues directing their pro-regenerative responses. Among existing models of successful spinal cord regeneration, the zebrafish is arguably the most understood at a mechanistic level to date. Here, we review the spinal cord injury paradigms used in zebrafish, and summarize the breadth of neuron-intrinsic and -extrinsic factors that have been identified to play pivotal roles in the ability of zebrafish to regenerate central nervous system axons and recover function.
Collapse
Affiliation(s)
- Vasiliki Tsata
- Experimental Surgery, Clinical and Translational Research Center, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Correspondence: (V.T.); (D.W.)
| | - Daniel Wehner
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Correspondence: (V.T.); (D.W.)
| |
Collapse
|
9
|
A Brief Review on Erythropoietin and Mesenchymal Stem Cell Therapies for Paediatric Neurological Disorders. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Sutherland TC, Ricafrente A, Gomola K, O'Brien BA, Gorrie CA. Neonatal Rats Exhibit a Predominantly Anti-Inflammatory Response following Spinal Cord Injury. Dev Neurosci 2021; 43:18-26. [PMID: 33789288 DOI: 10.1159/000514612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
It has been reported that children may respond better than adults to a spinal cord injury (SCI) of similar severity. There are known biomechanical differences in the developing spinal cord that may contribute to this "infant lesion effect," but the underlying mechanisms are unknown. Using immunohistochemistry, we have previously demonstrated a different injury progression and immune cell response after a mild thoracic contusion SCI in infant rats, as compared to adult rats. Here, we investigated the acute inflammatory responses using flow cytometry and ELISA at 1 h, 24 h, and 1 week after SCI in neonatal (P7) and adult (9 weeks) rats, and locomotor recovery was examined for 6 weeks after injury. Adult rats exhibited a pronounced pro-inflammatory response characterized by neutrophils and M1-like macrophage infiltration and Th1 cytokine secretion. Neonatal rats exhibited a decreased pro-inflammatory response characterized by a higher proportion of M2-like macrophages and reduced Th1 cytokine responses, as compared to adults. These results suggest that the initial inflammatory response to SCI is predominantly anti-inflammatory in very young animals.
Collapse
Affiliation(s)
- Theresa C Sutherland
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Alison Ricafrente
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katarina Gomola
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bronwyn A O'Brien
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Catherine A Gorrie
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
12
|
Kakuta Y, Adachi A, Yokohama M, Horii T, Mieda T, Iizuka Y, Takagishi K, Chikuda H, Iizuka H, Nakamura K. Spontaneous functional full recovery from motor and sensory deficits in adult mice after mild spinal cord injury. Heliyon 2019; 5:e01847. [PMID: 31194126 PMCID: PMC6546963 DOI: 10.1016/j.heliyon.2019.e01847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
The extent of spontaneous recovery in patients with a spinal cord injury (SCI) has not been thoroughly investigated. It is essentially not known whether SCI animals exhibit full recovery from both motor and sensory deficits as well. Here, we developed an appropriate condition to produce a mild SCI in mice. Mice given a mild contusion SCI showed transient low performances in the Basso Mouse Scale for locomotion (BMS), rotarod and beam walking tests after the SCI, which was followed by complete restoration in a short time. The SCI mice also showed functional full recovery from low sensitivity to light touch using dynamic touch test. Nevertheless, the fully-recovered SCI mice still exhibited significant loss of myelin in the spinal cord. These results suggest a high potential of adaptation of motor and sensory systems in mice and might provide insight into the prognoses of SCI patients.
