1
|
Reciprocal positive effects on parasitemia between coinfecting haemosporidian parasites in house sparrows. BMC Ecol Evol 2022; 22:73. [PMID: 35655150 PMCID: PMC9164529 DOI: 10.1186/s12862-022-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hosts are often simultaneously infected with several parasite species. These co-infections can lead to within-host interactions of parasites, including mutualism and competition, which may affect both virulence and transmission. Birds are frequently co-infected with different haemosporidian parasites, but very little is known about if and how these parasites interact in natural host populations and what consequences there are for the infected hosts. We therefore set out to study Plasmodium and Haemoproteus parasites in house sparrows Passer domesticus with naturally acquired infections using a protocol where the parasitemia (infection intensity) is quantified by qPCR separately for the two parasites. We analysed infection status (presence/absence of the parasite) and parasitemia of parasites in the blood of both adult and juvenile house sparrows repeatedly over the season. RESULTS Haemoproteus passeris and Plasmodium relictum were the two dominating parasite species, found in 99% of the analyzed Sanger sequences. All birds were infected with both Plasmodium and Haemoproteus parasites during the study period. Seasonality explained infection status for both parasites in the adults: H. passeris was completely absent in the winter while P. relictum was present all year round. Among adults infected with H. passeris there was a positive effect of P. relictum parasitemia on H. passeris parasitemia and likewise among adults infected with P. relictum there was a positive effect of H. passeris parasitemia on P. relictum parasitemia. No such associations on parasitemia were seen in juvenile house sparrows. CONCLUSIONS The reciprocal positive relationships in parasitemia between P. relictum and H. passeris in adult house sparrows suggests either mutualistic interactions between these frequently occurring parasites or that there is variation in immune responses among house sparrow individuals, hence some individuals suppress the parasitemia of both parasites whereas other individuals suppress neither. Our detailed screening of haemosporidian parasites over the season shows that co-infections are very frequent in both juvenile and adult house sparrows, and since co-infections often have stronger negative effects on host fitness than the single infection, it is imperative to use screening systems with the ability to detect multiple parasites in ecological studies of host-parasite interactions.
Collapse
|
2
|
Minias P, He K, Dunn PO. The strength of selection is consistent across both domains of the MHC class I peptide-binding groove in birds. BMC Ecol Evol 2021; 21:80. [PMID: 33964878 PMCID: PMC8106206 DOI: 10.1186/s12862-021-01812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/28/2021] [Indexed: 02/26/2023] Open
Abstract
Background The Major Histocompatibility Complex (MHC) codes for the key vertebrate immune receptors responsible for pathogen recognition. Foreign antigens are recognized via their compatibility to hyper-variable region of the peptide-binding groove (PBR), which consists of two separate protein domains. Specifically, the PBR of the MHC class I receptors, which recognize intra-cellular pathogens, has two α domains encoded by exon 2 (α1) and exon 3 (α2) of the same gene. Most research on avian MHC class I polymorphism has traditionally focused exclusively on exon 3 and comparisons of selection between the two domains have been hampered by the scarcity of molecular data for exon 2. Thus, it is not clear whether the two domains vary in their specificity towards different antigens and whether they are subject to different selective pressure. Results Here, we took advantage of rapidly accumulating genomic resources to test for the differences in selection patterns between both MHC class I domains of the peptide-binding groove in birds. For this purpose, we compiled a dataset of MHC class I exon 2 and 3 sequences for 120 avian species from 46 families. Our phylogenetically-robust approach provided strong evidence for highly consistent levels of selection on the α1 and α2 domains. There were strong correlations in all selection measures (number of positively/negatively selected residues and dN/dS ratios) between both PBR exons. Similar positive associations were found for the level of amino acid polymorphism across the two domains. Conclusions We conclude that the strength of selection and the level of polymorphism are highly consistent between both peptide-binding domains (α1 and α2) of the avian MHC class I. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01812-x.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland.
