1
|
Dicer1 deficient mice exhibit premature aging and metabolic perturbations in adipocytes. iScience 2022; 25:105149. [PMID: 36185376 PMCID: PMC9523393 DOI: 10.1016/j.isci.2022.105149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Age-related diseases are major concern in developed countries. To avoid disabilities that accompany increased lifespan, pharmaceutical approaches are considered. Therefore, appropriate animal models are required for a better understanding of aging processes and potential in vivo assays to evaluate the impact of molecules that may delay the occurrence of age-related diseases. Few mouse models exhibiting pathological aging exist, but currently, none of them reproducibly mimics human diseases like osteoporosis, cognitive dysfunctions or sarcopenia that can be seen in some, but not all, elders. Here, we describe the premature aging phenotypes of Dicer-deficient mature animals, which exhibit an overall deterioration of many organs and tissues (skin, heart, and adipose tissue) ultimately leading to a significant reduction of their lifespan. Molecular characterization of transcriptional responses focused on the adipose tissue suggested that both canonical and non-canonical functions of DICER are involved in this process and highlight potential actionable pathways to revert it. Dicer1-deficient mice have a reduced lifespan with early age-related symptoms Mutant mice are resistant to high fat diet-induced disorders Myokines FGF21 and GDF15 are likely key regulators of adipocytes metabolism
Collapse
|
2
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
3
|
|
4
|
The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Res Rev 2020; 62:101087. [PMID: 32497728 DOI: 10.1016/j.arr.2020.101087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Small RNAs and enzymes that provide their biogenesis and functioning are involved in the organism development and coordination of biological processes, including metabolism, maintaining genome integrity, immune and stress responses. In this review, we focused on the role of small RNA biogenesis proteins in determining the aging and longevity of animals and human. A number of studies have revealed that changes in expression profiles of key enzymes, in particular proteins of the Drosha, Dicer and Argonaute families, are associated with the aging process, as well as with some age-related diseases and progeroid syndromes. Down-regulation of small RNA biogenesis proteins leads to global alterations in the expression of regulatory RNAs, disruption of key molecular, cellular and systemic processes, which leads to a lifespan shortening. In contrast, overexpression of Dicer prolongs lifespan and improves cellular defense. Additionally, the role of small RNA biogenesis proteins in the pathogenesis of age-related diseases, including cancer, inflammaging, neurodegeneration, cardiovascular, metabolic and immune disorders, has been conclusively evidenced. Recent advances in biomedicine allow using these proteins as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
|
5
|
Macrofollicular Variant of Follicular Thyroid Carcinoma (MV-FTC) with a Somatic DICER1 Gene Mutation: Case Report and Review of the Literature. Head Neck Pathol 2020; 15:668-675. [PMID: 32712880 PMCID: PMC8134796 DOI: 10.1007/s12105-020-01208-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
Benign thyroid lesions such as multinodular goiter and adenomatoid nodules are well-circumscribed lesions displaying a macrofollicular growth pattern and lack of nuclear atypia. The highly unusual macrofollicular variant of follicular thyroid carcinoma (MV-FTC) mirrors these attributes and is thereby misclassified by cytological examination of fine-needle aspiration biopsies. The MV-FTC diagnosis is instead suggested following histological investigation, in which malignant attributes, most commonly capsular invasion, are noted. The bulk of MV-FTCs described in the literature arise in younger female patients and carry an excellent prognosis. A recent coupling to mutations in the DICER1 tumor suppressor gene has been proposed, possibly indicating aberrancies in micro-RNA (miRNA) patterns as responsible of the tumorigenic process. We describe the cytological, histological and molecular phenotype of a 35 mm large MV-FTC arising in the right thyroid lobe of a 33-year-old female with a family history of multinodular goiter. The tumor was encapsulated and strikingly inconspicuous in terms of cellularity and atypia, but nevertheless displayed multiple foci with capsular invasion. A next-generation molecular screening of tumor DNA revealed missense variants in DICER1 (p. D1709N) and MET (p. T1010I), but no established fusion gene events. After sequencing of germline DNA, the DICER1 mutation was confirmed as somatic, while the MET variant was constitutional. The patient is alive and well, currently awaiting radioiodine treatment. This MV-FTC mirrors previous publications, suggesting that these tumors carry a favorable prognosis and predominantly arise in younger females. Moreover, DICER1 mutations should be considered a common driver event in the development of MV-FTCs.