Collapse
Affiliation(s)
- Yohei Kakuta
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Anna Adachi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Marino Yokohama
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Toshiki Horii
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Tokue Mieda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yoichi Iizuka
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kenji Takagishi
- Department of Orthopedic Surgery, Saint-Pierre Hospital, 786-7, Kamisano-machi, Takasaki, Gunma, 370-0857, Japan
| | - Hirotaka Chikuda
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Haku Iizuka
- Department of Orthopedic Surgery, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazuhiro Nakamura
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
13
|
Kondratskaya E, Ievglevskyi O, Züchner M, Samara A, Glover JC, Boulland JL. Locomotor central pattern generator excitability states and serotonin sensitivity after spontaneous recovery from a neonatal lumbar spinal cord injury. Brain Res 2019; 1708:10-19. [PMID: 30521786 DOI: 10.1016/j.brainres.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 12/03/2018] [Indexed: 11/30/2022]
Abstract
The spinal locomotor central pattern generator (CPG) in neonatal mice exhibits diverse output patterns, ranging from sub-rhythmic to multi-rhythmic to fictive locomotion, depending on its general level of excitation and neuromodulatory status. We have recently reported that the locomotor CPG in neonatal mice rapidly recovers the ability to produce neurochemically induced fictive locomotion following an upper lumbar spinal cord compression injury. Here we address the question of recovery of multi-rhythmic activity and the serotonin-sensitivity of the CPG. In isolated spinal cords from control and 3 days post-injury mice, application of dopamine and NMDA elicited multi-rhythmic activity with slow and fast components. The slow component comprised 10-20 s episodes of activity that were synchronous in ipsilateral or all lumbar ventral roots, and the fast components involved bursts within these episodes that displayed coordinated patterns of alternation between ipsilateral roots. Rhythm strength was the same in control and injured spinal cords. However, power spectral analysis of signal within episodes showed a reduced peak frequency after recovery. In control spinal cords, serotonin triggered fictive locomotion only when applied at high concentration (30 µM, constant NMDA). By contrast, in about 50% of injured preparations fictive locomotion was evoked by 2-3 times lower serotonin concentrations (10-15 µM). This increased serotonin sensitivity was correlated with post-injury changes in the expression of specific serotonin receptor transcripts, but not of dopamine receptor transcripts.
Collapse
Affiliation(s)
- Elena Kondratskaya
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Oleksandr Ievglevskyi
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Mark Züchner
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Department of Neurosurgery, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Athina Samara
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Joel C Glover
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway; Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Norway.
| |
Collapse
|
14
|
Züchner M, Kondratskaya E, Sylte CB, Glover JC, Boulland JL. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury. J Physiol 2017; 596:281-303. [PMID: 29086918 DOI: 10.1113/jp274484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/25/2017] [Indexed: 01/30/2023] Open
Abstract
KEY POINTS Spinal compression injury targeted to the neonatal upper lumbar spinal cord, the region of highest hindlimb locomotor rhythmogenicity, leads to an initial paralysis of the hindlimbs. Behavioural recovery is evident within a few days and approaches normal function within about 3 weeks. Fictive locomotion in the isolated injured spinal cord cannot be elicited by a neurochemical cocktail containing NMDA, dopamine and serotonin 1 day post-injury, but can 3 days post-injury as readily as in the uninjured spinal cord. Low frequency coordinated rhythmic activity can be elicited in the isolated uninjured spinal cord by NMDA + dopamine (without serotonin), but not in the isolated injured spinal cord. In both the injured and uninjured spinal cord, eliciting bona fide fictive locomotion requires the additional presence of serotonin. ABSTRACT Following incomplete compression injury in the thoracic spinal cord of neonatal mice 1 day after birth (P1), we previously reported that virtually normal hindlimb locomotor function is recovered within about 3 weeks despite substantial permanent thoracic tissue loss. Here, we asked whether similar recovery occurs following lumbar injury that impacts more directly on the locomotor central pattern generator (CPG). As in thoracic injuries, lumbar injuries caused about 90% neuronal loss at the injury site and increased serotonergic innervation below the injury. Motor recovery was slower after lumbar than thoracic injury, but virtually normal function was attained by P25 in both cases. Locomotor CPG status was tested by eliciting fictive locomotion in isolated spinal cords using a widely used neurochemical cocktail (NMDA, dopamine, serotonin). No fictive locomotion could be elicited 1 day post-injury, but could within 3 days post-injury as readily as in age-matched uninjured control spinal cords. Burst patterning and coordination were largely similar in injured and control spinal cords but there were differences. Notably, in both groups there were two main locomotor frequencies, but injured spinal cords exhibited a shift towards the higher frequency. Injury also altered the neurochemical dependence of locomotor CPG output, such that injured spinal cords, unlike control spinal cords, were incapable of generating low frequency rhythmic coordinated activity in the presence of NMDA and dopamine alone. Thus, the neonatal spinal cord also exhibits remarkable functional recovery after lumbar injuries, but the neurochemical sensitivity of locomotor circuitry is modified in the process.
