1
|
Pei J, Peng J, Wu M, Zhan X, Wang D, Zhu G, Wang W, An N, Pan X. Analyzing the potential targets and mechanisms of chronic kidney disease induced by common synthetic Endocrine Disrupting Compounds (EDCs) in Chinese surface water environment using network toxicology and molecular docking techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177980. [PMID: 39657341 DOI: 10.1016/j.scitotenv.2024.177980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Long-term exposure to NP and OP, as common synthetic endocrine-disrupting chemicals (EDCs) in surface water environments in China, is closely associated with the development of chronic kidney disease (CKD). However, their potential targets and toxicological mechanisms for inducing CKD remain unknown. This study utilizes network toxicology and molecular docking techniques to explore the potential toxic targets and molecular mechanisms of CKD induction by NP and OP. We identify 49 core targets of NP and OP action in CKD using the Comparative Toxicogenomics Database (CTD) and GeneCards databases. Using the STRING database and Cytoscape software, we identify five hub genes: MAPK3, TNF, BCL2, ESR1, and FOS. We construct a nomogram model based on the CKD dataset GSE66494, utilizing these five hub genes. Calibration and ROC curves demonstrate that the model has good diagnostic value for CKD, and the DCA curve indicates that the model has high clinical utility. Single-gene GSEA enrichment analysis identifies five hub genes that influence the development of CKD through multiple biological pathways, revealing that several immune-regulatory signaling pathways are activated. The CIBERSORT algorithm identifies eight types of immune cell infiltration levels that change significantly during CKD development, and correlation analyses suggest that the five hub genes are strongly associated with multiple immune cell infiltrations. The molecular docking results suggested that ESR1, MAPK3, and TNF had the lowest binding energies and high binding affinities with NP and OP. The results of molecular dynamics simulations similarly confirmed the stability of the interactions between ESR1, MAPK3 and TNF proteins with NP and OP. The results of this study provide a theoretical basis for understanding the potential toxicity targets and mechanisms of NP- and OP-induced CKD and promote the application of network toxicology and molecular docking techniques in the study of environmental pollutants.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| | - Jinpu Peng
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Moudong Wu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xiong Zhan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Dan Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Guohua Zhu
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Wei Wang
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Nini An
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Xingyu Pan
- Department of Pediatric surgrey, Guizhou Provincial People's Hospital, Guiyang 550000, China.
| |
Collapse
|
2
|
Gómez-Olarte S, Mailänder V, Castro-Neves J, Stojanovska V, Schumacher A, Meyer N, Zenclussen AC. The ENDOMIX perspective: how everyday chemical mixtures impact human health and reproduction by targeting the immune system†. Biol Reprod 2024; 111:1170-1187. [PMID: 39446589 DOI: 10.1093/biolre/ioae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals are natural and synthetic compounds found ubiquitously in the environment that interfere with the hormonal-immune axis, potentially impacting human health and reproduction. Exposure to endocrine-disrupting chemicals has been associated with numerous health risks, such as neurodevelopmental disorders, metabolic syndrome, thyroid dysfunction, infertility, and cancers. Nevertheless, the current approach to establishing causality between these substances and disease outcomes has limitations. Epidemiological and experimental research on endocrine-disrupting chemicals faces challenges in accurately assessing chemical exposure and interpreting non-monotonic dose response curves. In addition, most studies have focused on single chemicals or simple mixtures, overlooking complex real-life exposures and mechanistic insights, in particular regarding endocrine-disrupting chemicals' impact on the immune system. The ENDOMIX project, funded by the EU's Horizon Health Program, addresses these challenges by integrating epidemiological, risk assessment, and immunotoxicology methodologies. This systemic approach comprises the triangulation of human cohort, in vitro, and in vivo data to determine the combined effects of chemical mixtures. The present review presents and discusses current literature regarding human reproduction in the context of immunotolerance and chemical disruption mode of action. It further underscores the ENDOMIX perspective to elucidate the impact of endocrine-disrupting chemicals on immune-reproductive health.
