1
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Hernández-Ramírez KC, Valle-Maldonado MI, Patiño-Medina JA, Calo S, Jácome-Galarza IE, Garre V, Meza-Carmen V, Ramírez-Díaz MI. Role of PumB antitoxin as a transcriptional regulator of the PumAB type-II toxin-antitoxin system and its endoribonuclease activity on the PumA (toxin) transcript. Mol Genet Genomics 2023; 298:455-472. [PMID: 36604348 DOI: 10.1007/s00438-022-01988-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
The PumAB type-II toxin-antitoxin (TA) system is encoded by pumAB genes that are organized into an operon. This system is encoded by the pUM505 plasmid, isolated from a Pseudomonas aeruginosa clinical strain. The pumA gene encodes a putative RelE toxin protein (toxic component), whereas the pumB gene encodes a putative HTH antitoxin protein. The expression of the PumAB system in Escherichia coli confers plasmid stability. In addition, PumA toxin overexpression in P. aeruginosa possesses the capability to increase bacterial virulence, an effect that is neutralized by the PumB antitoxin. The aim of this study was to establish the mechanism of regulation of the PumAB toxin-antitoxin system from pUM505. By an in silico analysis of the putative regulatory elements, we identified two putative internal promoters, PpumB and PpumB-AlgU (in addition to the already reported PpumAB), located upstream of pumB. By RT-qPCR assays, we determined that the pumAB genes are transcribed differentially, in that the mRNA of pumB is more abundant than the pumA transcript. We also observed that pumB could be expressed individually and that its mRNA levels decreased under oxidative stress, during individual expression as well as co-expression of pumAB. However, under stressful conditions, the pumA mRNA levels were not affected. This suggests the negative regulation of pumB by stressful conditions. The PumB purified protein was found to bind to a DNA region located between the PpumAB and the pumA coding region, and PumA participates in PumB binding, suggesting that a PumA-PumB complex co-regulates the transcription of the pumAB operon. Interestingly, the pumA mRNA levels decreased after incubation in vitro with PumB protein. This effect was repressed by ribonuclease inhibitors, suggesting that PumB could function as an RNAse toward the mRNA of the toxin. Taken together, we conclude that the PumAB TA system possesses multiple mechanisms to regulate its expression, as well as that the PumB antitoxin generates a decrease in the mRNA toxin levels, suggesting an RNase function. Our analysis provides new insights into the understanding of the control of TA systems from mobile plasmid-encoded genes from a human pathogen.
Collapse
Affiliation(s)
- K C Hernández-Ramírez
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Valle-Maldonado
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.,Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - J A Patiño-Medina
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - S Calo
- School of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, 51033, Santiago de los Caballeros, Dominican Republic
| | - I E Jácome-Galarza
- Laboratorio Estatal de Salud Pública, Secretaría de Salud Michoacán, Morelia, Mexico
| | - V Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - V Meza-Carmen
- Laboratorio de Diferenciación Celular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - M I Ramírez-Díaz
- Laboratorio de Microbiología, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
3
|
Minigene as a Novel Regulatory Element in Toxin-Antitoxin Systems. Int J Mol Sci 2021; 22:ijms222413389. [PMID: 34948189 PMCID: PMC8708949 DOI: 10.3390/ijms222413389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/05/2022] Open
Abstract
The axe-txe type II toxin-antitoxin (TA) system is characterized by a complex and multilayered mode of gene expression regulation. Precise and tight control of this process is crucial to keep the toxin in an appropriate balance with the cognate antitoxin until its activation is needed for the cell. In this report, we provide evidence that a minigene encoded within the axe-txe operon influences translation of the Txe toxin. This is the first example to date of such a regulatory mechanism identified in the TA modules. Here, in a series of genetic studies, we employed translational reporter gene fusions to establish the molecular basis of this phenomenon. Our results show that translation of the two-codon mini-ORF displays an in cis mode of action, and positively affects the expression of txe, possibly by increasing its mRNA stability through protection from an endonuclease attack. Moreover, we established that the reading frame in which the two cistrons are encoded, as well as the distance between them, are critical parameters that affect the level of such regulation. In addition, by searching for two-codon ORFs we found sequences of several potential minigenes in the leader sequences of several other toxins belonging to the type II TA family. These findings suggest that this type of gene regulation may not only apply for the axe-txe cassette, but could be more widespread among other TA systems.