Collapse
Affiliation(s)
- Mark Züchner
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Stem Cell Research, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Elena Kondratskaya
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Camilla B Sylte
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| | - Jean-Luc Boulland
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo, Oslo, Norway.,Norwegian Centre for Stem Cell Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
15
|
Xiong LL, Liu F, Deng SK, Liu J, Dan QQ, Zhang P, Zou Y, Xia QJ, Wang TH. Transplantation of Hematopoietic Stem Cells Promotes Functional Improvement Associated with NT-3-MEK-1 Activation in Spinal Cord-Transected Rats. Front Cell Neurosci 2017; 11:213. [PMID: 28769769 PMCID: PMC5515877 DOI: 10.3389/fncel.2017.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
Transected spinal cord injury (SCT) is a devastating clinical disease that strongly affects a patient’s daily life and remains a great challenge for clinicians. Stem-cell therapy has been proposed as a potential therapeutic modality for SCT. To investigate the effects of hematopoietic stem cells (HSCs) on the recovery of structure and function in SCT rats and to explore the mechanisms associated with recovery, 57 adult Sprague-Dawley rats were randomly divided into sham (n = 15), SCT (n = 24), and HSC transplantation groups (n = 15). HSCs (passage 3) labeled by Hoechst 33342, were transplanted intraspinally into the rostral, scar and caudal sites of the transected lesion at 14 days post-operation. Both in vitro and in vivo, HSCs exhibited a capacity for cell proliferation and differentiation. Following HSC transplantation, the animals’ Basso, Beattie, and Bresnahan (BBB). locomotion scale scores increased significantly between weeks 4 and 24 post-SCT, which corresponded to an increased number of 5-hydroxytryptamine (5-HT) fibers and oligodendrocytes. The amount of astrogliosis indicated by immunohistochemical staining, was markedly decreased. Moreover, the decreased expression of neurotrophin- 3 (NT-3) and mitogen-activated protein kinase kinase-1 (MEK-1) after SCT was effectively restored by HSC transplantation. The data from the current study indicate that intraspinally administered HSCs in the chronic phase of SCT results in an improvement in neurological function. Further, the results indicate that intraspinally administered HSCs benefit the underlying mechanisms involved in the enhancement of 5-HT-positive fibers and oligogenesis, the suppression of excessive astrogliosis and the upregulation of NT3-regulated MEK-1 activation in the spinal cord. These crucial findings reveal not only the mechanism of cell therapy, but may also contribute to a novel therapeutic target for the treatment of spinal cord injury (SCI).
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Shi-Kang Deng
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Yu Zou
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Kunming Medical UniversityKunming, China
| |
Collapse
|
16
|
Chawla RS, Züchner M, Mastrangelopoulou M, Lambert FM, Glover JC, Boulland JL. Cellular reactions and compensatory tissue re-organization during spontaneous recovery after spinal cord injury in neonatal mice. Dev Neurobiol 2017; 77:928-946. [PMID: 28033684 DOI: 10.1002/dneu.22479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 01/23/2023]
Abstract
Following incomplete spinal cord injuries, neonatal mammals display a remarkable degree of behavioral recovery. Previously, we have demonstrated in neonatal mice a wholesale re-establishment and reorganization of synaptic connections from some descending axon tracts (Boulland et al.: PLoS One 8 (2013)). To assess the potential cellular mechanisms contributing to this recovery, we have here characterized a variety of cellular sequelae following thoracic compression injuries, focusing particularly on cell loss and proliferation, inflammation and reactive gliosis, and the dynamics of specific types of synaptic terminals. Early during the period of recovery, regressive events dominated. Tissue loss near the injury was severe, with about 80% loss of neurons and a similar loss of axons that later make up the white matter. There was no sign of neurogenesis, no substantial astroglial or microglial proliferation, no change in the ratio of M1 and M2 microglia and no appreciable generation of the terminal complement peptide C5a. One day after injury the number of synaptic terminals on lumbar motoneurons had dropped by a factor of 2, but normalized by 6 days. The ratio of VGLUT1/2+ to VGAT+ terminals remained similar in injured and uninjured spinal cords during this period. By 24 days after injury, when functional recovery is nearly complete, the density of 5-HT+ fibers below the injury site had increased by a factor of 2.5. Altogether this study shows that cellular reactions are diverse and dynamic. Pronounced recovery of both excitatory and inhibitory terminals and an increase in serotonergic innervation below the injury, coupled with a general lack of inflammation and reactive gliosis, are likely to contribute to the recovery. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 928-946, 2017.