Collapse
Affiliation(s)
- Sergio Gómez-Olarte
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Verena Mailänder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Júlia Castro-Neves
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research GmbH-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, Leipzig University, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Liu KY, Gao Y, Xiao W, Fu J, Huang S, Han X, Hsu SH, Xiao X, Huang SK, Zhou Y. Multidimensional Analysis of Lung Lymph Nodes in a Mouse Model of Allergic Lung Inflammation following PM2.5 and Indeno[1,2,3- cd]pyrene Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:37014. [PMID: 36975775 PMCID: PMC10044348 DOI: 10.1289/ehp11580] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ambient particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) is suggested to act as an adjuvant for allergen-mediated sensitization and recent evidence suggests the importance of T follicular helper (Tfh) cells in allergic diseases. However, the impact of PM2.5 exposure and its absorbed polycyclic aromatic hydrocarbon (PAHs) on Tfh cells and humoral immunity remains unknown. OBJECTIVES We aimed to explore the impact of environmental PM2.5 and indeno[1,2,3-cd]pyrene (IP), a prominent PAH, as a model, on Tfh cells and the subsequent pulmonary allergic responses. METHODS PM2.5- or IP-mediated remodeling of cellular composition in lung lymph nodes (LNs) was determined by mass cytometry in a house dust mite (HDM)-induced mouse allergic lung inflammation model. The differentiation and function of Tfh cells in vitro were analyzed by flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, chromatin immunoprecipitation, immunoprecipitation, and western blot analyses. RESULTS Mice exposed to PM2.5 during the HDM sensitization period demonstrated immune cell population shifts in lung LNs as compared with those sensitized with HDM alone, with a greater number of differentiated Tfh2 cells, enhanced allergen-induced immunoglobulin E (IgE) response and pulmonary inflammation. Similarly enhanced phenotypes were also found in mice exposed to IP and sensitized with HDM. Further, IP administration was found to induce interleukin-21 (Il21) and Il4 expression and enhance Tfh2 cell differentiation in vitro, a finding which was abrogated in aryl hydrocarbon receptor (AhR)-deficient CD4+ T cells. Moreover, we showed that IP exposure increased the interaction of AhR and cellular musculoaponeurotic fibrosarcoma (c-Maf) and its occupancy on the Il21 and Il4 promoters in differentiated Tfh2 cells. DISCUSSION These findings suggest that the PM2.5 (IP)-AhR-c-Maf axis in Tfh2 cells was important in allergen sensitization and lung inflammation, thus adding a new dimension in the understanding of Tfh2 cell differentiation and function and providing a basis for establishing the environment-disease causal relationship. https://doi.org/10.1289/EHP11580.
