1
|
León-Morán LO, Pastor-Belda M, Viñas P, Arroyo-Manzanares N, García MD, Arnaldos MI, Campillo N. Discrimination of Diptera order insects based on their saturated cuticular hydrocarbon content using a new microextraction procedure and chromatographic analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2938-2947. [PMID: 38668806 DOI: 10.1039/d4ay00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The nature and proportions of hydrocarbons in the cuticle of insects are characteristic of the species and age. Chemical analysis of cuticular hydrocarbons allows species discrimination, which is of great interest in the forensic field, where insects play a crucial role in estimating the minimum post-mortem interval. The objective of this work was the differentiation of Diptera order insects through their saturated cuticular hydrocarbon compositions (SCHCs). For this, specimens fixed in 70 : 30 ethanol : water, as recommended by the European Association for Forensic Entomology, were submitted to solid-liquid extraction followed by dispersive liquid-liquid microextraction, providing preconcentration factors up to 76 for the SCHCs. The final organic extract was analysed by gas chromatography coupled with flame ionization detection (GC-FID), and GC coupled with mass spectrometry was applied to confirm the identity of the SCHCs. The analysed samples contained linear alkanes with the number of carbon atoms in the C9-C15 and C18-C36 ranges with concentrations between 0.1 and 125 ng g-1. Chrysomya albiceps (in its larval stage) showed the highest number of analytes detected, with 21 compounds, while Lucilia sericata and Calliphora vicina the lowest, with only 3 alkanes. Non-supervised principal component analysis and supervised orthogonal partial least squares discriminant analysis were performed and an optimal model to differentiate specimens according to their species was obtained. In addition, statistically significant differences were observed in the concentrations of certain SCHCs within the same species depending on the stage of development or the growth pattern of the insect.
Collapse
Affiliation(s)
- L O León-Morán
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| | - M Pastor-Belda
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - P Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - N Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - M D García
- Department of Zoology and Physical Anthropology, Faculty de Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - M I Arnaldos
- Department of Zoology and Physical Anthropology, Faculty de Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - N Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
- External Service of Forensic Sciences and Techniques (SECyTeF), Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| |
Collapse
|
2
|
Ngando FJ, Zhang X, Qu H, Xiao J, Ren L, Yang F, Feng Y, Shang Y, Chen S, Zhang C, Guo Y. Age determination of Chrysomya megacephala (Diptera: Calliphoridae) using lifespan patterns, gene expression, and pteridine concentration under constant and variable temperatures. Forensic Sci Int 2024; 354:111916. [PMID: 38141350 DOI: 10.1016/j.forsciint.2023.111916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae), is a blowfly species widely studied in medical, veterinary, and entomological research. Our study examined the impact of constant (15, 20, 25, 30, and 35 °C) and variable (ranging from 21.0 to 25.4 °C, with an average of 23.31 °C) temperatures on the development and larval body length of C. megacephala. Additionally, we analyzed the age of the adult C. megacephala through pteridine content and related metabolic genes analysis. Our findings revealed three distinct growth patterns: isomorphen diagram, isomegalen diagram, and thermal accumulated models. At constant temperatures of 15, 20, 25, 30, and 35 °C, egg-hatching times were 44.5 ± 8.9, 26.7 ± 4.6, 12.6 ± 1.1, 11.0 ± 1.0, and 9.9 ± 1.9 h, respectively, while it was 15.3 ± 5.9 h at variable temperatures. The total development times from oviposition to adult eclosion in C. megacephala required 858.1 ± 69.2, 362.3 ± 5.9, 289.6 ± 17.8, 207.3 ± 9.3, and 184.7 ± 12.1 h at constant temperatures of 15, 20, 25, 30, and 35 °C, respectively. This duration was extended to 282.0 ± 64.1 h under variable temperatures. However, no significant differences were found in hatching times and the total developmental durations between 25 °C and variable temperatures. A developmental threshold temperature (D0) of 9.90 ± 0.77 °C and a thermal summation constant (K) of 4244.0 ± 347.0° hours were ascertained. Pteridine content patterns varied significantly across constant temperatures, but not between 25 °C and variable temperatures. Sex and temperature were identified as the primary factors influencing pteridine levels in the head of C. megacephala. Gene expression associated with pteridine metabolism decreased following adult eclosion, matching with increased pteridine concentration. Further investigations are needed to explore the use of pteridine cofactors for age-grading adult necrophagous flies. These findings provide valuable insights into the lifespan of C. megacephala, thereby offering valuable groundwork for forthcoming investigations and PMImin determination.
