1
|
Wei G, Yue Feng MT, Si Z, Chan-Park MB. Single-Cell Oral Delivery Platform for Enhanced Acid Resistance and Intestinal Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21498-21508. [PMID: 38640442 DOI: 10.1021/acsami.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Oral delivery of cells, such as probiotics and vaccines, has proved to be inefficient since cells are generally damaged in an acidic stomach prior to arrival at the intestine to exert their health benefits. In addition, short retention in the intestine is another obstacle which affects inefficiency. To overcome these obstacles, a cell-in-shell structure was designed with pH-responsive and mucoadhesive properties. The pH-responsive shell consisting of three cationic layers of chitosan and three anionic layers of trans-cinnamic acid (t-CA) was made via layer-by-layer (LbL) assembly. t-CA layers are hydrophobic and impermeable to protons in acid, thus enhancing cell gastric resistance in the stomach, while chitosan layers endow strong interaction between the cell surface and the mucosal wall which facilitates cell mucoadhesion in the intestine. Two model cells, probiotic L. rhamnosus GG and dead Streptococcus iniae, which serve as inactivated whole-cell vaccine were chosen to test the design. Increased survival and retention during oral administration were observed for coated cells as compared with naked cells. Partial removal of the coating (20-60% removal) after acid treatment indicates that the coated vaccine can expose its surface immunogenic protein after passage through the stomach, thus facilitating vaccine immune stimulation in the intestine. As a smart oral delivery platform, this design can be extended to various macromolecules, thus providing a promising strategy to formulate oral macromolecules in the prevention and treatment of diseases at a cellular level.
Collapse
Affiliation(s)
- Guangmin Wei
- NTU Food Technology Centre, Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore 637459, Singapore
| | - Moon Tay Yue Feng
- NTU Food Technology Centre, Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore 637459, Singapore
| | - Zhangyong Si
- NTU Food Technology Centre, Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore 637459, Singapore
| | - Mary B Chan-Park
- NTU Food Technology Centre, Centre for Antimicrobial Bioengineering, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), Singapore 637459, Singapore
| |
Collapse
|
2
|
Lim J, Jang Y, Han HJ, Hong S. Molecular mechanisms of the virulence and efficacy of a highly virulent Vibrio anguillarum strain and its formalin-inactivated vaccine in rainbow trout. JOURNAL OF FISH DISEASES 2023; 46:563-574. [PMID: 36872644 DOI: 10.1111/jfd.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
In this study, we have isolated four strains of Vibrio anguillarum, revealing that they share the same serotype of O1, biochemical characteristics and virulence factor genes. However, there were differences in haemolytic activity among the bacterial strains; a strain with lower pathogenicity showed γ-haemolytic activity, whereas other virulent strains showed α-haemolytic activity on blood agar and higher empA gene expression in RTG-2 cell line. The most virulent strain was V. anguillarum RTBHR from diseased masu salmon (Oncorhynchus masou), which resulted in mortality of 100% and 93.3% when injected intraperitoneally at concentrations of 9 × 105 and 6.3 × 105 colony-forming units/fish in rainbow trout (Oncorhynchus mykiss) and Coho salmon (Oncorhynchus kisutch), respectively. A formalin-inactivated vaccine of V. anguillarum RTBHR induced a protective and specific immunity in rainbow trout as the vaccinated fish exhibited low cumulative mortality in a challenge test and a high specific antibody response in enzyme-linked immunosorbent assay at 8 weeks post-vaccination. The produced antibody was bound to bacterial proteins of 30-37 kDa in size. This adaptive immune response was detected as early as day 1, with quantitative polymerase chain reaction analysis revealing the upregulated expression of genes encoding for TCRα, T-bet, mIgM and sIgM in rainbow trout. This suggested that the vaccine induced T (probably a more dominant Th1 response) and B cell responses. In conclusion, the vaccine successfully protected fish from V. anguillarum infection by eliciting cellular and humoral immune responses.