Collapse
Affiliation(s)
- Kwei-Yan Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Yajing Gao
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Wenfeng Xiao
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Jinrong Fu
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Saihua Huang
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Xiao Han
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Shau-Ku Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Taiwan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Laboratory of Neonatal Diseases, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118024. [PMID: 34523531 PMCID: PMC8590835 DOI: 10.1016/j.envpol.2021.118024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/14/2023]
Abstract
In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ekaterina Bourova-Flin
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Milan Jakobi
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
5
|
Sharma P, Tseng HH, Lee JYL, Tsai EM, Suen JL. A prominent environmental endocrine disruptor, 4-nonylphenol, promotes endometriosis development via plasmacytoid dendritic cells. Mol Hum Reprod 2021; 26:601-614. [PMID: 32497202 DOI: 10.1093/molehr/gaaa039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 05/20/2020] [Indexed: 01/12/2023] Open
Abstract
Endometriosis is an estrogen-dependent chronic inflammatory disease and is associated etiologically with environmental endocrine disruptor (EED) exposure. 4-nonylphenol (NP), a widely found EED, has weak estrogenic activity and modulates plasmacytoid dendritic cell (pDC) function in vitro and in vivo. We aimed to elucidate the immunomodulatory effect of NP on the development of endometriosis, particularly focusing on pDCs. This study established a surgically induced endometriosis murine model (C57BL/6) under conditions of NP treatment that are relevant to the level and route of human exposure. Multi-parametric flow cytometry was used for analysis of infiltrated immune cell subsets in lesions. The results showed that NP exposure significantly promoted endometriotic lesion growth, survival and angiogenesis development of lesions as well as pDC accumulation in the lesions in mice. Adoptive transfer of NP-conditioned pDCs into mice significantly enhanced lesion development and local pDC infiltration, whereas NP-conditioned conventional dendritic cells did not affect lesion growth. In vitro functional analysis showed that NP-conditioned pDCs in lesions expressed high levels of CD36, a scavenger receptor and NP-conditioned splenic pDCs secreted an enhanced level of IL-10 in response to apoptotic cell recognition in a CD36-dependent manner. Furthermore, we observed that local treatment with blocking antibodies against IL-10 and CD36 on the day of surgery significantly inhibited lesion development. NP exposure also altered the estrous cycle in mice. The results suggest that chronic and low-dose exposure to NP enhances endometriotic lesion growth by altering pDC homeostasis and function. This study has important implications for understanding the environment-innate immunity interaction in human endometriosis.
Collapse
Affiliation(s)
- Pooja Sharma
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan
| | - Hsin-Han Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan
| | - Jo-Yu Lynn Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, 807377 Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, 807378 Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, 807377 Kaohsiung, Taiwan
| |
Collapse
|
6
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
7
|
Schjenken JE, Green ES, Overduin TS, Mah CY, Russell DL, Robertson SA. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front Endocrinol (Lausanne) 2021; 12:607539. [PMID: 33912131 PMCID: PMC8072457 DOI: 10.3389/fendo.2021.607539] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment and have substantial potential to compromise human and animal health. Amongst the chronic health conditions associated with EDC exposure, dysregulation of reproductive function in both females and males is prominent. Human epidemiological studies demonstrate links between EDC exposure and infertility, as well as gestational disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm birth. Animal experiments show EDCs administered during gestation, or to either parent prior to conception, can interfere with gamete quality, embryo implantation, and placental and fetal development, with consequences for offspring viability and health. It has been presumed that EDCs operate principally through disrupting hormone-regulated events in reproduction and fetal development, but EDC effects on maternal immune receptivity to pregnancy are also implicated. EDCs can modulate both the innate and adaptive arms of the immune system, to alter inflammatory responses, and interfere with generation of regulatory T (Treg) cells that are critical for pregnancy tolerance. Effects of EDCs on immune cells are complex and likely exerted by both steroid hormone-dependent and hormone-independent pathways. Thus, to better understand how EDCs impact reproduction and pregnancy, it is imperative to consider how immune-mediated mechanisms are affected by EDCs. This review will describe evidence that several EDCs modify elements of the immune response relevant to pregnancy, and will discuss the potential for EDCs to disrupt immune tolerance required for robust placentation and optimal fetal development.
Collapse
Affiliation(s)
- John E. Schjenken
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Newcastle, NSW, Australia
| | - Ella S. Green
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tenuis S. Overduin
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Chui Yan Mah
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Sarah A. Robertson,
| |
Collapse
|
8
|
Potential Health Risks Linked to Emerging Contaminants in Major Rivers and Treated Waters. WATER 2019. [DOI: 10.3390/w11122615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The presence of endocrine-disrupting chemicals (EDCs) in our local waterways is becoming an increasing threat to the surrounding population. These compounds and their degradation products (found in pesticides, herbicides, and plastic waste) are known to interfere with a range of biological functions from reproduction to differentiation. To better understand these effects, we used an in silico ontological pathway analysis to identify the genes affected by the most commonly detected EDCs in large river water supplies, which we grouped together based on four common functions: Organismal injuries, cell death, cancer, and behavior. In addition to EDCs, we included the opioid buprenorphine in our study, as this similar ecological threat has become increasingly detected in river water supplies. Through the identification of the pleiotropic biological effects associated with both the acute and chronic exposure to EDCs and opioids in local water supplies, our results highlight a serious health threat worthy of additional investigations with a potential emphasis on the effects linked to increased DNA damage.