Collapse
Affiliation(s)
- Rishab S Chawla
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo
| | - Mark Züchner
- Norwegian Center for Stem Cell Research, Oslo University Hospital.,Department of Neurosurgery, Oslo University Hospital
| | - Maria Mastrangelopoulou
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo
| | - François M Lambert
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,INCIA CNRS UMR 5287 Université de Bordeaux, Bordeaux, France
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,Norwegian Center for Stem Cell Research, Oslo University Hospital
| | - Jean-Luc Boulland
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,Norwegian Center for Stem Cell Research, Oslo University Hospital
| |
Collapse
|
17
|
Mandadi S, Leduc-Pessah H, Hong P, Ejdrygiewicz J, Sharples SA, Trang T, Whelan PJ. Modulatory and plastic effects of kinins on spinal cord networks. J Physiol 2016; 594:1017-36. [PMID: 26634895 DOI: 10.1113/jp271152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Inflammatory kinins are released following spinal cord injury or neurotrauma. The effects of these kinins on ongoing locomotor activity of central pattern generator networks are unknown. In the present study, kinins were shown to have short- and long-term effects on motor networks. The short-term effects included direct depolarization of interneurons and motoneurons in the ventral horn accompanied by modulation of transient receptor potential vanilloid 1-sensitive nociceptors in the dorsal horn. Over the long-term, we observed a bradykinin-mediated effect on promoting plasticity in the spinal cord. In a model of spinal cord injury, we observed an increase in microglia numbers in both the dorsal and ventral horn and, in a microglia cell culture model, we observed bradykinin-induced expression of glial-derived neurotrophic factor. ABSTRACT The expression and function of inflammatory mediators in the developing spinal cord remain poorly characterized. We discovered novel, short and long-term roles for the inflammatory nonapeptide bradykinin (BK) and its receptor bradykinin receptor B2 (B2R) in the neuromodulation of developing sensorimotor networks following a spinal cord injury (SCI), suggesting that BK participates in an excitotoxic cascade. Functional expression of B2R was confirmed by a transient disruptive action of BK on fictive locomotion generated by a combination of NMDA, 5-HT and dopamine. The role of BK in the dorsal horn nociceptive afferents was tested using spinal cord attached to one-hind-limb (HL) preparations. In the HL preparations, BK at a subthreshold concentration induced transient disruption of fictive locomotion only in the presence of: (1) noxious heat applied to the hind paw and (2) the heat sensing ion channel transient receptor potential vanilloid 1 (TRPV1), known to be restricted to nociceptors in the superficial dorsal horn. BK directly depolarized motoneurons and ascending interneurons in the ventrolateral funiculus. We found a key mechanism for BK in promoting long-term plasticity within the spinal cord. Using a model of neonatal SCI and a microglial cell culture model, we examined the role of BK in inducing activation of microglia and expression of glial-derived neurotrophic factor (GDNF). In the neonatal SCI model, we observed an increase in microglia numbers and increased GDNF expression restricted to microglia. In the microglia cell culture model, we observed a BK-induced increased expression of GDNF via B2R, suggesting a novel mechanism for BK spinal-mediated plasticity.
Collapse
Affiliation(s)
- S Mandadi
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - H Leduc-Pessah
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P Hong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - J Ejdrygiewicz
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - S A Sharples
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T Trang
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| | - P J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
19
|
Abstract
Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1.