Collapse
|
6
|
Wu X, Chen X, Liu H, He ZW, Wang Z, Wei LJ, Wang WY, Zhong S, He Q, Zhang Z, Ou R, Gao J, Lei Y, Yang W, Song G, Jin Y, Zhou L, Xu Y, Tang KF. Rescuing Dicer expression in inflamed colon tissues alleviates colitis and prevents colitis-associated tumorigenesis. Am J Cancer Res 2020; 10:5749-5762. [PMID: 32483416 PMCID: PMC7254990 DOI: 10.7150/thno.41894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is known to promote carcinogenesis; Dicer heterozygous mice are more likely to develop colitis-associated tumors. This study investigates whether Dicer is downregulated in inflamed colon tissues before malignancy occurs and whether increasing Dicer expression in inflamed colon tissues can alleviate colitis and prevent colitis-associated tumorigenesis. Methods: Gene expression in colon tissues was analyzed by immunohistochemistry, immunoblots, and real-time RT-PCR. Hydrogen peroxide or N-acetyl-L-cysteine was used to induce or alleviate oxidative stress, respectively. Mice were given azoxymethane followed by dextran sulfate sodium to induce colitis and colon tumors. Berberine, anastrozole, or pranoprofen was used to rescue Dicer expression in inflammatory colon tissues. Results: Oxidative stress repressed Dicer expression in inflamed colon tissues by inducing miR-215 expression. Decreased Dicer expression increased DNA damage and cytosolic DNA and promoted interleukin-6 expression upon hydrogen peroxide treatment. Dicer overexpression in inflamed colon tissues alleviated inflammation and repressed colitis-associated carcinogenesis. Furthermore, we found that anastrozole, berberine, and pranoprofen could promote Dicer expression and protect cells from hydrogen peroxide-induced DNA damage, thereby reducing cytosolic DNA and partially repressing interleukin-6 expression upon hydrogen peroxide treatment. Rescuing Dicer expression using anastrozole, berberine, or pranoprofen in inflamed colon tissues alleviated colitis and prevented colitis-associated tumorigenesis. Conclusions: Dicer was downregulated in inflamed colon tissues before malignancy occurred. Decreased Dicer expression further exaggerated inflammation, which may promote carcinogenesis. Anastrozole, berberine, and pranoprofen alleviated colitis and colitis-associated tumorigenesis by promoting Dicer expression. Our study provides insight into potential colitis treatment and colitis-associated colon cancer prevention strategies.
Collapse
|
7
|
Aryal NK, Pant V, Wasylishen AR, Rimel BJ, Baseler L, El-Naggar AK, Mutch DG, Goodfellow PJ, Arur S, Lozano G. Dicer1 Phosphomimetic Promotes Tumor Progression and Dissemination. Cancer Res 2019; 79:2662-2668. [PMID: 30914430 DOI: 10.1158/0008-5472.can-18-2460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/23/2018] [Accepted: 03/22/2019] [Indexed: 11/16/2022]
Abstract
Dicer1 functions as a tumor suppressor in mouse models. In humans, somatic mutations are associated with many cancers in adults, and patients with DICER1 syndrome with DICER1 germline mutations are susceptible to childhood cancers. Dicer is phosphorylated by the ERK-MAP kinase pathway and because this pathway is activated in human cancers, we asked whether phosphorylated Dicer1 contributed to tumor development. In human endometrioid cancers, we discovered that phosphorylated DICER1 is significantly associated with invasive disease. To test a direct involvement of Dicer1 phosphorylation in tumor development, we studied mice with phosphomimetic alterations at the two conserved serines phosphorylated by ERK and discovered that a phosphomimetic Dicer1 drives tumor development and dissemination in two independent murine cancer models (KRas+/LA1 and p53+/- ). Our findings demonstrate that phosphomimetic Dicer1 promotes tumor development and invasion. SIGNIFICANCE: This work highlights the relevance of Dicer1 phosphorylation in mammalian tumor development and dissemination.