Collapse
Affiliation(s)
- Jongwon Lim
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yoonyoung Jang
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Suhee Hong
- Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
3
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
4
|
Lim J, Hong S. Transcriptome Analysis in the Head Kidney of Rainbow Trout ( Oncorhynchus mykiss) Immunized with a Combined Vaccine of Formalin-Inactivated Aeromonas salmonicida and Vibrio anguillarum. Vaccines (Basel) 2021; 9:vaccines9111234. [PMID: 34835165 PMCID: PMC8619301 DOI: 10.3390/vaccines9111234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to identify the molecular mechanisms regulated by a combined vaccine against Aeromonas salmonicida and Vibrio anguillarum (O1 serotype). These bacteria cause furunculosis and vibriosis, respectively, and are associated with a high mortality in rainbow trout in Korea. The vaccine upregulated gene expression of TCRα, T-bet, sIgM, and mIgM, markers of an activated adaptive immune response. On days 1, 3, and 5, transcriptome analysis revealed 862 (430 up- and 432 downregulated), 492 (204 up- and 288 downregulated), and 741 (270 up- and 471 downregulated) differentially expressed genes (DEGs), respectively. Gene ontology (GO) enrichment analysis identified 377 (108 MF, 132 CC, 137 BP), 302 (60 MF, 180 CC, 62 BP), and 314 (115 MF, 129 CC, 70 BP) GOs at days 1, 3, and 5, respectively. Kyoto Encyclopedia of Genetic and Genomic enrichment analysis identified eight immune system-related pathways like cytokine-cytokine receptor interaction, NF-kappaB signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, cytosolic DNA sensing pathway, cell adhesion molecule, complement and coagulation cascade, and antigen processing and presentation. In the analysis of the protein–protein interaction of immune-related DEGs, a total of 59, 21, and 21 interactional relationships were identified at days 1, 3, and 5, respectively, with TNF having the highest centrality at all three time points.
Collapse
|
5
|
Miao KZ, Kim GY, Meara GK, Qin X, Feng H. Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Front Cell Dev Biol 2021; 9:660969. [PMID: 34095125 PMCID: PMC8173129 DOI: 10.3389/fcell.2021.660969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
The future of improved immunotherapy against cancer depends on an in-depth understanding of the dynamic interactions between the immune system and tumors. Over the past two decades, the zebrafish has served as a valuable model system to provide fresh insights into both the development of the immune system and the etiologies of many different cancers. This well-established foundation of knowledge combined with the imaging and genetic capacities of the zebrafish provides a new frontier in cancer immunology research. In this review, we provide an overview of the development of the zebrafish immune system along with a side-by-side comparison of its human counterpart. We then introduce components of the adaptive immune system with a focus on their roles in the tumor microenvironment (TME) of teleosts. In addition, we summarize zebrafish models developed for the study of cancer and adaptive immunity along with other available tools and technology afforded by this experimental system. Finally, we discuss some recent research conducted using the zebrafish to investigate adaptive immune cell-tumor interactions. Without a doubt, the zebrafish will arise as one of the driving forces to help expand the knowledge of tumor immunity and facilitate the development of improved anti-cancer immunotherapy in the foreseeable future.
Collapse
Affiliation(s)
- Kelly Z Miao
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace Y Kim
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Grace K Meara
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Xiaodan Qin
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Hui Feng
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States.,Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
6
|
Firmino JP, Fernández-Alacid L, Vallejos-Vidal E, Salomón R, Sanahuja I, Tort L, Ibarz A, Reyes-López FE, Gisbert E. Carvacrol, Thymol, and Garlic Essential Oil Promote Skin Innate Immunity in Gilthead Seabream ( Sparus aurata) Through the Multifactorial Modulation of the Secretory Pathway and Enhancement of Mucus Protective Capacity. Front Immunol 2021; 12:633621. [PMID: 33777020 PMCID: PMC7994269 DOI: 10.3389/fimmu.2021.633621] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
One of the main targets for the use of phytogenics in aquafeeds is the mucosal tissues as they constitute a physical and biochemical shield against environmental and pathogenic threats, comprising elements from both the innate and acquired immunity. In the present study, the modulation of the skin transcriptional immune response, the bacterial growth capacity in skin mucus, and the overall health condition of gilthead seabream (Sparus aurata) juveniles fed a dietary supplementation of garlic essential oil, carvacrol, and thymol were assessed. The enrichment analysis of the skin transcriptional profile of fish fed the phytogenic-supplemented diet revealed the regulation of genes associated to cellular components involved in the secretory pathway, suggesting the stimulation, and recruitment of phagocytic cells. Genes recognized by their involvement in non-specific immune response were also identified in the analysis. The promotion of the secretion of non-specific immune molecules into the skin mucus was proposed to be involved in the in vitro decreased growth capacity of pathogenic bacteria in the mucus of fish fed the phytogenic-supplemented diet. Although the mucus antioxidant capacity was not affected by the phytogenics supplementation, the regulation of genes coding for oxidative stress enzymes suggested the reduction of the skin oxidative stress. Additionally, the decreased levels of cortisol in mucus indicated a reduction in the fish allostatic load due to the properties of the tested additive. Altogether, the dietary garlic, carvacrol, and thymol appear to promote the gilthead seabream skin innate immunity and the mucus protective capacity, decreasing its susceptibility to be colonized by pathogenic bacteria.