Collapse
|
9
|
Sun L, Fu J, Lin SH, Sun JL, Xia L, Lin CH, Liu L, Zhang C, Yang L, Xue P, Wang X, Huang S, Han X, Chen HL, Huang MS, Zhang X, Huang SK, Zhou Y. Particulate matter of 2.5 μm or less in diameter disturbs the balance of T H17/regulatory T cells by targeting glutamate oxaloacetate transaminase 1 and hypoxia-inducible factor 1α in an asthma model. J Allergy Clin Immunol 2019; 145:402-414. [PMID: 31647966 DOI: 10.1016/j.jaci.2019.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epidemiologic evidence suggests that exposure to particulate matter of 2.5 μm or less in diameter (PM2.5) aggravates asthma. OBJECTIVE We sought to investigate the underlying mechanisms between PM2.5 exposure and asthma severity. METHODS The relationship between PM2.5 exposure and asthma severity was investigated in an asthma model with CD4+ T cell-specific aryl hydrocarbon receptor (AhR)-null mice. Effects of PM2.5 and polycyclic aromatic hydrocarbons (PAHs) on differentiation of TH17/regulatory T (Treg) cells were investigated by using flow cytometry and quantitative RT-PCR. Mechanisms were investigated by using mRNA sequencing, chromatin immunoprecipitation, bisulfite sequencing, and glycolysis rates. RESULTS PM2.5 impaired differentiation of Treg cells, promoted differentiation of TH17 cells, and aggravated asthma in an AhR-dependent manner. PM2.5 and one of its prominent PAHs, indeno[1,2,3-cd]pyrene (IP), promoted differentiation of TH17 cells by upregulating hypoxia-inducible factor 1α expression and enhancing glycolysis through AhRs. Exposure to PM2.5 and IP enhanced glutamate oxaloacetate transaminase 1 (Got1) expression through AhRs and accumulation of 2-hydroxyglutarate, which inhibited ten-eleven translocation methylcytosine dioxygenase 2 activity, resulting in hypermethylation in the forkhead box P3 locus and impaired differentiation of Treg cells. A GOT1 inhibitor, (aminooxy)acetic acid, ameliorated asthma by shifting differentiation of TH17 cells to Treg cells. Similar regulatory effects of exposure to PM2.5 or IP on TH17/Treg cell imbalance were noted in human T cells, and in a case-control design PAH exposure appeared to be a potential risk factor for asthma. CONCLUSIONS The AhR-hypoxia-inducible factor 1α and AhR-GOT1 molecular pathways mediate pulmonary responses on exposure to PM2.5 through their ability to disturb the balance of TH17/Treg cells.
Collapse
Affiliation(s)
- Licheng Sun
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Jinrong Fu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Sheng-Hao Lin
- Chest Division, Department of Internal Medicine, Chang-Hua Christian Hospital, Chang-Hua, Taiwan
| | - Jin-Lyu Sun
- Department of Allergy, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
| | - Li Xia
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Ching-Hsiung Lin
- Chest Division, Department of Internal Medicine, Chang-Hua Christian Hospital, Chang-Hua, Taiwan
| | - Lijuan Liu
- Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Caiyan Zhang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Lan Yang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Ping Xue
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiang Wang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Saihua Huang
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Xiao Han
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Xiaobo Zhang
- Respirology Department, Children's Hospital of Fudan University, Shanghai, China
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Johns Hopkins University School of Medicine, Baltimore, Md; Kaohsiung Medical University, Kaohsiung, Taiwan; Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
| | - Yufeng Zhou
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China; NHC Key Laboratory of Neonatal Diseases (Fudan University), Shanghai, China.