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
3
|
Determinants of prevalence and co-infestation by ecto- and endoparasites in the Atlas day gecko, Quedenfeldtia trachyblepharus, an endemic species of Morocco. Parasitol Res 2021; 120:2543-2556. [PMID: 33748890 DOI: 10.1007/s00436-021-07120-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The present work was undertaken to investigate the occurrence of ectoparasites (mites and ticks) and endoparasites (haemogregarines and helminths) in the Atlas day gecko, Quedenfeldtia trachyblepharus (Boettger, 1874), a high-altitude Moroccan endemic lizard. The study examinated also the effect of some host parameters (age, sex, size, body condition), in addition to the season and altitude on the prevalence and intensity of parasite infestations. The study was conducted in three localities from May to September 2019. The results indicated that 35% of juvenile geckos were found to be parasited by one type of parasite. Contrarily, up to three types of parasites were detected in the adults. The prevalence of mite infestations was 48.02%, with a mean intensity of 11.80 ± 15.69. The patterns of mite infestations was found to be mainly related to the altitude, while the prevalence and intensity of infestations were linked to the host size, and to the sex and season, respectively. Larvae and nymphs of Ixodes ricinus (Linnaeus, 1758) were the only life stages infesting geckos, with a prevalence and mean intensity of infestations of 4.41% and 2.2 ± 1.48, respectively. The tick infestations observed were mainly related to the season. The prevalence and intensity of haemogregarine infections were, respectively, 7.92% and 0.24 ± 0.15. The altitude was found to be the only factor associated with this infection. This study also revealed the presence of one helminth genus, Spauligodon sp., with a prevalence and mean intensity of 12.33% and 1.46 ± 0.88, respectively. Spauligodon infestations was significantly associated with age, host size and altitude. This finding represents the first citation of this parasite in Quedenfeldtia genus. Our study indicated that there was no significant relationship between parasite load and geckos body condition, which suggested a stable interaction between the gecko and its parasites. However, it showed a difference of infection between the localities, which could be in relation with habitat conditions.
Collapse
|
4
|
De La Torre GM, Freitas FF, Fratoni RDO, Guaraldo ADC, Dutra DDA, Braga M, Manica LT. Hemoparasites and their relation to body condition and plumage coloration of the White-necked thrush (Turdus albicollis). ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1769739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Gabriel Massaccesi De La Torre
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
| | - Fernando Ferneda Freitas
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
- Programa de Pós-graduação em Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
| | - Rafael De Oliveira Fratoni
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
| | - André De Camargo Guaraldo
- Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Daniela De Angeli Dutra
- Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte 31270 901, Brazil
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 901, Brazil
| | - M. Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270 901, Brazil
| | - Lilian Tonelli Manica
- Laboratório de Ecologia Comportamental e Ornitologia, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba 81530 900, Brazil
| |
Collapse
|
5
|
Vlček J, Štefka J. Association between louse abundance and MHC II supertypes in Galápagos mockingbirds. Parasitol Res 2020; 119:1597-1605. [PMID: 32006226 DOI: 10.1007/s00436-020-06617-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
Major histocompatibility complex class II (MHC II) is an essential molecule triggering the adaptive immune response by the presentation of pathogens to helper T cells. The association between individual MHC II variants and various parasites has become a frequent finding in studies of vertebrate populations. However, although bird ectoparasites have a significant effect on their host's fitness, and the host's immune system can regulate ectoparasitic infections, no study has yet investigated the association between MHC II polymorphism and ectoparasite infection in the populations of free-living birds. Here, we test whether an association exists between the abundance of a chewing louse (Myrsidea nesomimi) and MHC II polymorphism of its hosts, the Galápagos mockingbirds (Mimus). We have found that the presence of two MHC II supertypes (functionally differentiated clusters) was significantly associated with louse abundance. This pattern supports the theory that a co-evolutionary interaction stands behind the maintenance of MHC polymorphism. Moreover, we have found a positive correlation between louse abundance and heterophil/lymphocyte ratio (an indicator of immunological stress) that serves as an additional piece of evidence that ectoparasite burden is affected by immunological state of Galápagos mockingbirds.