Collapse
Affiliation(s)
- Joana P Firmino
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,TECNOVIT-FARMFAES, S.L. Pol. Ind. Les Sorts, Alforja, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Fernández-Alacid
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eva Vallejos-Vidal
- Departamento de Biología, Facultad de Química y Biología, Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Ricardo Salomón
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain.,Ph.D. Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ignasi Sanahuja
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antoni Ibarz
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Felipe E Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Enric Gisbert
- IRTA, Centre de Sant Carles de la Ràpita (IRTA-SCR), Aquaculture Program, Sant Carles de la Ràpita, Spain
| |
Collapse
|
7
|
Abstract
Vibrio is a large and diverse genus of bacteria, of which most are nonpathogenic species found in the aquatic environment. However, a subset of the Vibrio genus includes several species that are highly pathogenic, either to humans or to aquatic animals. In recent years, Danio rerio, commonly known as the zebrafish, has emerged as a major animal model used for studying nearly every aspect of biology, including infectious diseases. Zebrafish are especially useful because the embryos are transparent, larvae are small and facilitate imaging studies, and numerous transgenic fish strains have been constructed. Zebrafish models for several pathogenic Vibrio species have been described, and indeed a fish model is highly relevant for the study of aquatic bacterial pathogens. Here, we summarize the zebrafish models that have been used to study pathogenic Vibrio species to date.
Collapse
Affiliation(s)
- Dhrubajyoti Nag
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dustin A Farr
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Madison G Walton
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
8
|
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, Chadzinska M. RNA-Seq analysis of the guppy immune response against Gyrodactylus bullatarudis infection. Parasite Immunol 2020; 42:e12782. [PMID: 32738163 DOI: 10.1111/pim.12782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.
Collapse
Affiliation(s)
- Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Amy R Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Karl P Phillips
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,Marine Institute, Furnace, Newport, Ireland.,School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Ryan S Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies Zoology Museum, St. Augustine, Trinidad and Tobago
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Li J, Xue L, Cao M, Zhang Y, Wang Y, Xu S, Zheng B, Lou Z. Gill transcriptomes reveal expression changes of genes related with immune and ion transport under salinity stress in silvery pomfret (Pampus argenteus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1255-1277. [PMID: 32162151 DOI: 10.1007/s10695-020-00786-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major ecological factor in the marine environment, and extremely important for the survival, development, and growth of fish. In this study, gill transcriptomes were examined by high-throughput sequencing at three different salinities (12 ppt as low salinity, 22 ppt as control salinity, and 32 ppt as high salinity) in an importantly economical fish silvery pomfret. A total of 187 genes were differentially expressed, including 111 up-regulated and 76 down-regulated transcripts in low-salinity treatment group and 107 genes differentially expressed, including 74 up-regulated and 33 down-regulated transcripts in high-salinity treatment group compared with the control group, respectively. Some pathways including NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor pathway, cardiac muscle contraction, and vascular smooth muscle contraction were significantly enriched. qPCR analysis further confirmed that mRNA expression levels of immune (HSP90A, IL-1β, TNFα, TLR2, IP-10, MIG, CCL19, and IL-11) and ion transport-related genes (WNK2, NPY2R, CFTR, and SLC4A2) significantly changed under salinity stress. Low salinity stress caused more intensive expression changes of immune-related genes than high salinity. These results imply that salinity stress may affect immune function in addition to regulating osmotic pressure in silvery pomfret.
Collapse
Affiliation(s)
- Juan Li
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Liangyi Xue
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China.
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, People's Republic of China.