| |
Collapse
|
10
|
Wang L, Xu J, Zeng F, Fu X, Xu W, Yu J. Influence of nonylphenol exposure on basic growth, development, and thyroid tissue structure in F1 male rats. PeerJ 2019; 7:e7039. [PMID: 31245175 PMCID: PMC6586153 DOI: 10.7717/peerj.7039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
Objective Environmental endocrine disruptors (EEDs) with a weak ability to mimic estrogen have been associated with thyroid dysfunction. However, little is known about the effect of nonylphenol (NP), a well-known EED, on thyroid structure. The present study evaluates whether gestational and lactational exposure to NP impacts growth and thyroid structure in F1 male rats. Methods A total of 60 rats were gavaged with NP (25, 50, and 100 mg/kg), estradiol (E2, 30 μg/kg/day), and corn oil alone (vehicle control) from gestational day 6 to postnatal day (PND) 21. Serum thyroid hormones free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone levels were detected by automated chemiluminescence immunoassay analyzer. The NP level in the thyroid was measured using high-performance liquid chromatography. The ultrastructure of follicular epithelial cells was examined using transmission electron microscopy. Histopathology was conducted using hematoxylin and eosin staining. Results On PND 0, exposure to 50 and 100 mg/kg/day NP led to a significant decrease in the average litter size, litter weight and number of live pups per litter compared to the control group (P < 0.05). Dams exposed to NP during perinatal period demonstrated decreased serum levels of FT3 and FT4 in F1 male rats, when compared to the control group (P < 0.05). The NP level in the control group was 3.39 ± 0.08 ng/mg, while NP levels in the low, middle, and high dose groups ranged from 5.20 to 11.00 ng/mg. Exposure caused a dose-related increase in NP level in the thyroid of male pups (P < 0.01). The thicknesses of the thyroid follicular epithelium were 2.06 ± 0.37 μm in the control group and 3.97 ± 1.61 μm in the high-dose group. The thickness of the thyroid follicular epithelium increased with an increase in treatment dose in a dose-dependent manner (P < 0.05). The sizes of the thyroid follicles were 1,405.53 ± 866.62 μm2 in the control group and 317.49 ± 231.15 μm2 in the high-dose group. With increasing NP dosages, animals showed a decreased size of the thyroid follicle (P < 0.01). Thyroid follicular cells of NP-treated rats showed mildly swollen mitochondria and dilated rough endoplasmic reticulum in the cytoplasm. Conclusion Nonylphenol can cross the placental barrier and accumulate in the thyroid of F1 male rats. Gestational and lactational exposure to NP in dams impacted both development and growth of pups and damaged the ultrastructure of their thyroid tissue, which may further negatively influence normal thyroid function.
Collapse
Affiliation(s)
- Lin Wang
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Feng Zeng
- Breast & Thyroid Disease Medical Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiangjun Fu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Weihong Xu
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Wong TH, Lee CL, Su HH, Lee CL, Wu CC, Wang CC, Sheu CC, Lai RS, Leung SY, Lin CC, Wei YF, Wang CJ, Lin YC, Chen HL, Huang MS, Yen JH, Huang SK, Suen JL. A prominent air pollutant, Indeno[1,2,3-cd]pyrene, enhances allergic lung inflammation via aryl hydrocarbon receptor. Sci Rep 2018; 8:5198. [PMID: 29581487 PMCID: PMC5979946 DOI: 10.1038/s41598-018-23542-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to ambient polycyclic aromatic hydrocarbons (PAHs) is associated with asthma, but its regulatory mechanisms remain incompletely defined. We report herein that elevated levels of urinary 1-hydroxypyrene, a biomarker of PAH exposure, were found in asthmatic subjects (n = 39) as compared to those in healthy subjects (n = 43) living in an industrial city of Taiwan, where indeno[1,2,3-cd]pyrene (IP) was found to be a prominent PAH associated with ambient PM2.5. In a mouse model, intranasal exposure of mice with varying doses of IP significantly enhanced antigen-induced allergic inflammation, including increased airway eosinophilia, Th2 cytokines, including IL-4 and IL-5, as well as antigen-specific IgE level, which was absent in dendritic cell (DC)-specific aryl hydrocarbon receptor (AhR)-null mice. Mechanistically, IP treatment significantly altered DC's function, including increased level of pro-inflammatory IL-6 and decreased generation of anti-inflammatory IL-10. The IP's effect was lost in DCs from mice carrying an AhR-mutant allele. Taken together, these results suggest that chronic exposure to environmental PAHs may pose a significant risk for asthma, in which IP, a prominent ambient PAH in Taiwan, was shown to enhance the severity of allergic lung inflammation in mice through, at least in part, its ability in modulating DC's function in an AhR-dependent manner.