Collapse
Affiliation(s)
- Neeraj K Aryal
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Genes and Development Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda R Wasylishen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bobbie J Rimel
- Division of Gynecologic Oncology, Cedars Sinai Medical Center, Los Angeles, California
| | - Laura Baseler
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel K El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David G Mutch
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine and Siteman Cancer Center, St. Louis, Missouri
| | - Paul J Goodfellow
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The Ohio State University and James Comprehensive Cancer Center, Columbus, Ohio
| | - Swathi Arur
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Genes and Development Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Guillermina Lozano
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Genes and Development Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
8
|
Constitutive Dicer1 phosphorylation accelerates metabolism and aging in vivo. Proc Natl Acad Sci U S A 2018; 116:960-969. [PMID: 30593561 DOI: 10.1073/pnas.1814377116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
DICER1 gene alterations and decreased expression are associated with developmental disorders and diseases in humans. Oscillation of Dicer1 phosphorylation and dephosphorylation regulates its function during the oocyte-to-embryo transition in Caenorhabditis elegans Dicer1 is also phosphorylated upon FGF stimulation at conserved serines in mouse embryonic fibroblasts and HEK293 cells. However, whether phosphorylation of Dicer1 has a role in mammalian development remains unknown. To investigate the consequence of constitutive phosphorylation, we generated phosphomimetic knock-in mouse models by replacing conserved serines 1712 and 1836 with aspartic acids individually or together. Dicer1 S1836D/S1836D mice display highly penetrant postnatal lethality, and the few survivors display accelerated aging and infertility. Homozygous dual-phosphomimetic Dicer1 augments these defects, alters metabolism-associated miRNAs, and causes a hypermetabolic phenotype. Thus, constitutive phosphorylation of Dicer1 results in multiple pathologic processes in mice, indicating that phosphorylation tightly regulates Dicer1 function and activity in mammals.
Collapse
|
9
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
10
|
Sun LN, Xing C, Zhi Z, Liu Y, Chen LY, Shen T, Zhou Q, Liu YH, Gan WJ, Wang JR, Xu Y, Li JM. Dicer suppresses cytoskeleton remodeling and tumorigenesis of colorectal epithelium by miR-324-5p mediated suppression of HMGXB3 and WASF-2. Oncotarget 2017; 8:55776-55789. [PMID: 28915552 PMCID: PMC5593523 DOI: 10.18632/oncotarget.18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates that microRNAs, a class of small and well-conserved noncoding RNAs, participate in many physiological and pathological processes. RNase III endonuclease DICER is one of the key enzymes for microRNA biogenesis. Here, we found that DICER was downregulated in tumor samples of colorectal cancer (CRC) patients at both mRNA and protein levels. Importantly, intestinal epithelial cell (IEC)-specific deletion of Dicer mice got more tumors after azoxymethane and dextran sulfate sodium (DSS) administration. Interestingly, IEC-specific deletion of Dicer led to severe chronic inflammation and epithelium layer remodeling in mice with or without DSS administration. Microarray analysis of 3 paired Dicer deletion CRC cell lines showed that miR-324-5p was one of the most significantly decreased miRNAs. In the intestinal epithelium of IEC-specific deletion of Dicer mice, miR-324-5p was also found to be markedly reduced. Mechanistically, miR-324-5p directly bound to the 3′untranslated regions (3′UTRs) of HMG-box containing 3 (HMGXB3) and WAS protein family member 2 (WASF-2), two key proteins participated in cell motility and cytoskeleton remodeling, to suppress their expressions. Intraperitoneal injection of miR-324-5p AgomiR (an agonist of miR-324-5p) curtailed chronic inflammation and cytoskeleton remodeling of colorectal epithelium and restored intestinal barrier function in IEC-specific deletion of Dicer mice induced by DSS. Therefore, our study reveals a key role of a DICER/miR-324-5p/HMGXB3/WASF-2 axis in tumorigenesis of CRC by regulation of cytoskeleton remodeling and maintaining integrity of intestinal barriers.