Collapse
Affiliation(s)
- Jakub Vlček
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic.
| | - Jan Štefka
- Institute of Parasitology, Biology Centre CAS, Branišovská 1160/31, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská, 1760, České Budějovice, Czech Republic
| |
Collapse
|
6
|
O'Connor EA, Westerdahl H, Burri R, Edwards SV. Avian MHC Evolution in the Era of Genomics: Phase 1.0. Cells 2019; 8:E1152. [PMID: 31561531 PMCID: PMC6829271 DOI: 10.3390/cells8101152] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Birds are a wonderfully diverse and accessible clade with an exceptional range of ecologies and behaviors, making the study of the avian major histocompatibility complex (MHC) of great interest. In the last 20 years, particularly with the advent of high-throughput sequencing, the avian MHC has been explored in great depth in several dimensions: its ability to explain ecological patterns in nature, such as mating preferences; its correlation with parasite resistance; and its structural evolution across the avian tree of life. Here, we review the latest pulse of avian MHC studies spurred by high-throughput sequencing. Despite high-throughput approaches to MHC studies, substantial areas remain in need of improvement with regard to our understanding of MHC structure, diversity, and evolution. Recent studies of the avian MHC have nonetheless revealed intriguing connections between MHC structure and life history traits, and highlight the advantages of long-term ecological studies for understanding the patterns of MHC variation in the wild. Given the exceptional diversity of birds, their accessibility, and the ease of sequencing their genomes, studies of avian MHC promise to improve our understanding of the many dimensions and consequences of MHC variation in nature. However, significant improvements in assembling complete MHC regions with long-read sequencing will be required for truly transformative studies.
Collapse
Affiliation(s)
| | | | - Reto Burri
- Department of Population Ecology, Institute of Ecology & Evolution, Friedrich Schiller University Jena, 07737 Jena, Germany.
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
7
|
Whittingham LA, Dunn PO, Freeman-Gallant CR, Taff CC, Johnson JA. Major histocompatibility complex variation and blood parasites in resident and migratory populations of the common yellowthroat. J Evol Biol 2018; 31:1544-1557. [DOI: 10.1111/jeb.13349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Linda A. Whittingham
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - Peter O. Dunn
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | | | - Conor C. Taff
- Cornell Laboratory of Ornithology; Cornell University; Ithaca NY USA
| | - Jeff A. Johnson
- Department of Biological Sciences; Institute of Applied Sciences; University of North Texas; Denton TX USA
| |
Collapse
|
8
|
Hoover B, Alcaide M, Jennings S, Sin SYW, Edwards SV, Nevitt GA. Ecology can inform genetics: Disassortative mating contributes to MHC polymorphism in Leach's storm-petrels (Oceanodroma leucorhoa). Mol Ecol 2018; 27:3371-3385. [PMID: 30010226 DOI: 10.1111/mec.14801] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 01/03/2023]
Abstract
Studies of MHC-based mate choice in wild populations often test hypotheses on species exhibiting female choice and male-male competition, which reflects the general prevalence of females as the choosy sex in natural systems. Here, we examined mutual mate-choice patterns in a small burrow-nesting seabird, the Leach's storm-petrel (Oceanodroma leucorhoa), using the major histocompatibility complex (MHC). The life history and ecology of this species are extreme: both partners work together to fledge a single chick during the breeding season, a task that requires regularly travelling hundreds of kilometres to and from foraging grounds over a 6- to 8-week provisioning period. Using a 5-year data set unprecedented for this species (n = 1078 adults and 925 chicks), we found a positive relationship between variation in the likelihood of female reproductive success and heterozygosity at Ocle-DAB2, a MHC class IIB locus. Contrary to previous reports rejecting disassortative mating as a mechanism for maintaining genetic polymorphism in this species, here we show that males make significant disassortative mate-choice decisions. Variability in female reproductive success suggests that the most common homozygous females (Ocle-DAB2*01/Ocle-DAB2*01) may be physiologically disadvantaged and, therefore, less preferred as lifelong partners for choosy males. The results from this study support the role of mate choice in maintaining high levels of MHC variability in a wild seabird species and highlight the need to incorporate a broader ecological framework and sufficient sample sizes into studies of MHC-based mating patterns in wild populations in general.