Collapse
Affiliation(s)
- Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Hongke Qu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jiao Xiao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yakai Feng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Sile Chen
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
3
|
Zhang X, Bai Y, Ngando FJ, Qu H, Shang Y, Ren L, Guo Y. Predicting the Weathering Time by the Empty Puparium of Sarcophaga peregrina (Diptera: Sarcophagidae) with the ANN Models. INSECTS 2022; 13:insects13090808. [PMID: 36135509 PMCID: PMC9502838 DOI: 10.3390/insects13090808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/01/2023]
Abstract
Empty puparium are frequently collected at crime scenes and may provide valuable evidence in cases with a long postmortem interval (PMI). Here, we collected the puparium of Sarcophaga peregrina (Diptera: Sarcophagidae) (Robineau-Desvoidy, 1830) for 120 days at three temperatures (10 °C, 25 °C, and 40 °C) with the aim to estimate the weathering time of empty puparium. The CHC profiles were analyzed by gas chromatography-mass spectrometry (GC-MS). The partial least squares (PLS), support vector regression (SVR), and artificial neural network (ANN) models were used to estimate the weathering time. This identified 49 CHCs with a carbon chain length between 10 and 33 in empty puparium. The three models demonstrate that the variation tendency of hydrocarbon could be used to estimate the weathering time, while the ANN models show the best predictive ability among these three models. This work indicated that puparial hydrocarbon weathering has certain regularity with weathering time and can gain insight into estimating PMI in forensic investigations.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yang Bai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fernand Jocelin Ngando
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Hongke Qu
- School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
4
|
Moore H, Lutz L, Bernhardt V, Drijfhout FP, Cody RB, Amendt J. Cuticular hydrocarbons for the identification and geographic assignment of empty puparia of forensically important flies. Int J Legal Med 2022; 136:1791-1800. [PMID: 35217906 PMCID: PMC9576650 DOI: 10.1007/s00414-022-02786-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/21/2022] [Indexed: 11/29/2022]
Abstract
Research in social insects has shown that hydrocarbons on their cuticle are species-specific. This has also been proven for Diptera and is a promising tool for identifying important fly taxa in Forensic Entomology. Sometimes the empty puparia, in which the metamorphosis to the adult fly has taken place, can be the most useful entomological evidence at the crime scene. However, so far, they are used with little profit in criminal investigations due to the difficulties of reliably discriminate among different species. We analysed the CHC chemical profiles of empty puparia from seven forensically important blow flies Calliphora vicina, Chrysomya albiceps, Lucilia caesar, Lucilia sericata, Lucilia silvarum, Protophormia terraenovae, Phormia regina and the flesh fly Sarcophaga caerulescens. The aim was to use their profiles for identification but also investigate geographical differences by comparing profiles of the same species (here: C. vicina and L. sericata) from different regions. The cuticular hydrocarbons were extracted with hexane and analysed using gas chromatography-mass spectrometry. Our results reveal distinguishing differences within the cuticular hydrocarbon profiles allowing for identification of all analysed species. There were also differences shown in the profiles of C. vicina from Germany, Spain, Norway and England, indicating that geographical locations can be determined from this chemical analysis. Differences in L. sericata, sampled from England and two locations in Germany, were less pronounced, but there was even some indication that it may be possible to distinguish populations within Germany that are about 70 km apart from one another.