Collapse
Affiliation(s)
- Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Lai Lee
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chau-Chyun Sheu
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruay-Sheng Lai
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sum-Yee Leung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chi-Cheng Lin
- Chest Division, Department of Internal Medicine, Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Ping-Tung, Taiwan
| | - Yu-Feng Wei
- Division of Chest Medicine, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Chun Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Hua-Ling Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Shyan Huang
- Divison of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jeng-Hsien Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Lou-Hu Hospital, Shen-Zhen University, Shen-Zhen, China
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center of Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
In vitro impact of bisphenols BPA, BPF, BPAF and 17β-estradiol (E2) on human monocyte-derived dendritic cell generation, maturation and function. Int Immunopharmacol 2016; 34:146-154. [DOI: 10.1016/j.intimp.2016.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
|
13
|
Thompson PA, Khatami M, Baglole CJ, Sun J, Harris SA, Moon EY, Al-Mulla F, Al-Temaimi R, Brown DG, Colacci A, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015; 36 Suppl 1:S232-53. [PMID: 26106141 DOI: 10.1093/carcin/bgv038] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.
Collapse
Affiliation(s)
- Patricia A Thompson
- Department of Pathology, Stony Brook Medical School, Stony Brook, NY 11794, USA, Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), NIH, Bethesda, MD 20817, USA, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada, Department of Biochemistry, Rush University, Chicago, IL 60612, USA, Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, Ontario M5G 2L3, Canada, Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of South Korea, Department of Pathology, Kuwait University, Safat 13110, Kuwait, Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado School of Public Health, Fort Collins, CO 80523-1680, USA, Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy, The Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy, Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada, Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA, Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh 226003, India, Mediterranean Institute of Oncology, 95029 Viagrande, Italy, Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy, Faculty of Medicine and Health Sciences, Universiti Putra, Malaysia, Serdang, Selangor 43400, Malaysia, Getting to Know Cancer, Room 229A, 36 Arthur St, Truro, Nova Scotia B2N 1X5, Canada Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy Center for Appl
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), NIH, Bethesda, MD 20817, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Shelley A Harris
- Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, Ontario M5G 2L3, Canada
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of South Korea
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Dustin G Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Chiara Mondello
- The Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - A Ivana Scovassi
- The Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George's Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Hosni K Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Roslida A Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra, Malaysia, Serdang, Selangor 43400, Malaysia
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur St, Truro, Nova Scotia B2N 1X5, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy, National Institute of Biostructures and Biosystems, Viale Medaglie d' Oro, 305, 00136 Roma, Italy and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
14
|
Costas L, Infante-Rivard C, Zock JP, Van Tongeren M, Boffetta P, Cusson A, Robles C, Casabonne D, Benavente Y, Becker N, Brennan P, Foretova L, Maynadié M, Staines A, Nieters A, Cocco P, de Sanjosé S. Occupational exposure to endocrine disruptors and lymphoma risk in a multi-centric European study. Br J Cancer 2015; 112:1251-6. [PMID: 25742473 PMCID: PMC4385964 DOI: 10.1038/bjc.2015.83] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/02/2015] [Accepted: 01/27/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Incidence rates of lymphoma are usually higher in men than in women, and oestrogens may protect against lymphoma. METHODS We evaluated occupational exposure to endocrine disrupting chemicals (EDCs) among 2457 controls and 2178 incident lymphoma cases and subtypes from the European Epilymph study. RESULTS Over 30 years of exposure to EDCs compared to no exposure was associated with a 24% increased risk of mature B-cell neoplasms (P-trend=0.02). Associations were observed among men, but not women. CONCLUSIONS Prolonged occupational exposure to endocrine disruptors seems to be moderately associated with some lymphoma subtypes.
