1
|
Sánchez-Martín V, Morales P, Iriondo-DeHond A, Hospital XF, Fernández M, Hierro E, Haza AI. Differential Apoptotic Effects of Bee Product Mixtures on Normal and Cancer Hepatic Cells. Antioxidants (Basel) 2023; 12:615. [PMID: 36978864 PMCID: PMC10045410 DOI: 10.3390/antiox12030615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Most effective anticancer drugs normally generate considerable cytotoxicity in normal cells; therefore, the preferential activation of apoptosis in cancer cells and the reduction of toxicity in normal cells is a great challenge in cancer research. Natural products with selective anticancer properties used as complementary medicine can help to achieve this goal. The aim of the present study was to analyze the effect of the addition of bee products [propolis (PR) or royal jelly (RJ) or propolis and royal jelly (PR+RJ), 2-10%] to thyme (TH) and chestnut honeys (CH) on the differential anticancer properties, mainly the cytotoxic and pro-apoptotic effects, in normal and cancer hepatic cells. The cytotoxic effects of samples were analyzed using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay (0-250 mg/mL) and the effects on apoptosis were analyzed using cell cycle analysis, TdT-dUTP terminal nick-end labeling (TUNEL) assay, DR5 (Death Receptor 5) and BAX (BCL-2-Associated X) activation, and caspases 8, 9, and 3 activities. Both honey samples alone and honey mixtures had no or very little apoptotic effect on normal cells. Antioxidant honey mixtures enhanced the apoptotic capacity of the corresponding honey alone via both extrinsic and intrinsic pathways. Of all the samples, chestnut honey enriched with 10% royal jelly and 10% propolis (sample 14, CH+10RJ+10PR) showed the highest apoptotic effect on tumor liver cells. The enrichment of monofloral honey with bee products could be used together with conventional anticancer treatments as a dietary supplement without side effects. On the other hand, it could be included in the diet as a natural sweetener with high added value.
Collapse
Affiliation(s)
- Vanesa Sánchez-Martín
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Paloma Morales
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Amaia Iriondo-DeHond
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Xavier F. Hospital
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Manuela Fernández
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Eva Hierro
- Departamento de Farmacia Galénica y Tecnología de los Alimentos, Sección Departamental de Farmacia Galénica y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Ana I. Haza
- Departamento de Nutrición y Ciencia de los Alimentos, Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
2
|
Wang M, Liu X, Chen T, Cheng X, Xiao H, Meng X, Jiang Y. Inhibition and potential treatment of colorectal cancer by natural compounds via various signaling pathways. Front Oncol 2022; 12:956793. [PMID: 36158694 PMCID: PMC9496650 DOI: 10.3389/fonc.2022.956793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is a common type of malignant digestive tract tumor with a high incidence rate worldwide. Currently, the clinical treatment of CRC predominantly include surgical resection, postoperative chemotherapy, and radiotherapy. However, these treatments contain severe limitations such as drug side effects, the risk of recurrence and drug resistance. Some natural compounds found in plants, fungi, marine animals, and bacteria have been shown to inhibit the occurrence and development of CRC. Although the explicit molecular mechanisms underlying the therapeutic effects of these compounds on CRC are not clear, classical signaling transduction pathways such as NF-kB and Wnt/β-catenin are extensively regulated. In this review, we have summarized the specific mechanisms regulating the inhibition and development of CRC by various types of natural compounds through nine signaling pathways, and explored the potential therapeutic values of these natural compounds in the clinical treatment of CRC.
Collapse
Affiliation(s)
- Mingchuan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianjun Liu
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Tong Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianbin Cheng
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Huijie Xiao
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, The China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yang Jiang,
| |
Collapse
|
3
|
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, Castillo-Rodriguez RA, Flores-Najera A, Cruz-Salgado A. Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals (Basel) 2021; 14:ph14090871. [PMID: 34577571 PMCID: PMC8465904 DOI: 10.3390/ph14090871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays a major role in cell survival and proliferation, as well as in angiogenesis, migration, invasion, metastasis, and stem cell renewal in various cancer types. However, the modulation (either up- or downregulation) of this pathway can inhibit cell proliferation and apoptosis both through β-catenin-dependent and independent mechanisms, and by crosstalk with other signaling pathways in a wide range of malignant tumors. Existing studies have reported conflicting results, indicating that the Wnt signaling can have both oncogenic and tumor-suppressing roles, depending on the cellular context. This review summarizes the available information on the role of the Wnt/β-catenin pathway and its crosstalk with other signaling pathways in apoptosis induction in cancer cells and presents a modified dual-signal model for the function of β-catenin. Understanding the proapoptotic mechanisms induced by the Wnt/β-catenin pathway could open new therapeutic opportunities.