Collapse
Affiliation(s)
- Hannah Moore
- Defence Academy of the United Kingdom, Cranfield Forensic Institute, Cranfield University, Shrivenham, Wiltshire, SN6 8LA, UK.
| | - Lena Lutz
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Victoria Bernhardt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Falko P Drijfhout
- School of Physical and Geographical Sciences, Keele University, Staffordshire, ST5 5BG, UK
| | - Robert B Cody
- JEOL USA, Inc. 11 Dearborn Rd, Peabody, MA, 01969, USA
| | - Jens Amendt
- Institute of Legal Medicine, Forensic Biology, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Zhang X, Shang Y, Ren L, Qu H, Zhu G, Guo Y. A Study of Cuticular Hydrocarbons of All Life Stages in Sarcophaga peregrina (Diptera: Sarcophagidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:108-119. [PMID: 34668022 DOI: 10.1093/jme/tjab172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830), a synanthropic flesh fly species found in different parts of the world, is of medical and forensic importance. Traditional methods of inferring developmental age rely on the life stage of insects and morphological changes. However, once the larvae reach the pupal and adult stage, morphological changes would become barely visible, so that the classic method would be invalid. Here, we studied the cuticular hydrocarbon profile of S. peregrina of the whole life cycle from larval stage to adult stage by GC-MS. Sixty-three compounds with carbon chain length ranging from 8 to 36 were detected, which could be categorized into four classes: n-alkanes, branched alkanes, alkenes, and unknowns. As developmental increased, branched alkanes dominant, and the content of high-molecular-weight hydrocarbons is variable, especially for 2-methyl C19, DiMethyl C21, docosane (C22), and tricosane (C23). This study shows that the composition of CHC could be used to determine the developmental age of S. peregrina and aid in postmortem interval estimations in forensic science.
Collapse
Affiliation(s)
- Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hongke Qu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Guanghui Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
7
|
Time Flies-Age Grading of Adult Flies for the Estimation of the Post-Mortem Interval. Diagnostics (Basel) 2021; 11:diagnostics11020152. [PMID: 33494172 PMCID: PMC7909779 DOI: 10.3390/diagnostics11020152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/16/2022] Open
Abstract
The estimation of the minimum time since death is one of the main applications of forensic entomology. This can be done by calculating the age of the immature stage of necrophagous flies developing on the corpse, which is confined to approximately 2–4 weeks, depending on temperature and species of the first colonizing wave of flies. Adding the age of the adult flies developed on the dead body could extend this time frame up to several weeks when the body is in a building or closed premise. However, the techniques for accurately estimating the age of adult flies are still in their beginning stages or not sufficiently validated. Here we review the current state of the art of analysing the aging of flies by evaluating the ovarian development, the amount of pteridine in the eyes, the degree of wing damage, the modification of their cuticular hydrocarbon patterns, and the increasing number of growth layers in the cuticula. New approaches, including the use of age specific molecular profiles based on the levels of gene and protein expression and the application of near infrared spectroscopy, are introduced, and the forensic relevance of these methods is discussed.
Collapse
|
8
|
The optimal post-eclosion interval while estimating the post-mortem interval based on an empty puparium. Forensic Sci Med Pathol 2020; 17:192-198. [PMID: 33165806 PMCID: PMC8119268 DOI: 10.1007/s12024-020-00328-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 01/26/2023]
Abstract
The puparium is the hardened exoskeleton of the last larval instar of a fly, inside which a prepupa, a pupa and a pharate adult fly successively develop. Empty puparia are frequently collected at death scenes, especially in cases with a long post mortem interval (PMI). Although we are not able to estimate the interval between the eclosion of an adult fly and the collection of an empty puparium (i.e. the post-eclosion interval (PEI)), empty puparia may still provide valuable evidence about the minimum PMI. However, because of the unknown PEI, it is impossible to determine the time when the fly emerged, and thus when the retrospective calculation of the minimum PMI should start. In this study, the estimation of PMI (or minimum PMI) for empty puparia of Protophormia terraenovae Rob.-Desv. (Calliphoridae) and Stearibia nigriceps Meig. (Piophilidae) was simulated, to gain insight into the changes in estimates, when different PEIs and different temperature conditions were assumed. The simulations showed that the PEI (in a range of 0–90 days) had no effect on the PMI (or minimum PMI) when the puparium was collected in winter or early spring (December–April). In late spring, summer, or autumn (May–November) the PMI (or minimum PMI) increased with the PEI. The increase in PMI was large in the summer months, and surprisingly small in the autumn months, frequently smaller than the PEI used in the estimation. The shortest PMI was always obtained with a PEI of 0, indicating that the true minimum PMI is always estimated using a PEI of 0. When the puparium was collected during spring, simulations indicated that oviposition had occurred in the previous year, while in summer the previous-year oviposition has been indicated by the simulations only when longer PEIs had been assumed. These findings should guide estimation of the PMI (or minimum PMI) based on an empty puparium.