| | - Mingyue Cao
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yu Zhang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Yajun Wang
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Shanliang Xu
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Baoxiao Zheng
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| | - Zhengjia Lou
- College of Marine Science, Ningbo University, 169 Qixing South Road, Meishan Bonded Port, Ningbo, 315832, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
11
|
Zhou S, Tu X, Pang H, Hoare R, Monaghan SJ, Luo J, Jian J. A T3SS Regulator Mutant of Vibrio alginolyticus Affects Antibiotic Susceptibilities and Provides Significant Protection to Danio rerio as a Live Attenuated Vaccine. Front Cell Infect Microbiol 2020; 10:183. [PMID: 32411620 PMCID: PMC7198820 DOI: 10.3389/fcimb.2020.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Vibrio alginolyticus is a major cause of Vibriosis in farmed marine aquatic animals and has caused large economic losses to the Asian aquaculture industry in recent years. Therefore, it is necessary to control V. alginolyticus effectively. The virulence mechanism of V. alginolyticus, the Type III secretion system (T3SS), is closely related to its pathogenicity. In this study, the T3SS gene tyeA was cloned from V. alginolyticus wild-type strain HY9901 and the results showed that the deduced amino acid sequence of V. alginolyticus tyeA shared 75–83% homology with other Vibrio spp. The mutant strain HY9901ΔtyeA was constructed by Overlap-PCR and homologous recombination techniques. The HY9901ΔtyeA mutant exhibited an attenuated swarming phenotype and an ~40-fold reduction in virulence to zebrafish. However, the HY9901ΔtyeA mutant showed no difference in growth, biofilm formation and ECPase activity. Antibiotic susceptibility test was observed that wild and mutant strains were extremely susceptible to Amikacin, Minocycline, Gentamicin, Cefperazone; and resistant to oxacillin, clindamycin, ceftazidime. In contrast wild strains are sensitive to tetracycline, chloramphenicol, kanamycin, doxycycline, while mutant strains are resistant to them. qRT-PCR was employed to analyze the transcription levels of T3SS-related genes, the results showed that compared with HY9901 wild type, ΔtyeA had increased expression of vscL, vscK, vscO, vopS, vopN, vscN, and hop. Following vaccination with the mutant strain, zebrafish had significantly higher survival than controls following infection with the wild-type HY9901 (71.2% relative percent survival; RPS). Analysis of immune gene expression by qPCR showed that vaccination with HY9901ΔtyeA increased the expression of IgM, IL-1β, IL-6, and TNF-α in zebrafish. This study provides evidence of protective efficacy of a live attenuated vaccine targeting the T3SS of V. alginolyticus which may be facilitated by up-regulated pro-inflammatory and immunoglobulin-related genes.
Collapse
Affiliation(s)
- Shihui Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueting Tu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huanying Pang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rowena Hoare
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Sean J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Jiajun Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Jichan Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China.,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China.,Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Overexpression of T-bet, GATA-3 and TGF-ß Induces IFN-γ, IL-4/13A, and IL-17A Expression in Atlantic Salmon. BIOLOGY 2020; 9:biology9040082. [PMID: 32326041 PMCID: PMC7235720 DOI: 10.3390/biology9040082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/16/2022]
Abstract
The overexpression of GATA-3, T-bet and TGF-ß may theoretically induce IL-4/A, IFN-γ and IL-17A expression, respectively. Whether this also applies to fish is not yet known. The plasmid vectors encoding reporter gene (RFP)-tagged T-bet, GATA-3 and TGF-ß were used as overexpression tools, transfected into cells or injected intramuscularly to monitor the expression of IFN-γ, IL-4/13A and IL-17A. In addition, the fish were either experimentally challenged with Vibrio anguillarum (VA group) or Piscirickettsia salmonis (PS group). The reporter gene (RFP) inserted upstream of the GATA-3, T-bet and TGF-ß genes, was observed in muscle cell nuclei and in inflammatory cells after intramuscular (i.m.) injection. PS group: following the injection of GATA-3 and T-bet-encoding plasmids, the expression of GATA-3 and T-bet was high at the injection site. The spleen expression of IFN-γ, following the injection of a T-bet-encoding plasmid, was significantly higher on day 2. VA group: The T-bet and GATA-3-overexpressing fish expressed high T-bet and GATA-3 mRNA levels in the muscles and on day 4 post-challenge. The expression of TGF-ß in the muscles of fish injected with TGF-ß-encoding plasmids was significantly higher on days 7 (8 days pre-challenge) and 19 (4 days after challenge). The protective effects of the overexpression of T-bet, GATA-3 and TGF-ß on both bacterial infections were negligible.