Collapse
Affiliation(s)
- Mark Züchner
- Department of Neurosurgery, Oslo University Hospital; Norwegian Center for Stem Cell Research, Oslo University Hospital
| | - Joel C Glover
- Norwegian Center for Stem Cell Research, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, University of Oslo
| | - Jean-Luc Boulland
- Norwegian Center for Stem Cell Research, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, University of Oslo;
| |
Collapse
|
20
|
Lambert FM, Bras H, Cardoit L, Vinay L, Coulon P, Glover JC. Early postnatal maturation in vestibulospinal pathways involved in neck and forelimb motor control. Dev Neurobiol 2016; 76:1061-77. [DOI: 10.1002/dneu.22375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 12/28/2015] [Indexed: 01/05/2023]
Affiliation(s)
- François M. Lambert
- Laboratory of Neural Development and Optical Recording (NDEVOR)Division of PhysiologyDepartment of Molecular MedicineInstitute of Basic Medical Sciences, University of OsloOslo Norway
- Institut De Neurosciences Cognitives Et Intégratives D'aquitaineUniversity of Bordeaux, CNRS UMR 5287Bordeaux33076 France
| | - Hélène Bras
- Institut De Neurosciences De La Timone, CNRS and Aix Marseille UniversitéMarseille Cedex 0513385 France
| | - Laura Cardoit
- Institut De Neurosciences Cognitives Et Intégratives D'aquitaineUniversity of Bordeaux, CNRS UMR 5287Bordeaux33076 France
| | - Laurent Vinay
- Institut De Neurosciences De La Timone, CNRS and Aix Marseille UniversitéMarseille Cedex 0513385 France
| | - Patrice Coulon
- Institut De Neurosciences De La Timone, CNRS and Aix Marseille UniversitéMarseille Cedex 0513385 France
| | - Joel C. Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR)Division of PhysiologyDepartment of Molecular MedicineInstitute of Basic Medical Sciences, University of OsloOslo Norway
- Norwegian Center for Stem Cell ResearchDepartment of Immunology and Transfusion MedicineOslo University HospitalOslo Norway
| |
Collapse
|
21
|
Segmental organization of vestibulospinal inputs to spinal interneurons mediating crossed activation of thoracolumbar motoneurons in the neonatal mouse. J Neurosci 2015; 35:8158-69. [PMID: 26019332 DOI: 10.1523/jneurosci.5188-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vestibulospinal pathways activate contralateral motoneurons (MNs) in the thoracolumbar spinal cord of the neonatal mouse exclusively via axons descending ipsilaterally from the vestibular nuclei via the lateral vestibulospinal tract (LVST; Kasumacic et al., 2010). Here we investigate how transmission from the LVST to contralateral MNs is mediated by descending commissural interneurons (dCINs) in different spinal segments. We test the polysynaptic nature of this crossed projection by assessing LVST-mediated ventral root (VR) response latencies, manipulating synaptic responses pharmacologically, and tracing the pathway transynaptically from hindlimb extensor muscles using rabies virus (RV). Longer response latencies in contralateral than ipsilateral VRs, near-complete abolition of LVST-mediated calcium responses in contralateral MNs by mephenesin, and the absence of transsynaptic RV labeling of contralateral LVST neurons within a monosynaptic time window all indicate an overwhelmingly polysynaptic pathway from the LVST to contralateral MNs. Optical recording of synaptically mediated calcium responses identifies LVST-responsive ipsilateral dCINs that exhibit segmental differences in proportion and dorsoventral distribution. In contrast to thoracic and lower lumbar segments, in which most dCINs are LVST responsive, upper lumbar segments stand out because they contain a much smaller and more ventrally restricted subpopulation of LVST-responsive dCINs. A large proportion of these upper lumbar LVST-responsive dCINs project to contralateral L5, which contains many of the hindlimb extensor MNs activated by the LVST. A selective channeling of LVST inputs through segmentally and dorsoventrally restricted subsets of dCINs provides a mechanism for targeting vestibulospinal signals differentially to contralateral trunk and hindlimb MNs in the mammalian spinal cord.
Collapse
|