Collapse
Affiliation(s)
- Brian Hoover
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Miguel Alcaide
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sarah Jennings
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Simon Yung Wa Sin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Gabrielle A Nevitt
- Graduate Group in Ecology, University of California, Davis, California
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| |
Collapse
|
9
|
Budischak SA, Wiria AE, Hamid F, Wammes LJ, Kaisar MMM, van Lieshout L, Sartono E, Supali T, Yazdanbakhsh M, Graham AL. Competing for blood: the ecology of parasite resource competition in human malaria-helminth co-infections. Ecol Lett 2018; 21:536-545. [DOI: 10.1111/ele.12919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/14/2017] [Accepted: 01/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Sarah A. Budischak
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| | - Aprilianto E. Wiria
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Firdaus Hamid
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Microbiology; Faculty of Medicine; Hasanuddin University; Makassar Indonesia
| | - Linda J. Wammes
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Medical Microbiology; Erasmus MC; Rotterdam The Netherlands
| | - Maria M. M. Kaisar
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Lisette van Lieshout
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Erliyani Sartono
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Taniawati Supali
- Department of Parasitology; Faculty of Medicine; Universitas Indonesia; Jakarta Indonesia
| | - Maria Yazdanbakhsh
- Department of Parasitology; Leiden University Medical Center; Leiden The Netherlands
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology; Princeton University; Princeton NJ USA
| |
Collapse
|
10
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
11
|
Lukasch B, Westerdahl H, Strandh M, Winkler H, Moodley Y, Knauer F, Hoi H. Genes of the major histocompatibility complex highlight interactions of the innate and adaptive immune system. PeerJ 2017; 5:e3679. [PMID: 28875066 PMCID: PMC5581531 DOI: 10.7717/peerj.3679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/22/2017] [Indexed: 11/20/2022] Open
Abstract
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Collapse
Affiliation(s)
- Barbara Lukasch
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Helena Westerdahl
- Department of Biology, Molecular Ecology & Evolution Lab, Lund University, Lund, Sweden
| | - Maria Strandh
- Department of Biology, Molecular Ecology & Evolution Lab, Lund University, Lund, Sweden
| | - Hans Winkler
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Yoshan Moodley
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria.,Department of Zoology, University of Venda, Thohoyandou, Republic of South Africa
| | - Felix Knauer
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Department of Integrative Biology and Evolution, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
12
|
Gonzalez-Quevedo C, Davies RG, Phillips KP, Spurgin LG, Richardson DS. Landscape-scale variation in an anthropogenic factor shapes immune gene variation within a wild population. Mol Ecol 2016; 25:4234-46. [PMID: 27411090 DOI: 10.1111/mec.13759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 02/03/2023]
Abstract
Understanding the spatial scale at which selection acts upon adaptive genetic variation in natural populations is fundamental to our understanding of evolutionary ecology, and has important ramifications for conservation. The environmental factors to which individuals of a population are exposed can vary at fine spatial scales, potentially generating localized patterns of adaptation. Here, we compared patterns of neutral and major histocompatibility complex (MHC) variation within an island population of Berthelot's pipit (Anthus berthelotii) to assess whether landscape-level differences in pathogen-mediated selection generate fine-scale spatial structuring in these immune genes. Specifically, we tested for spatial associations between the distribution of avian malaria, and the factors previously shown to influence that distribution, and MHC variation within resident individuals. Although we found no overall genetic structure across the population for either neutral or MHC loci, we did find localized associations between environmental factors and MHC variation. One MHC class I allele (ANBE48) was directly associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles within individuals correlated (positively and negatively, respectively) with distance to the nearest poultry farm, an anthropogenic factor previously shown to be an important determinant of disease distribution in the study population. Our findings highlight the importance of considering small spatial scales when studying the patterns and processes involved in evolution at adaptive loci.