Collapse
|
4
|
Tedim AP, Lanza VF, Rodríguez CM, Freitas AR, Novais C, Peixe L, Baquero F, Coque TM. Fitness cost of vancomycin-resistant Enterococcus faecium plasmids associated with hospital infection outbreaks. J Antimicrob Chemother 2021; 76:2757-2764. [PMID: 34450635 DOI: 10.1093/jac/dkab249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Vancomycin resistance is mostly associated with Enterococcus faecium due to Tn1546-vanA located on narrow- and broad-host plasmids of various families. This study's aim was to analyse the effects of acquiring Tn1546-carrying plasmids with proven epidemicity in different bacterial host backgrounds. METHODS Widespread Tn1546-carrying plasmids of different families RepA_N (n = 5), Inc18 (n = 4) and/or pHTβ (n = 1), and prototype plasmids RepA_N (pRUM) and Inc18 (pRE25, pIP501) were analysed. Plasmid transferability and fitness cost were assessed using E. faecium (GE1, 64/3) and Enterococcus faecalis (JH2-2/FA202/UV202) recipient strains. Growth curves (Bioscreen C) and Relative Growth Rates were obtained in the presence/absence of vancomycin. Plasmid stability was analysed (300 generations). WGS (Illumina-MiSeq) of non-evolved and evolved strains (GE1/64/3 transconjugants, n = 49) was performed. SNP calling (Breseq software) of non-evolved strains was used for comparison. RESULTS All plasmids were successfully transferred to different E. faecium clonal backgrounds. Most Tn1546-carrying plasmids and Inc18 and RepA_N prototypes reduced host fitness (-2% to 18%) while the cost of Tn1546 expression varied according to the Tn1546-variant and the recipient strain (9%-49%). Stability of Tn1546-carrying plasmids was documented in all cases, often with loss of phenotypic resistance and/or partial plasmid deletions. SNPs and/or indels associated with essential bacterial functions were observed on the chromosome of evolved strains, some of them linked to increased fitness. CONCLUSIONS The stability of E. faecium Tn1546-carrying plasmids in the absence of selective pressure and the high intra-species conjugation rates might explain the persistence of vancomycin resistance in E. faecium populations despite the significant burden they might impose on bacterial host strains.
Collapse
Affiliation(s)
- Ana P Tedim
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | - Val F Lanza
- Unit of Bioinformatics, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| | | | - Ana R Freitas
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Fernando Baquero
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain.,Centres for Biomedical Research in the Epidemiology and Public Health Network (CIBER-ESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, University Hospital Ramón y Cajal-IRYCIS, Madrid, Spain
| |
Collapse
|
5
|
Identification of Three Type II Toxin-Antitoxin Systems in Model Bacterial Plant Pathogen Dickeya dadantii 3937. Int J Mol Sci 2021; 22:ijms22115932. [PMID: 34073004 PMCID: PMC8198452 DOI: 10.3390/ijms22115932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are genetic elements usually encoding two proteins: a stable toxin and an antitoxin, which binds the toxin and neutralizes its toxic effect. The disturbance in the intracellular toxin and antitoxin ratio typically leads to inhibition of bacterial growth or bacterial cell death. Despite the fact that TA modules are widespread in bacteria and archaea, the biological role of these systems is ambiguous. Nevertheless, a number of studies suggests that the TA modules are engaged in such important processes as biofilm formation, stress response or virulence and maintenance of mobile genetic elements. The Dickeya dadantii 3937 strain serves as a model for pathogens causing the soft-rot disease in a wide range of angiosperm plants. Until now, several chromosome-encoded type II TA systems were identified in silico in the genome of this economically important bacterium, however so far only one of them was experimentally validated. In this study, we investigated three putative type II TA systems in D. dadantii 3937: ccdAB2Dda, phd-docDda and dhiTA, which represents a novel toxin/antitoxin superfamily. We provide an experimental proof for their functionality in vivo both in D. dadantii and Escherichia coli. Finally, we examined the prevalence of those systems across the Pectobacteriaceae family by a phylogenetic analysis.
Collapse
|
6
|
Kędzierska B, Potrykus K, Szalewska-Pałasz A, Wodzikowska B. Insights into Transcriptional Repression of the Homologous Toxin-Antitoxin Cassettes yefM-yoeB and axe-txe. Int J Mol Sci 2020; 21:ijms21239062. [PMID: 33260607 PMCID: PMC7730913 DOI: 10.3390/ijms21239062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcriptional repression is a mechanism which enables effective gene expression switch off. The activity of most of type II toxin-antitoxin (TA) cassettes is controlled in this way. These cassettes undergo negative autoregulation by the TA protein complex which binds to the promoter/operator sequence and blocks transcription initiation of the TA operon. Precise and tight control of this process is vital to avoid uncontrolled expression of the toxin component. Here, we employed a series of in vivo and in vitro experiments to establish the molecular basis for previously observed differences in transcriptional activity and repression levels of the pyy and pat promoters which control expression of two homologous TA systems, YefM-YoeB and Axe-Txe, respectively. Transcriptional fusions of promoters with a lux reporter, together with in vitro transcription, EMSA and footprinting assays revealed that: (1) the different sequence composition of the -35 promoter element is responsible for substantial divergence in strengths of the promoters; (2) variations in repression result from the TA repressor complex acting at different steps in the transcription initiation process; (3) transcription from an additional promoter upstream of pat also contributes to the observed inefficient repression of axe-txe module. This study provides evidence that even closely related TA cassettes with high sequence similarity in the promoter/operator region may employ diverse mechanisms for transcriptional regulation of their genes.