Collapse
|
9
|
Lunas BM, de Paula MC, Michelutti KB, Lima-Junior SE, Antonialli-Junior WF, Cardoso CAL. Hydrocarbon and Fatty Acid Composition from Blowfly Eggs Represents a Potential Complementary Taxonomic Tool of Forensic Importance. J Forensic Sci 2019; 64:1720-1725. [PMID: 31674674 DOI: 10.1111/1556-4029.14119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 11/28/2022]
Abstract
One of the most important contributions of forensic entomology is to assist criminal expertise to determine the postmortem interval, which depends on the duration of the immature stages of insects of forensic interest. On the other hand, the time of development of the different stages varies according to the species; therefore, its identification is essential. Currently, few studies have investigated the use of cuticular hydrocarbons, and none regarding fatty acids, as complementary taxonomic tools to expedite species identification. Therefore, we evaluated whether cuticular hydrocarbons together with fatty acids of eggs of flies of the family Calliphoridae, main group of forensic interest, can be used to distinguish species. The analyses were performed by chromatographic techniques. The results show that there are significant differences between the composition of cuticular hydrocarbons and fatty acids between species and, therefore, they can be used to provide a complementary taxonomic tool to expedite the forensic expertise.
Collapse
Affiliation(s)
- Belisa M Lunas
- Programa de Pós Graduação em Química, Universidade Federal da Grande Dourados, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| | - Michele C de Paula
- Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil.,Centro de Estudos em Recursos Naturais (CERNA), Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| | - Kamylla B Michelutti
- Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| | - Sidnei E Lima-Junior
- Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil.,Centro de Estudos em Recursos Naturais (CERNA), Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| | - William F Antonialli-Junior
- Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil.,Centro de Estudos em Recursos Naturais (CERNA), Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| | - Claudia A L Cardoso
- Programa de Pós Graduação em Química, Universidade Federal da Grande Dourados, Dourados, 79804-970, Mato Grosso do Sul, Brazil.,Centro de Estudos em Recursos Naturais (CERNA), Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil.,Centro de Estudos em Recursos Naturais (CERNA), Programa de Pós-Graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, 79804-970, Mato Grosso do Sul, Brazil
| |
Collapse
|
10
|
Paula MC, Michelutti KB, Eulalio ADMM, Piva RC, Cardoso CAL, Antonialli-Junior WF. New method for estimating the post-mortem interval using the chemical composition of different generations of empty puparia: Indoor cases. PLoS One 2018; 13:e0209776. [PMID: 30571776 PMCID: PMC6301778 DOI: 10.1371/journal.pone.0209776] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/11/2018] [Indexed: 11/21/2022] Open
Abstract
Most flies of forensic importance are in two superfamilies, the Muscoidea and the Oestroidea, with similar life stages including the puparium. Upon completion of metamorphosis the adult fly emerges from the puparium, leaving behind an exuvia that is of potential significance in forensic investigation. The empty puparium is a durable piece of entomological evidence lasting several years. Through the study of chemical compounds, specifically the hydrocarbons of these puparia, it is possible to identify the species, in addition to how long they have been exposed to weathering and for this reason, these parameters can assist forensic entomologists in estimating long-term postmortem interval (minPMI). In corpses that take a relatively longer time to decompose, insects may use the same corpses for several oviposition cycles. Therefore, the aim of this study was to develop a new method to determine the PMI based on chemical compounds of the puparia from different oviposition cycles of the fly Chrysomya megacephala. The chemical composition of 50 puparia from different cycles of oviposition were evaluated by Gas Chromatography–Mass Spectrometry (GC-MS). In total, 60 compounds were identified ranging from C18 to C34, 38 of those were common to all generations. Our results demonstrate that chemical profiles can be used to differentiate puparia collected from successive cycles, and therefore valuable in the estimation of minPMI.