Collapse
Affiliation(s)
- Catalina Gonzalez-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Richard G Davies
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Karl P Phillips
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Lei W, Zhou X, Fang W, Lin Q, Chen X. Major histocompatibility complex class II DAB alleles associated with intestinal parasite load in the vulnerable Chinese egret (Egretta eulophotes). Ecol Evol 2016; 6:4421-34. [PMID: 27386085 PMCID: PMC4930990 DOI: 10.1002/ece3.2226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 11/09/2022] Open
Abstract
The maintenance of major histocompatibility complex (MHC) polymorphism has been hypothesized to result from many mechanisms such as rare-allele advantage, heterozygote advantage, and allele counting. In the study reported herein, 224 vulnerable Chinese egrets (Egretta eulophotes) were used to examine these hypotheses as empirical results derived from bird studies are rare. Parasite survey showed that 147 (65.63%) individuals were infected with 1-3 helminths, and 82.31% of these infected individuals carried Ascaridia sp. Using asymmetric polymerase chain reaction technique, 10 DAB1, twelve DAB2, and three DAB3 exon 2 alleles were identified at each single locus. A significant association of the rare allele Egeu-DAB2*05 (allele frequency: 0.022) with helminth resistance was found for all helminths, as well as for the most abundant morphotype Ascaridia sp. in the separate analyses. Egeu-DAB2*05 occurred frequently in uninfected individuals, and individuals carrying Egeu-DAB2*05 had significantly lower helminth morphotypes per individual (HMI) (the number of HMI) and the fecal egg count values. Further, the parasite infection measurements were consistently lower in individuals with an intermediate number of different alleles in the duplicated DAB loci. Significantly, heterozygosity within each DAB locus was not correlated with any parasite infection measurements. These results indicate that the diversity in MHC Egeu-DAB gene is associated with intestinal parasite load and maintained by pathogen-driven selection that probably operate through both the rare-allele advantage and the allele counting strategy, and suggest that Egeu-DAB2*05 might be a valuable indicator of better resistance to helminth diseases in the vulnerable Chinese egret.
Collapse
Affiliation(s)
- Wei Lei
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaoping Zhou
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Wenzhen Fang
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Qingxian Lin
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Xiaolin Chen
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| |
Collapse
|
14
|
Lauron EJ, Oakgrove KS, Tell LA, Biskar K, Roy SW, Sehgal RNM. Transcriptome sequencing and analysis of Plasmodium gallinaceum reveals polymorphisms and selection on the apical membrane antigen-1. Malar J 2014; 13:382. [PMID: 25261185 PMCID: PMC4182871 DOI: 10.1186/1475-2875-13-382] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/17/2014] [Indexed: 11/15/2022] Open
Abstract
Background Plasmodium erythrocyte invasion genes play a key role in malaria parasite transmission, host-specificity and immuno-evasion. However, the evolution of the genes responsible remains understudied. Investigating these genes in avian malaria parasites, where diversity is particularly high, offers new insights into the processes that confer malaria pathogenesis. These parasites can pose a significant threat to birds and since birds play crucial ecological roles they serve as important models for disease dynamics. Comprehensive knowledge of the genetic factors involved in avian malaria parasite invasion is lacking and has been hampered by difficulties in obtaining nuclear data from avian malaria parasites. Thus the first Illumina-based de novo transcriptome sequencing and analysis of the chicken parasite Plasmodium gallinaceum was performed to assess the evolution of essential Plasmodium genes. Methods White leghorn chickens were inoculated intravenously with erythrocytes containing P. gallinaceum. cDNA libraries were prepared from RNA extracts collected from infected chick blood and sequencing was run on the HiSeq2000 platform. Orthologues identified by transcriptome sequencing were characterized using phylogenetic, ab initio protein modelling and comparative and population-based methods. Results