Collapse
Affiliation(s)
- Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
- Correspondence:
| | - Angel Escamilla-Ramirez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | | | - Athenea Flores-Najera
- Centro Médico Nacional 20 de Noviembre, Departamento de Cirugía General, Ciudad de Mexico 03229, Mexico;
| | - Arturo Cruz-Salgado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (A.E.-R.); (A.C.-S.)
| |
Collapse
|
4
|
Markiewicz LH, Ogrodowczyk AM, Wiczkowski W, Wróblewska B. Phytate and Butyrate Differently Influence the Proliferation, Apoptosis and Survival Pathways in Human Cancer and Healthy Colonocytes. Nutrients 2021; 13:1887. [PMID: 34072741 PMCID: PMC8230256 DOI: 10.3390/nu13061887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
The colonic epithelium is never exposed to a single factor, therefore studies on the effect of combinations of factors naturally and persistently present in the intestines are of special importance for understanding the phenomena occurring at this place. The aim of the study was to investigate the combined effect of 1 mM phytate and 1 mM butyrate (PA1B1) on cell lines derived from cancer (HCT116 and HT-29) and healthy (NCM460D) human colonic epithelium. Colorimetric and flow cytometry methods were used to determine the proliferation rate, cell cycle, and apoptosis. Selected markers of proliferation, inflammatory, and survival pathways were investigated at the mRNA and/or protein level. The combination of phytate and butyrate disturbed the cell cycle and triggered apoptosis and/or death in both studied cancer colonocytes to a higher extent compared to healthy colonocytes. Moreover, in healthy colonocytes, phytate activated the survival pathway without stimulation of inflammatory response. This may indicate that the response of healthy colonocytes to phytate protects colonic epithelium from the loss of integrity and tightness that would occur if inflammation developed. Based on the obtained results we postulate that studies on both cancer and/or healthy colonocytes should be carried out in the presence of butyrate as the permanent component of colonic contents. This should be of special importance when anti-proliferative/pro-apoptotic activity or inflammatory status of colonocytes is to be investigated.
Collapse
Affiliation(s)
- Lidia Hanna Markiewicz
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Anna Maria Ogrodowczyk
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Barbara Wróblewska
- Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; (A.M.O.); (B.W.)
| |
Collapse
|
5
|
Kohoutova D, Pejchal J, Bures J. Mitotic and apoptotic activity in colorectal neoplasia. BMC Gastroenterol 2018; 18:65. [PMID: 29776402 PMCID: PMC5960157 DOI: 10.1186/s12876-018-0786-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. Methods A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. Results In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Conclusions Significant dysregulation of mitosis and apoptosis during the progression of colorectal neoplasia, corresponding with histology, was confirmed. In patients with sporadic colorectal neoplasia, healthy mucosa does not display different mitotic and apoptotic activity compared to mucosa in healthy controls and therefore adequate endoscopic/surgical removal of colorectal neoplasia is sufficient.
Collapse
Affiliation(s)
- Darina Kohoutova
- Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, 2nd Department of Internal Medicine - Gastroenterology, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jaroslav Pejchal
- University of Defence, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Jan Bures
- Charles University, Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, 2nd Department of Internal Medicine - Gastroenterology, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
6
|
Catchpole O, Mitchell K, Bloor S, Davis P, Suddes A. Anti-gastrointestinal cancer activity of cyclodextrin-encapsulated propolis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
7
|
Bordonaro M, Lazarova D. Hypothesis: Induction of biomarkers for detection of colonic neoplasms. J Cancer 2018; 9:166-173. [PMID: 29290782 PMCID: PMC5743724 DOI: 10.7150/jca.22593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/18/2017] [Indexed: 01/01/2023] Open
Abstract
The signing of the National Cancer Act of 1971 by President Nixon marked the beginning of our war on cancer. More than 45 years later, the war is still going steady, with the enemy being almost as strong as in 1971. Furthermore, the increasing rates of obesity not only among adults, but among children and adolescents, are the likely cause for the 30-year trend of colon cancer (CC) becoming a disease of the younger population in the U.S. These trends, however, have not spurred the development of novel screening approaches for CC. Considering the need for a sensitive and non-invasive detection of early stage neoplastic lesions in the colon, we propose the development of a test based on a novel concept - the concept of induced biomarkers. The proposal is based upon our findings that the food additives propolis and gamma-cyclodextrin (gCD) (a) decrease the neoplastic burden in normal weight and obese ApcMin mice, a model of early stage intestinal neoplasia, and (b) elicit significant changes in the serum proteome in ApcMin mice. We posit that gCD and propolis induce the release of neoplasm-associated biomarkers in systemic circulation (e.g., metabolites, neoplastic, apoptotic, and immune response proteins), and these markers could be used to detect early stage intestinal neoplasms. Additional dietary bioactives may also elicit a complement of induced markers. The hypothesis could be ascertained by utilizing a mouse model, the Apc+/1638Nmice, as well as through human subject studies that integrate proteomics and metabolomics analyses. The concept of detecting inducible markers of colonic neoplasms is novel, and is substantiated by the significant physiological effects of gCD and propolis on neoplastic colonic cells in culture and on early neoplastic development in ApcMinmice. The long-term objective is to develop a minimally invasive method that detects early stage neoplastic development in the human colon.