Collapse
|
13
|
Zhang Y, Zhang X, Liang Z, Dai K, Zhu M, Zhang M, Pan J, Xue R, Cao G, Tang J, Song X, Hu X, Gong C. Interleukin-17 suppresses grass carp reovirus infection in Ctenopharyngodon idellus kidney cells by activating NF-κB signaling. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2020; 520:734969. [PMID: 32287459 PMCID: PMC7112052 DOI: 10.1016/j.aquaculture.2020.734969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
The grass carp accounts for a large proportion of aquacultural production in China, but the hemorrhagic disease caused by grass carp reovirus (GCRV) infection often causes huge economic losses to the industry. Interleukin 17 (IL-17) is an important cytokine that plays a critical role in the inflammatory and immune responses. Although IL-17 family members have been extensively studied in mammals, our knowledge of the activity of IL-17 proteins in teleosts in response to viral infection is still limited. In this study, the role of IL-17 in GCRV infection and its mechanism were investigated. The expression levels of IL-17AF1, IL-17AF2, and IL-17AF3 in Ctenopharyngodon idella kidney (CIK) cells gradually increased from 6 h after infection with GCRV. The nuclear translocation of p65, which acts in the NF-κB signaling pathway, was also increased by GCRV infection. The overexpression of IL-17AF1, IL-17AF2, or IL-17AF3 also promoted the nuclear translocation of p65 and the levels of phospho-IκBα in CIK cells, and reduced the expression of the viral structural protein VP7. An NF-κB signal inhibitor abolished the inhibition of GCRV infection by IL-17 proteins. These results suggested that the NF-κB signaling pathway was activated by the overexpression of IL-17 proteins, resulting in the inhibition of viral infection. In conclusion, in this study, we demonstrated that IL-17AF1, IL-17AF2, and IL-17AF3 acted as immune cytokines, exerting an antiviral effect by activating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunshan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kun Dai
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingtian Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jun Pan
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Jian Tang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuehong Song
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
- Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Park G, Burroughs-Garcia J, Foster CA, Hasan A, Borga C, Frazer JK. Zebrafish B cell acute lymphoblastic leukemia: new findings in an old model. Oncotarget 2020; 11:1292-1305. [PMID: 32341750 PMCID: PMC7170496 DOI: 10.18632/oncotarget.27555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric, and ninth most common adult, cancer. ALL can develop in either B or T lymphocytes, but B-lineage ALL (B-ALL) exceeds T-ALL clinically. As for other cancers, animal models allow study of the molecular mechanisms driving ALL. Several zebrafish (Danio rerio) T-ALL models have been reported, but until recently, robust D. rerio B-ALL models were not described. Then, D. rerio B-ALL was discovered in two related zebrafish transgenic lines; both were already known to develop T-ALL. Here, we report new B-ALL findings in one of these models, fish expressing transgenic human MYC (hMYC). We describe B-ALL incidence in a large cohort of hMYC fish, and show B-ALL in two new lines where T-ALL does not interfere with B-ALL detection. We also demonstrate B-ALL responses to steroid and radiation treatments, which effect ALL remissions, but are usually followed by prompt relapses. Finally, we report gene expression in zebrafish B lymphocytes and B-ALL, in both bulk samples and single B- and T-ALL cells. Using these gene expression profiles, we compare differences between the two new D. rerio B-ALL models, which are both driven by transgenic mammalian MYC oncoproteins. Collectively, these new data expand the utility of this new vertebrate B-ALL model.
Collapse
Affiliation(s)
- Gilseung Park
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,These authors contributed equally to this work
| | - Jessica Burroughs-Garcia
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,These authors contributed equally to this work
| | - Clay A Foster
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.,These authors contributed equally to this work
| | - Ameera Hasan
- Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chiara Borga
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - J Kimble Frazer
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pediatrics, Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Wangkahart E, Secombes CJ, Wang T. Dissecting the immune pathways stimulated following injection vaccination of rainbow trout (Oncorhynchus mykiss) against enteric redmouth disease (ERM). FISH & SHELLFISH IMMUNOLOGY 2019; 85:18-30. [PMID: 28757198 DOI: 10.1016/j.fsi.2017.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/18/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Enteric redmouth disease (ERM or yersiniosis) is one of the most important diseases of salmonids and leads to significant economic losses. It is caused by the Gram-negative bacterium Yersinia ruckeri but can be controlled by bacterin vaccination. The first commercial ERM vaccine was licenced in 1976 and is one of the most significant and successful health practices within the aquaculture industry. Although ERM vaccination provides complete protection, knowledge of the host immune response to the vaccine and the molecular mechanisms that underpin the protection elicited is limited. In this report, we analysed the expression in spleen and gills of a large set of genes encoding for cytokines, acute phase proteins (APPs) and antimicrobial peptides (AMPs) in response to ERM vaccination in rainbow trout, Oncorhynchus mykiss. Many immune genes in teleost fish are known to have multiple paralogues that can show differential responses to ERM vaccination, highlighting the necessity to determine whether all of the genes present react in a similar manner. ERM vaccination immediately activated a balanced inflammatory response with correlated expression of both pro- and anti-inflammatory cytokines (eg IL-1β1-2, TNF-α1-3, IL-6, IL-8 and IL-10A etc.) in the spleen. The increase of pro-inflammatory cytokines may explain the systemic upregulation of APPs (eg serum amyloid A protein and serum amyloid protein P) and AMPs (eg cathelicidins and hepcidin) seen in both spleen and gills. We also observed an upregulation of all the α-chains but only one β-chain (p40B2) of the IL-12 family cytokines, that suggests specific IL-12 and IL-23 isoforms with distinct functions might be produced in the spleen of vaccinated fish. Notably the expression of Th1 cytokines (IFN-γ1-2) and a Th17 cytokine (IL-17A/F1a) was also up-regulated and correlated with enhanced expression of the IL-12 family α-chains, and the majority of pro- and anti-inflammatory cytokines, APPs and AMPs. These expression profiles may suggest that ERM vaccination activates host innate immunity and expression of specific IL-12 and IL-23 isoforms leading to a Th1 and Th17 biased immune response. A late induction of Th2 cytokines (IL-4/13B1-2) was also observed, that may have a homeostatic role and/or involvement in antibody production. This study has increased our understanding of the host immune response to ERM vaccination and the adaptive pathways involved. The early responses of a set of genes established in this study may provide essential information and function as biomarkers in future vaccine development in aquaculture.