Collapse
Affiliation(s)
- Michele C. Paula
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
- * E-mail:
| | - Kamylla B. Michelutti
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
| | - Aylson D. M. M. Eulalio
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Raul C. Piva
- Programa de Pós-graduação em Química, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Claudia A. L. Cardoso
- Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Química, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - William F. Antonialli-Junior
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
- Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
- Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
11
|
Badenhorst R, Villet MH. The uses of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) in forensic entomology. Forensic Sci Res 2018; 3:2-15. [PMID: 30483647 PMCID: PMC6197084 DOI: 10.1080/20961790.2018.1426136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
Chrysomya megacephala (Fabricius, 1794) occurs on every continent and is closely associated with carrion and decaying material in human environments. Its abilities to find dead bodies and carry pathogens give it a prominence in human affairs that may involve prosecution or litigation, and therefore forensic entomologists. The identification, geographical distribution and biology of the species are reviewed to provide a background for approaches that four branches of forensic entomology (urban, stored-product, medico-criminal and environmental) might take to investigations involving this fly.
Collapse
Affiliation(s)
- Rozane Badenhorst
- Southern African Forensic Entomology Research Laboratory, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Martin H. Villet
- Southern African Forensic Entomology Research Laboratory, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
12
|
Same, same but different!—matching entomological traces to a human food source by stable isotope analysis. Int J Legal Med 2017; 132:915-921. [PMID: 29189911 DOI: 10.1007/s00414-017-1753-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
13
|
Zhu GH, Jia ZJ, Yu XJ, Wu KS, Chen LS, Lv JY, Eric Benbow M. Predictable weathering of puparial hydrocarbons of necrophagous flies for determining the postmortem interval: a field experiment using Chrysomya rufifacies. Int J Legal Med 2017; 131:885-894. [PMID: 28058571 DOI: 10.1007/s00414-016-1507-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/28/2016] [Indexed: 02/05/2023]
Abstract
Preadult development of necrophagous flies is commonly recognized as an accurate method for estimating the minimum postmortem interval (PMImin). However, once the PMImin exceeds the duration of preadult development, the method is less accurate. Recently, fly puparial hydrocarbons were found to significantly change with weathering time in the field, indicating their potential use for PMImin estimates. However, additional studies are required to demonstrate how the weathering varies among species. In this study, the puparia of Chrysomya rufifacies were placed in the field to experience natural weathering to characterize hydrocarbon composition change over time. We found that weathering of the puparial hydrocarbons was regular and highly predictable in the field. For most of the hydrocarbons, the abundance decreased significantly and could be modeled using a modified exponent function. In addition, the weathering rate was significantly correlated with the hydrocarbon classes. The weathering rate of 2-methyl alkanes was significantly lower than that of alkenes and internal methyl alkanes, and alkenes were higher than the other two classes. For mono-methyl alkanes, the rate was significantly and positively associated with carbon chain length and branch position. These results indicate that puparial hydrocarbon weathering is highly predictable and can be used for estimating long-term PMImin.