Collapse
|
7
|
Burbank LP, Stenger DC. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine. PHYTOPATHOLOGY 2017; 107:388-394. [PMID: 27938243 DOI: 10.1094/phyto-10-16-0374-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| | - Drake C Stenger
- United States Department of Agriculture-Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757
| |
Collapse
|
8
|
Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem 2017; 61:37-48. [PMID: 28258228 DOI: 10.1042/ebc20160057] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/20/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Acquisition of antibiotic resistance is a relevant problem for human health. The selection and spread of antibiotic-resistant organisms not only compromise the treatment of infectious diseases, but also the implementation of different therapeutic procedures as organ transplantation, advanced surgery or chemotherapy, all of which require proficient methods for avoiding infections. It has been generally accepted that the acquisition of antibiotic resistance will produce a general metabolic burden: in the absence of selection, the resistant organisms would be outcompeted by the susceptible ones. If that was always true, discontinuation of antibiotic use would render the disappearance of resistant microorganisms. However, several studies have shown that, once resistance emerges, the recovery of a fully susceptible population even in the absence of antibiotics is not easy. In the present study, we review updated information on the effect of the acquisition of antibiotic resistance in bacterial physiology as well as on the mechanisms that allow the compensation of the fitness costs associated with the acquisition of resistance.
Collapse
|
9
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
10
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
11
|
Chan WT, Espinosa M, Yeo CC. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol Biosci 2016; 3:9. [PMID: 27047942 PMCID: PMC4803016 DOI: 10.3389/fmolb.2016.00009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 12/21/2022] Open
Abstract
In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
Collapse
Affiliation(s)
- Wai Ting Chan
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Espinosa
- Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal Abidin Kuala Terengganu, Malaysia
| |
Collapse
|
12
|
Morroni G, Di Cesare A, Di Sante L, Brenciani A, Vignaroli C, Pasquaroli S, Giovanetti E, Sabatino R, Rossi L, Magnani M, Biavasco F. Enterococcus faecium ST17 from Coastal Marine Sediment Carrying Transferable Multidrug Resistance Plasmids. Microb Drug Resist 2016; 22:523-530. [PMID: 26982016 DOI: 10.1089/mdr.2015.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Enterococcus faecium 17i48, sequence type 17, from marine sediment, carrying erm(B), tet(M), and tet(L) genes, was analyzed for the presence of antibiotic resistance plasmids and for the ability to transfer resistance genes. The strain was found to harbor the replicon type (repA) of pRE25, pRUM, pHTβ, and the axe-txe toxin-antitoxin (TA) system. In mating experiments, tet(M) and tet(L) were cotransferred with the repApRE25, whereas erm(B) was consistently cotransferred with the axe-txe and repApRUM, suggesting that tetracycline and erythromycin resistance genes were carried on different elements both transferable by conjugation, likely via pHTβ-mediated mobilization. Hybridization and PCR mapping demonstrated that tet(M) and tet(L) were located in tandem on a pDO1-like plasmid that also carried the repApRE25, whereas erm(B) was carried by a pRUM-like plasmid. Sequencing of the latter plasmid showed a high nucleotide identity with pRUM and the presence of cat, aadE, sat4, and a complete aphA resistance genes. These findings show that the genetic features of E. faecium 17i48 are consistent with a hospital-adapted clone and suggest that antibiotic resistance may spread in the environment, also in the absence of antibiotic pressure, due to TA system plasmid maintenance.
Collapse
Affiliation(s)
- Gianluca Morroni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Di Cesare
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Laura Di Sante
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Brenciani
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Carla Vignaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Sonia Pasquaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Eleonora Giovanetti
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Raffaella Sabatino
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Luigia Rossi
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Mauro Magnani
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Francesca Biavasco
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| |
Collapse
|
13
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
14
|
Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 2014; 6:304-24. [PMID: 24434905 PMCID: PMC3920263 DOI: 10.3390/toxins6010304] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution.
Collapse
|