Collapse
Affiliation(s)
- Eakapol Wangkahart
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham 44150, Thailand
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
16
|
Zhang R, Wu K, Ke X, Zhang X, Xu G, Shen H, Nibona E, Al Hafiz A, Liang X, Wang Z, Qi C, Zhou Q, Zhong X, Zhao H. Bcl6aa and bcl6ab are ubiquitously expressed and are inducible by lipopolysaccharide and polyI:C in adult tissues of medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:17-25. [PMID: 30680935 DOI: 10.1002/jez.b.22843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/17/2019] [Indexed: 11/10/2022]
Abstract
B-cell lymphoma-6 (Bcl6) is a transcriptional repressor that plays important roles in various physiological activities such as innate and adaptive immune response, lymphocyte differentiation, and cell cycle regulation in mammals. Two homologs of Bcl6a, namely Bcl6aa and Bcl6ab, are identified in teleost fish including medaka Oryzias latipes. The expression profiles of bcl6aa and bcl6ab in medaka were studied using reverse-transcription polymerase chain reaction and in situ hybridization. The transcripts of bcl6aa and bcl6ab were detected from very early embryos such as the four-cell stage until hatching. Bcl6aa and bcl6ab were clearly detected in the embryonic body from 5 days postfertilization onward by in situ hybridization. Bcl6aa was specifically expressed in the retina, whereas bcl6ab was expressed in entire embryonic body. The results referred to that both bcl6aa and bcl6ab originate maternally in the zygotes and may play major roles in embryogenesis of medaka. The transcripts of bcl6aa and bcl6ab were detected in all examined adult tissues, including immune organs such as the gill, spleen, kidney, liver, and intestine. The expression of bcl6aa and bcl6ab in the liver, spleen, head-kidney, and intestine could be upregulated or downregulated by lipopolysaccharide and polyriboinosinic-polyribocytidylic acid. These results indicate that both bcl6aa and bcl6ab may be involved in immune response in medaka.
Collapse
Affiliation(s)
- Runshuai Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kongyue Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaomei Ke
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueyan Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Gongyu Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Hao Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Emile Nibona
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Abdullah Al Hafiz
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xiaoting Liang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zequn Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chao Qi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
17
|
Yang M, Wang Q, Wang S, Wang Y, Zeng Q, Qin Q. Transcriptomics analysis reveals candidate genes and pathways for susceptibility or resistance to Singapore grouper iridovirus in orange-spotted grouper (Epinephelus coioides). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:70-79. [PMID: 30195709 PMCID: PMC7102672 DOI: 10.1016/j.dci.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 05/05/2023]
Abstract
In this study, the transcriptional response of grouper to Singapore grouper iridovirus (SGIV) stimulation was characterized using RNA sequencing. Transcriptome sequencing of three test groups in the grouper was performed using the Illumina MiSeq platform. The three test groups were a control group, which was injected with PBS buffer; a high-susceptible (HS) group, which died shortly after the SGIV injection; and a high-resistance (HR) group, which survived the SGIV injection. In total, 38,253 unigenes were generated. When the HS group was compared with the control group, 885 unigenes were upregulated and 487 unigenes were downregulated. When the HR and control groups were compared, 1114 unigenes were upregulated and 420 were downregulated, and when the HR and HS groups were compared, 1010 unigenes were upregulated and 375 were downregulated. In the KEGG analysis, two immune-related pathways, the p53 and peroxisome proliferator-activated receptor pathways, were detected with highly significant enrichment. In addition, 7465 microsatellites and 22,1569 candidate single nucleotide polymorphisms were identified from our transcriptome data. The results suggested several pathways that are associated with traits of disease susceptibility or disease resistance, and provided extensive information about novel gene sequences, gene expression profiles, and genetic markers. This may contribute to vaccine research and a breeding program against SGIV infection in grouper.