Collapse
Affiliation(s)
| | - Darina Lazarova
- Department of Basic Sciences, Geisinger Commonwealth School of Medicine, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
8
|
da Silva LM, Frión-Herrera Y, Bartolomeu AR, Gorgulho CM, Sforcin JM. Mechanisms involved in the cytotoxic action of Brazilian propolis and caffeic acid against HEp-2 cells and modulation of P-glycoprotein activity. J Pharm Pharmacol 2017; 69:1625-1633. [DOI: 10.1111/jphp.12789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023]
Abstract
Abstract
Objectives
The effects of propolis and phenolic compounds (caffeic acid – Caf; dihydrocinnamic acid – Cin; p-coumaric acid – Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells.
Methods
Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed.
Key findings
Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux.
Conclusions
Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug.
Collapse
Affiliation(s)
- Lívia M da Silva
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Yahima Frión-Herrera
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ariane R Bartolomeu
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Carolina Mendonça Gorgulho
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José M Sforcin
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
9
|
Cho Y, Gutierrez L, Bordonaro M, Russo D, Anzelmi F, Hooven JT, Cerra C, Lazarova DL. Effects of propolis and gamma-cyclodextrin on intestinal neoplasia in normal weight and obese mice. Cancer Med 2016; 5:2448-58. [PMID: 27265242 PMCID: PMC4898980 DOI: 10.1002/cam4.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Obesity is associated with colorectal cancer (CRC). This effect might be attributed to adipokine‐supported signaling. We have established that propolis suppresses survival signaling in CRC cells in vitro; therefore, we ascertained the ability of a propolis supplement to modulate intestinal neoplastic development in C57BL/6J‐ApcMin/+/J mice in the lean and obese state. To induce obesity, mice were fed with a Western diet containing 40% fat. Since the propolis supplement includes gamma‐cyclodextrin, the interventions included diets supplemented with or without gamma‐cyclodextrin. The animals were administered the following diets: (1) control diet, (2) control diet/gamma‐cyclodextrin, (3) control diet/propolis, (4) Western diet, (5) Western diet/gamma‐cyclodextrin, and (6) Western diet/propolis. Western diet, resulting in obesity, accelerated neoplastic progression, as evidenced by the larger size and higher grade dysplasia of the neoplasms. In the context of normal weight, gamma‐cyclodextrin and propolis affected neoplastic progression, as determined by the size of the lesions and their grade of dysplasia. A statistically significant decrease in the number of adenomas was detected in mice fed a control diet with the propolis supplement (61.8 ± 10.6 vs. 35.3 ± 7.6, P = 0.008). Although there was no significant difference in the polyp numbers between the six groups, the mice with the lowest number and size of adenomas were those fed a Western diet with gamma‐cyclodextrin. This unexpected outcome might be explained by the increased levels of apoptosis detected in the intestinal tissues of these obese mice. We posit that butyrate derived from the metabolism of gamma‐cyclodextrin may contribute to the decreased neoplastic burden in the context of obesity; however, future studies are required to address this possibility.