Collapse
Affiliation(s)
- L Costas
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, 08908 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - C Infante-Rivard
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montréal, QC, Canada H3A 1A2
| | - J-P Zock
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Netherlands Institute for Health Services Research (NIVEL), 3500 Utrecht, The Netherlands
- Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - M Van Tongeren
- Centre for Human Exposure Science (CHES), Institute of Occupational Medicine, EH14 4AP Edinburgh, UK
| | - P Boffetta
- Tisch Cancer Institute and Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY, USA
| | - A Cusson
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada H3T 1C4
| | - C Robles
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, 08908 Barcelona, Spain
| | - D Casabonne
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, 08908 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Y Benavente
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, 08908 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - N Becker
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - P Brennan
- IARC, International Agency for Research on Cancer, 69372 Lyon, France
| | - L Foretova
- Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute and MF MU, 65653 Brno, Czech Republic
| | - M Maynadié
- Biological Hematology Unit, CRB Ferdinand Cabanne, Universitary Hospital of Dijon and EA4184, University of Burgundy, EA 4184 Dijon, France
| | - A Staines
- Public Health University College, Dublin, Ireland
| | - A Nieters
- Centre of Chronic Immunodeficiency, Molecular Epidemiology, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - P Cocco
- Department of Public Health, Clinical and Molecular Medicine, Occupational Health Section, University of Cagliari, 09124 Cagliari, Italy
| | - S de Sanjosé
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Catalan Institute of Oncology, 08908 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
15
|
Yang SN, Hsieh CC, Kuo HF, Lee MS, Huang MY, Kuo CH, Hung CH. The effects of environmental toxins on allergic inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:478-84. [PMID: 25374746 PMCID: PMC4214967 DOI: 10.4168/aair.2014.6.6.478] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 11/20/2022]
Abstract
The prevalence of asthma and allergic disease has increased worldwide over the last few decades. Many common environmental factors are associated with this increase. Several theories have been proposed to account for this trend, especially those concerning the impact of environmental toxicants. The development of the immune system, particularly in the prenatal period, has far-reaching consequences for health during early childhood, and throughout adult life. One underlying mechanism for the increased levels of allergic responses, secondary to exposure, appears to be an imbalance in the T-helper function caused by exposure to the toxicants. Exposure to environmental endocrine-disrupting chemicals can result in dramatic changes in cytokine production, the activity of the immune system, the overall Th1 and Th2 balance, and in mediators of type 1 hypersensitivity mediators, such as IgE. Passive exposure to tobacco smoke is a common risk factor for wheezing and asthma in children. People living in urban areas and close to roads with a high volume of traffic, and high levels of diesel exhaust fumes, have the highest exposure to environmental compounds, and these people are strongly linked with type 1 hypersensitivity disorders and enhanced Th2 responses. These data are consistent with epidemiological research that has consistently detected increased incidences of allergies and asthma in people living in these locations. During recent decades more than 100,000 new chemicals have been used in common consumer products and are released into the everyday environment. Therefore, in this review, we discuss the environmental effects on allergies of indoor and outside exposure.
Collapse
Affiliation(s)
- San-Nan Yang
- Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan. ; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiac Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Sheng Lee
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Hung Kuo
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|