Collapse
Affiliation(s)
- Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Zhang Q, Ji C, Ren J, Zhang Q, Dong X, Zu Y, Jia L, Li W. Differential transcriptome analysis of zebrafish (Danio rerio) larvae challenged by Vibrio parahaemolyticus. JOURNAL OF FISH DISEASES 2018; 41:1049-1062. [PMID: 29572872 DOI: 10.1111/jfd.12796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Zebrafish embryo and larva represent a useful in vivo model for identification of host innate immune responses to bacterial infection. Vibrio parahaemolyticus is a typical zoonotic pathogen worldwide that causes acute gastroenteritis in humans and vibriosis in fishes. However, the mechanism of the innate immune response in the zebrafish larvae infected by V. parahaemolyticus has not been clear. We analysed the transcriptomic profile of 3 days post-fertilization (dpf) zebrafish larvae immersed in V. parahaemolyticus 13 (Vp13) strain suspension for 2 hr. A total of 602 differentially expressed genes (DEGs) were identified in the infection group, of which 175 (29.07%) genes were upregulated and 427 (70.93%) genes were downregulated. These altered genes encoded complement and coagulation cascades, chemokine, TNF signalling pathway, NF-κB signalling pathway and JAK-STAT signalling pathway. Some significant DEGs, such as mmp13, cxcr4a, ccl20, hsp70, gngt, serpina1l, il8, cofilin and il11, were subjected to quantitative gene expression analysis, and the results were consistent with those of the transcriptome profile. These results clearly demonstrated that exposure to V. parahaemolyticus for 2 hr could activate innate immune response in 3dpf larvae by altered expression of downstream signalling pathway genes of pattern recognition receptors (PRRs). Our results also provide a useful reference for future analysis of signal transduction pathways and pathogenesis mechanisms underlying the systemic innate immune response to the external bacteria of V. parahaemolyticus.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Ce Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Qiuyue Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Xuehong Dong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Liang Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Weiming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Liu X, Jiao C, Ma Y, Wang Q, Zhang Y. A live attenuated Vibrio anguillarum vaccine induces efficient immunoprotection in Tiger puffer (Takifugu rubripes). Vaccine 2018; 36:1460-1466. [DOI: 10.1016/j.vaccine.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
|
20
|
Wang L, Shao C, Xu W, Zhou Q, Wang N, Chen S. Proteome profiling reveals immune responses in Japanese flounder (Paralichthys olivaceus) infected with Edwardsiella tarda by iTRAQ analysis. FISH & SHELLFISH IMMUNOLOGY 2017; 66:325-333. [PMID: 28511951 DOI: 10.1016/j.fsi.2017.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
The liver is an important organ for bacterial pathogen attack in fish. The differential proteomic response of the Japanese flounder liver to Edwardsiella tarda infection was examined using isobaric tags for relative and absolute quantitation (iTRAQ) labeling followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 3290 proteins were identified and classified into categories related to biological process (51.4%), molecular function (63.6%), and cellular component (57.7%). KEGG enrichment analysis indicated the complement and coagulation cascade pathways and the mineral absorption pathway were significantly enriched. Among the differentially expressed proteins, those involved in mediating complement cascade (e.g. complement component C7, C8, C9, complement factor H, complement factor Bf/C2) and mineral absorption (e.g. ferritin, STEAP-4) were most significantly upregulated during infection. Subsequently, five significantly upregulated (C4, C8beta, ferritin middle subunit, PRDX4-like and KRT18) and one significantly downregulated (transferrin) candidate immune proteins were validated by multiple reaction monitoring (MRM) assays. Furthermore, changes in expression of 15 proteins in the complement cascade and mineral absorption pathways were validated at the transcriptional level using quantitative real-time PCR (qPCR). The transcriptional levels of four transcription factors (p21Ras, Rab-31-like, NF-κB, STAT3) were also investigated by qPCR following infection with E. tarda. This study contributes to understanding the defense mechanisms of the liver in fish.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Changwei Shao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wenteng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qian Zhou
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
Cai X, Wang B, Peng Y, Li Y, Lu Y, Huang Y, Jian J, Wu Z. Construction of a Streptococcus agalactiae phoB mutant and evaluation of its potential as an attenuated modified live vaccine in golden pompano, Trachinotus ovatus. FISH & SHELLFISH IMMUNOLOGY 2017; 63:405-416. [PMID: 27884809 DOI: 10.1016/j.fsi.2016.11.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/19/2016] [Indexed: 06/06/2023]
Abstract
Streptococcus agalactiae is a Gram-positive pathogen that can survive inside professional phagocytes and nonphagocytic cells to cause septicemia and meningoencephalitis in freshwater and marine fish. However, vaccines based on extracellular products (ECP) and formalin-killed whole S. agalactiae cells, as well as subunit vaccine are unable to protect fish from infection by variant serotypes S. agalactiae. The search for live attenuated vaccine with highly conserved and virulent-related genes is essential for producing a vaccine to help understand and control streptococcosis In this study, the phoB gene was cloned from pathogenic S. agalactiae TOS01 strain and the mutant strain SAΔphoB was constructed via allelic exchange mutagenesis. The results showed that the deduced amino acid of S. agalactiae TOS01 shares high similarities with other Streptococcus spp. and has high conserved response regulator receiver domain (REC) and DNA-binding effector domain of two-component system response regulators (Trans_reg_C). Cell adherence and invasion assays, challenge experiments and histopathological changes post-vaccination were performed and observed, the results showed that the mutant strain SAΔphoB has a lower adherence and invasion rate and less virulent than the wild type strain in golden pompano, and it doesn't induce clinical symptoms and obvious pathological changes in golden pompano, thereby indicating that the deletion of phoB affects the virulence and infectious capacity of S. agalactiae. Golden pompano vaccinated via intraperitoneal injection SAΔphoB had the relative percent survival value of 93.1% after challenge with TOS01, demonstrating its high potential as an effective attenuated live vaccine candidate. Real-time PCR assays showed that the SAΔphoB was able to enhance the expression of immune-related genes, including MHC-I, MyD88, IL-22 and IL-10 after vaccination, indicating that the SAΔphoB is able to induce humoral and cell-mediated immune response in golden pompano over a long period of time.