Collapse
Affiliation(s)
- Youngjin Cho
- The Commonwealth Medical College, Scranton, Pennsylvania, 18509
| | | | | | - Daniel Russo
- The Commonwealth Medical College, Scranton, Pennsylvania, 18509
| | - Frank Anzelmi
- The Commonwealth Medical College, Scranton, Pennsylvania, 18509
| | - Jayde T Hooven
- Penn State Hershey College of Medicine, Hershey, Pennsylvania, 17033
| | - Carmine Cerra
- The Commonwealth Medical College, Scranton, Pennsylvania, 18509
| | | |
Collapse
|
10
|
Bordonaro M, Shirasawa S, Lazarova DL. In Hyperthermia Increased ERK and WNT Signaling Suppress Colorectal Cancer Cell Growth. Cancers (Basel) 2016; 8:cancers8050049. [PMID: 27187477 PMCID: PMC4880866 DOI: 10.3390/cancers8050049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 05/10/2016] [Indexed: 01/06/2023] Open
Abstract
Although neoplastic cells exhibit relatively higher sensitivity to hyperthermia than normal cells, hyperthermia has had variable success as an anti-cancer therapy. This variable outcome might be due to the fact that cancer cells themselves have differential degrees of sensitivity to high temperature. We hypothesized that the varying sensitivity of colorectal cancer (CRC) cells to hyperthermia depends upon the differential induction of survival pathways. Screening of such pathways revealed that Extracellular Signal-Regulated Kinase (ERK) signaling is augmented by hyperthermia, and the extent of this modulation correlates with the mutation status of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS). Through clonal growth assays, apoptotic analyses and transcription reporter assays of CRC cells that differ only in KRAS mutation status we established that mutant KRAS cells are more sensitive to hyperthermia, as they exhibit sustained ERK signaling hyperactivation and increased Wingless/Integrated (WNT)/beta-catenin signaling. We propose that whereas increased levels of WNT and ERK signaling and a positive feedback between the two pathways is a major obstacle in anti-cancer therapy today, under hyperthermia the hyperinduction of the pathways and their positive crosstalk contribute to CRC cell death. Ascertaining the causative association between types of mutations and hyperthermia sensitivity may allow for a mutation profile-guided application of hyperthermia as an anti-cancer therapy. Since KRAS and WNT signaling mutations are prevalent in CRC, our results suggest that hyperthermia-based therapy might benefit a significant number, but not all, CRC patients.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA.
| | - Senji Shirasawa
- Department of Cell Biology, Fukuoka University, Fukuoka 814-0180, Japan.
| | - Darina L Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA 18509, USA.
| |
Collapse
|
11
|
Catchpole O, Mitchell K, Bloor S, Davis P, Suddes A. Antiproliferative activity of New Zealand propolis and phenolic compounds vs human colorectal adenocarcinoma cells. Fitoterapia 2015; 106:167-74. [DOI: 10.1016/j.fitote.2015.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/14/2023]
|
12
|
Bordonaro M, Drago E, Atamna W, Lazarova DL. Comprehensive suppression of all apoptosis-induced proliferation pathways as a proposed approach to colorectal cancer prevention and therapy. PLoS One 2014; 9:e115068. [PMID: 25500581 PMCID: PMC4263739 DOI: 10.1371/journal.pone.0115068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023] Open
Abstract
Mutations in the WNT/beta-catenin pathway are present in the majority of all sporadic colorectal cancers (CRCs), and histone deacetylase inhibitors induce apoptosis in CRC cells with such mutations. This apoptosis is counteracted by (1) the signaling heterogeneity of CRC cell populations, and (2) the survival pathways induced by mitogens secreted from apoptotic cells. The phenomena of signaling heterogeneity and apoptosis-induced survival constitute the immediate mechanisms of resistance to histone deacetylase inhibitors, and probably other chemotherapeutic agents. We explored the strategy of augmenting CRC cell death by inhibiting all survival pathways induced by the pro-apoptotic agent LBH589, a histone deacetylase inhibitor: AKT, JAK/STAT, and ERK signaling. The apoptosis-enhancing ability of a cocktail of synthetic inhibitors of proliferation was compared to the effects of the natural product propolis. We utilized colorectal adenoma, drug-sensitive and drug-resistant colorectal carcinoma cells to evaluate the apoptotic potential of the combination treatments. The results suggest that an effective approach to CRC combination therapy is to combine apoptosis-inducing drugs (e.g., histone deacetylase inhibitors, such as LBH589) with agents that suppress all compensatory survival pathways induced during apoptosis (such as the cocktail of inhibitors of apoptosis-associated proliferation). The same paradigm can be applied to a CRC prevention approach, as the apoptotic effect of butyrate, a diet-derived histone deacetylase inhibitor, is augmented by other dietary agents that modulate survival pathways (e.g., propolis and coffee extract). Thus, dietary supplements composed by fermentable fiber, propolis, and coffee extract may effectively counteract neoplastic growth in the colon.
Collapse
Affiliation(s)
- Michael Bordonaro
- Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, United States of America
| | - Eric Drago
- Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, United States of America
| | - Wafa Atamna
- California Northstate University, College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, United States of America
| | - Darina L. Lazarova
- Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, United States of America
- * E-mail:
| |
Collapse
|