Collapse
Affiliation(s)
- Li Na Sun
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Cheng Xing
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Liang-Yan Chen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Qun Zhou
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yu Hong Liu
- Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Wen Juan Gan
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Jing-Ru Wang
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Ming Li
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| |
Collapse
|
11
|
Yoshikawa T, Wu J, Otsuka M, Kishikawa T, Suzuki N, Takata A, Ohno M, Ishibashi R, Yamagami M, Nakagawa R, Kato N, Miyazawa M, Han J, Koike K. Repression of MicroRNA Function Mediates Inflammation-associated Colon Tumorigenesis. Gastroenterology 2017; 152:631-643. [PMID: 27825961 DOI: 10.1053/j.gastro.2016.10.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Little is known about the mechanisms by which chronic inflammation contributes to carcinogenesis, such as the development of colon tumors in patients with inflammatory bowel diseases. Specific microRNA (miRNAs) can function as suppressors or oncogenes, and widespread alterations in miRNA expression have been associated with tumorigenesis. We studied whether alterations in miRNA function contribute to inflammation-associated colon carcinogenesis. METHODS We studied the effects of inflammatory cytokines, such as tumor necrosis factor, interleukin-1α (IL1A), and IL1β (IL1B), on miRNA function, measured by activity of reporter constructs containing miRNA-binding sites in their 3' untranslated regions, in human 293T embryonic kidney, Caco-2, HT29, and HCT116 colon carcinoma cells, as well as dicer+/+ and dicer-/-, and Apobec3+/+ and Apobec3-/- mouse embryonic fibroblasts. Cells were analyzed by immunoblots, immunohistochemistry, and flow cytometry. We generated transgenic mice expressing reporter constructs regulated by LET7B, MIR122, and MIR29b response elements; some mice were given injections of miRNA inhibitors (anti-MIR122 or anti-LET7B), a negative control, or tumor necrosis factor. Liver tissues were collected and analyzed by immunoblotting. Reporter mice were given azoxymethane followed by dextran sulfate sodium to induce colitis and colon tumors; some mice were given the ROCK inhibitor fasudil along with these agents (ROCK inhibitors increase miRNA function). Colon tissues were collected and analyzed by immunohistochemistry, immunoblots, and fluorescence microscopy. RESULTS Incubation of cell lines with inflammatory cytokines reduced the ability of miRNAs to down-regulate expression from reporter constructs; dicer was required for this effect, so these cytokines relieve miRNA-dependent reductions in expression. The cytokines promoted degradation of APOBEC3G, which normally promotes miRNA loading into argonaute 2-related complexes. Mice with colitis had reduced miRNA function, based on increased expression of reporter genes. Administration of fasudil to mice did not reduce the severity of colitis that developed but greatly reduced the numbers of colon tumors formed (mean 2 tumors/colon in mice given fasudil vs 9 tumors/colon in mice given control agent). We made similar observations in IL10-deficient mice. CONCLUSIONS We found inflammatory cytokines to reduce the activities of miRNAs. In mice with colitis, activities of miRNAs are reduced; administration of an agent that increases miRNA function prevents colon tumor formation in these mice. This pathway might be targeted to prevent colon carcinogenesis in patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Takeshi Yoshikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan.