Analysis of the transcriptome identified several orthologues required for intra-erythrocytic survival and erythrocyte invasion, including the rhoptry neck protein 2 (RON2) and the apical membrane antigen-1 (AMA-1). Ama-1 of avian malaria parasites exhibits high levels of genetic diversity and evolves under positive diversifying selection, ostensibly due to protective host immune responses. Conclusion Erythrocyte invasion by Plasmodium parasites require AMA-1 and RON2 interactions. AMA-1 and RON2 of P. gallinaceum are evolutionarily and structurally conserved, suggesting that these proteins may play essential roles for avian malaria parasites to invade host erythrocytes. In addition, host-driven selection presumably results in the high levels of genetic variation found in ama-1 of avian Plasmodium species. These findings have implications for investigating avian malaria epidemiology and population dynamics. Moreover, this work highlights the P. gallinaceum transcriptome as an important public resource for investigating the diversity and evolution of essential Plasmodium genes. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-382) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elvin J Lauron
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Winternitz JC, Wares JP, Yabsley MJ, Altizer S. Wild cyclic voles maintain high neutral and MHC diversity without strong evidence for parasite-mediated selection. Evol Ecol 2014. [DOI: 10.1007/s10682-014-9709-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Maia JP, Harris DJ, Carranza S, Gómez-Díaz E. A comparison of multiple methods for estimating parasitemia of hemogregarine hemoparasites (apicomplexa: adeleorina) and its application for studying infection in natural populations. PLoS One 2014; 9:e95010. [PMID: 24743340 PMCID: PMC3990604 DOI: 10.1371/journal.pone.0095010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Identifying factors influencing infection patterns among hosts is critical for our understanding of the evolution and impact of parasitism in natural populations. However, the correct estimation of infection parameters depends on the performance of detection and quantification methods. In this study, we designed a quantitative PCR (qPCR) assay targeting the 18 S rRNA gene to estimate prevalence and intensity of Hepatozoon infection and compared its performance with microscopy and PCR. Using qPCR, we also compared various protocols that differ in the biological source and the extraction methods. Our results show that the qPCR approach on DNA extracted from blood samples, regardless of the extraction protocol, provided the most sensitive estimates of Hepatozoon infection parameters; while allowed us to differentiate between mixed infections of Adeleorinid (Hepatozoon) and Eimeriorinid (Schellackia and Lankesterella), based on the analysis of melting curves. We also show that tissue and saline methods can be used as low-cost alternatives in parasitological studies. The next step was to test our qPCR assay in a biological context, and for this purpose we investigated infection patterns between two sympatric lacertid species, which are naturally infected with apicomplexan hemoparasites, such as the genera Schellackia (Eimeriorina) and Hepatozoon (Adeleorina). From a biological standpoint, we found a positive correlation between Hepatozoon intensity of infection and host body size within each host species, being significantly higher in males, and higher in the smaller sized host species. These variations can be associated with a number of host intrinsic factors, like hormonal and immunological traits, that require further investigation. Our findings are relevant as they pinpoint the importance of accounting for methodological issues to better estimate infection in parasitological studies, and illustrate how between-host factors can influence parasite distributions in sympatric natural populations.
Collapse
Affiliation(s)
- João P. Maia
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Vila do Conde, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- * E-mail: (JPM); (EGD)
| | - D. James Harris
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Vairão, Vila do Conde, Portugal
| | - Salvador Carranza
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Elena Gómez-Díaz
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- * E-mail: (JPM); (EGD)
| |
Collapse
|