Collapse
Affiliation(s)
- Guang-Hui Zhu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Zheng-Jun Jia
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Department of Criminal Science and Technology, People's Public Security University of China, Beijing, 10038, China
| | - Xiao-Jun Yu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Ku-Sheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Lu-Shi Chen
- Guizhou Police Officer Vocational College, Guiyang, Guizhou, 550005, China
| | - Jun-Yao Lv
- Department of Forensic Medicine, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Olekšáková T, Žurovcová M, Klimešová V, Barták M, Šuláková H. DNA extraction and barcode identification of development stages of forensically important flies in the Czech Republic. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:427-430. [PMID: 28325121 DOI: 10.1080/24701394.2017.1298102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several methods of DNA extraction, coupled with 'DNA barcoding' species identification, were compared using specimens from early developmental stages of forensically important flies from the Calliphoridae and Sarcophagidae families. DNA was extracted at three immature stages - eggs, the first instar larvae, and empty pupal cases (puparia) - using four different extraction methods, namely, one simple 'homemade' extraction buffer protocol and three commercial kits. The extraction conditions, including the amount of proteinase K and incubation times, were optimized. The simple extraction buffer method was successful for half of the eggs and for the first instar larval samples. The DNA Lego Kit and DEP-25 DNA Extraction Kit were useful for DNA extractions from the first instar larvae samples, and the DNA Lego Kit was also successful regarding the extraction from eggs. The QIAamp DNA mini kit was the most effective; the extraction was successful with regard to all sample types - eggs, larvae, and pupari.
Collapse
Affiliation(s)
- Tereza Olekšáková
- a Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources , Czech University of Life Sciences , Praha , Czech Republic
| | - Martina Žurovcová
- b Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic , České Budějovice , Czech Republic
| | - Vanda Klimešová
- a Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources , Czech University of Life Sciences , Praha , Czech Republic
| | - Miroslav Barták
- a Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources , Czech University of Life Sciences , Praha , Czech Republic
| | - Hana Šuláková
- c Police of the Czech Republic , Institute of Criminalistics Prague , Prague , Czech Republic
| |
Collapse
|
15
|
Braga MV, Pinto ZT, Queiroz MMDC, Blomquist GJ. Effect of age on cuticular hydrocarbon profiles in adult Chrysomya putoria (Diptera: Calliphoridae). Forensic Sci Int 2016; 259:e37-47. [PMID: 26775199 PMCID: PMC5295841 DOI: 10.1016/j.forsciint.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 11/27/2022]
Abstract
A species-specific complex mixture of highly stable cuticular hydrocarbons (CHCs) covers the external surface of all insects. Components can be readily analyzed by gas chromatography coupled to mass spectrometry (GC-MS) to obtain a cuticular hydrocarbon profile, which may be used as an additional tool for the taxonomic differentiation of insect species and also for the determination of the age and sex of adult and immature forms. We used GC-MS to identify and quantify the CHCs of female and male Chrysomya putoria (Wiedemann, 1818) (Diptera: Calliphoridae) from one to five days old. CHCs ranged from C21 to C35 for females and from C21 to C37 in males. Major compounds were the same for both sexes and were 2-MeC28, C29:1, n-C29, 15-,13-MeC29, 2-MeC30, C31:1, n-C31 and 15-,13-MeC31. The relative abundance of each component, however, varied with age. Cluster Analysis using Bray-Curtis measure for abundance showed that cuticular hydrocarbon profiles are a strong and useful tool for the determination of age in adult C. putoria.
Collapse
Affiliation(s)
- Marina Vianna Braga
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Herman Lent, sala 14, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil.
| | - Zeneida Teixeira Pinto
- Laboratório de Educação Ambiental e em Saúde, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Lauro Travassos, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil.
| | - Margareth Maria de Carvalho Queiroz
- Laboratório de Entomologia Médica e Forense, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Pav. Herman Lent, sala 14, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil; Mestrado Profissional em Ciências Ambientais, Universidade Severino Sombra, Av. Expedicionário Oswaldo de Almeida Ramos, 280, Vassouras, RJ 27700-000, Brazil.
| | - Gary James Blomquist
- Department of Biochemistry and Molecular Biology, CABNR, University of Nevada, Reno, MS330, 1664 North Virginia St, Office 162/145 Howard Medical Building, Reno, NV, USA.
| |
Collapse
|