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Division of Gastroenterology, The Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Akemi Takata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Nakagawa
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Naoya Kato
- Division of Advanced Genome Medicine, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka-Sayama, Osaka, Japan
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, China.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1. Nat Commun 2016; 7:13006. [PMID: 27667193 PMCID: PMC5052683 DOI: 10.1038/ncomms13006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Highly repetitive tandem arrays at the centromeric and pericentromeric regions in chromosomes, previously considered silent, are actively transcribed, particularly in cancer. This aberrant expression occurs even in K-ras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To examine the biological roles of the satellite RNAs in carcinogenesis, we construct mouse PanIN-derived cells expressing major satellite (MajSAT) RNA and show increased malignant properties. We find an increase in frequency of chromosomal instability and point mutations in both genomic and mitochondrial DNA. We identify Y-box binding protein 1 (YBX1) as a protein that binds to MajSAT RNA. MajSAT RNA inhibits the nuclear translocation of YBX1 under stress conditions, thus reducing its DNA-damage repair function. The forced expression of YBX1 significantly decreases the aberrant phenotypes. These findings indicate that during the early stage of cancer development, satellite transcripts may act as 'intrinsic mutagens' by inducing YBX1 dysfunction, which may be crucial in oncogenic processes.
Collapse
|
13
|
The modulation of Dicer regulates tumor immunogenicity in melanoma. Oncotarget 2016; 7:47663-47673. [PMID: 27356752 PMCID: PMC5216969 DOI: 10.18632/oncotarget.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that regulate most cellular protein networks by targeting mRNAs for translational inhibition or degradation. Dicer, a type III endoribonuclease, is a critical component in microRNA biogenesis and is required for mature microRNA production. Abnormal Dicer expression occurs in numerous cancer types and correlates with poor patient prognosis. For example, increased Dicer expression in melanoma is associated with more aggressive tumors (higher tumor mitotic index and depth of invasion) and poor patient prognosis. However, the role that Dicer plays in melanoma development and immune evasion remains unclear. Here, we report on a newly discovered relationship between Dicer expression and tumor immunogenicity. To investigate Dicer's role in regulating melanoma immunogenicity, Dicer knockdown studies were performed. We found that B16F0-Dicer deficient cells exhibited decreased tumor growth compared to control cells and were capable of inducing anti-tumor immunity. The decrease in tumor growth was abrogated in immunodeficient NSG mice and was shown to be dependent upon CD8+ T cells. Dicer knockdown also induced a more responsive immune gene profile in melanoma cells. Further studies demonstrated that CD8+ T cells preferentially killed Dicer knockdown tumor cells compared to control cells. Taken together, we present evidence which links Dicer expression to tumor immunogenicity in melanoma.
Collapse
|
14
|
MicroRNA Biogenesis and Hedgehog-Patched Signaling Cooperate to Regulate an Important Developmental Transition in Granule Cell Development. Genetics 2016; 202:1105-18. [PMID: 26773048 DOI: 10.1534/genetics.115.184176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022] Open
Abstract
The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
Collapse
|
15
|
Wang YJ, McAllister F, Bailey JM, Scott SG, Hendley AM, Leach SD, Ghosh B. Dicer is required for maintenance of adult pancreatic acinar cell identity and plays a role in Kras-driven pancreatic neoplasia. PLoS One 2014; 9:e113127. [PMID: 25405615 PMCID: PMC4236134 DOI: 10.1371/journal.pone.0113127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell identity. Acinar cells lacking Dicer showed increased plasticity, as evidenced by loss of polarity, initiation of epithelial-to-mesenchymal transition (EMT) and acinar-to-ductal metaplasia (ADM). In the context of oncogenic Kras activation, the initiation of ADM and pancreatic intraepithelial neoplasia (PanIN) were both highly sensitive to Dicer gene dosage. Homozygous Dicer deletion accelerated the formation of ADM but not PanIN. In contrast, heterozygous Dicer deletion accelerated PanIN initiation, revealing complex roles for Dicer in the regulation of both normal and neoplastic pancreatic epithelial identity.
Collapse
Affiliation(s)
- Yue J. Wang
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Florencia McAllister
- The Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jennifer M. Bailey
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- The Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Audrey M. Hendley
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D. Leach
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Bidyut Ghosh
- The Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
16
|
Du NH, Arpat AB, De Matos M, Gatfield D. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale. eLife 2014; 3:e02510. [PMID: 24867642 PMCID: PMC4032493 DOI: 10.7554/elife.02510] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI:http://dx.doi.org/10.7554/eLife.02510.001 The rising and setting of the sun have long driven the schedules of humans and other mammals. This 24-hr cycle influences many behavioural and physiological changes, including alertness, body temperature, and sleep. A region in the brain acts as a master clock that regulates these daily cycles, which are called circadian rhythms. Signals from the brain's master clock turn on and off ‘core clock genes’ in cells, which trigger cycles that cause some proteins to be produced in a circadian rhythm. The rhythm is specialized to a particular tissue or organ, and may help them to carry out their designated daily tasks. However, circadian rhythms might also be produced in other ways that do not involve these genes. Messenger RNA (mRNA) molecules have a central role in the production of proteins, and in the mouse liver, up to 15% of mRNA molecules are produced in circadian cycles. The liver performs essential tasks that control metabolism–including that of carbohydrates, fats, and cholesterol. Precisely timing when certain mRNAs and proteins reach peaks and troughs in their activities to coincide with mealtimes is important for nutrients to be properly processed. Other RNA molecules called microRNAs influence how mRNA molecules are translated into proteins. Now Du, Arpat et al. have looked at the influence of microRNAs on circadian rhythms in the mouse liver in greater detail. These experiments, which involved ‘knocking out’ a gene that is essential for the production of microRNAs, show that rather than setting the mRNA rhythms, the microRNAs appear to adjust them to meet the specific needs of the liver. Targeting specific microRNA molecules may reveal new strategies to tweak these rhythms, which could help to improve conditions when metabolic functions go wrong. DOI:http://dx.doi.org/10.7554/eLife.02510.002
Collapse
Affiliation(s)
- Ngoc-Hien Du
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alaaddin Bulak Arpat
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mara De Matos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Chen X, Wang J, Cheng L, Lu MP. miR-18a downregulates DICER1 and promotes proliferation and metastasis of nasopharyngeal carcinoma. Int J Clin Exp Med 2014; 7:847-855. [PMID: 24955153 PMCID: PMC4057832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Nasopharyngeal carcinoma, common in Southeast Asia and the southern provinces of China, often has metastasized by the time of diagnosis; thus there exists the need for improved diagnosis and treatment. Accumulating evidence indicates that microRNAs (miRNAs), which post-transcriptionally regulate protein expression, contribute to the processes of tumorigenesis, including metastasis and cellular invasion. Here, we studied the effect of one miRNA, miR-18a-which is believed to target the miRNA-processing enzyme DICERl-on nasopharyngeal carcinoma. In situ hybridization revealed that miR-18a was more highly expressed in nasopharyngeal carcinoma tissues than in control tissues (P < 0.05), and the overexpression correlated with clinical stage and lymph node metastasis (P < 0.05), but not with age and gender (P > 0.05). In vitro analysis of HK1 nasopharyngeal carcinoma cells transfected with miR-18a exhibited significantly decreased expression of DICER1 mRNA and protein but significantly increased proliferation and invasion properties compared to control cells (P < 0.05). Finally, nude mice injected with miR-18a transfected-HK1 cells displayed significantly increased tumor growth and lung metastasis in vivo (P < 0.05). These findings suggest that miR-18a expression can promote proliferation and metastasis of nasopharyngeal carcinoma cells and that these activities may occur through its regulation of DICER1.
Collapse
Affiliation(s)
- Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical UniversityNanjing, China
| | - Juan Wang
- Department of Otorhinolaryngology, The Affiliated Jiangning Hospital of Nanjing Medical UniversityNanjing, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical UniversityNanjing, China
| | - Mei-Ping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical UniversityNanjing, China
| |
Collapse
|