Collapse
Affiliation(s)
- Xiaohui Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Marine Biotechnology, Guangxi Institute of Oceanology, Beihai, 536000, China
| | - Yuan Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, 524025, China.
| |
Collapse
|
22
|
Kim JO, Kim JO, Kim WS, Oh MJ. Characterization of the Transcriptome and Gene Expression of Brain Tissue in Sevenband Grouper (Hyporthodus septemfasciatus) in Response to NNV Infection. Genes (Basel) 2017; 8:genes8010031. [PMID: 28098800 PMCID: PMC5295026 DOI: 10.3390/genes8010031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Grouper is one of the favorite sea food resources in Southeast Asia. However, the outbreaks of the viral nervous necrosis (VNN) disease due to nervous necrosis virus (NNV) infection have caused mass mortality of grouper larvae. Many aqua-farms have suffered substantial financial loss due to the occurrence of VNN. To better understand the infection mechanism of NNV, we performed the transcriptome analysis of sevenband grouper brain tissue, the main target of NNV infection. After artificial NNV challenge, transcriptome of brain tissues of sevenband grouper was subjected to next generation sequencing (NGS) using an Illumina Hi-seq 2500 system. Both mRNAs from pooled samples of mock and NNV-infected sevenband grouper brains were sequenced. Clean reads of mock and NNV-infected samples were de novo assembled and obtained 104,348 unigenes. In addition, 628 differentially expressed genes (DEGs) in response to NNV infection were identified. This result could provide critical information not only for the identification of genes involved in NNV infection, but for the understanding of the response of sevenband groupers to NNV infection.
Collapse
Affiliation(s)
- Jong-Oh Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Jae-Ok Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Wi-Sik Kim
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| | - Myung-Joo Oh
- Department of Aqualife Medicine, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea.
| |
Collapse
|
23
|
Li G, Zhao Y, Wang J, Liu B, Sun X, Guo S, Feng J. Transcriptome profiling of developing spleen tissue and discovery of immune-related genes in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 60:400-410. [PMID: 27965162 DOI: 10.1016/j.fsi.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Grass carp Ctenopharyngodon idella is an important freshwater aquaculture species. However, studies regarding transcriptomic profiling of developing spleen tissue in the grass carp are lacking. Here, the transcriptome sequencing from the spleen tissue of one-year-old (cis1) and three-year-old (cis3) grass carp was performed using Illumina paired-end sequencing technology. The de novo assemblies yielded 48,970 unigenes with average lengths of 1264.51 bp from the two libraries. The assembled unigenes were evaluated and functionally annotated by comparing with sequences in major public databases including Nr, COG, Swiss-Prot, KEGG, Pfam and GO. Comparative analysis of expression levels revealed that a total of 38,254 unigenes were expressed in both the cis1 and cis3 libraries, while 4356 unigenes were expressed only in the cis1 library, and 3312 unigenes were expressed only in the cis3 library. Meanwhile, 1782 unigenes (including 903 down-regulated and 879 up-regulated unigenes) were differentially expressed between the two developmental stages of the grass carp spleen. Based on GO and KEGG enrichment analysis, these differentially expressed genes widely participated in the regulation of immunity and response in the grass carp. Moreover, the main components of six immune-related pathways were identified, including complement and coagulation cascades, Toll-like receptor signaling, B-cell receptor signaling, T-cell receptor signaling, antigen processing and presentation, and chemokine signaling. Finally, two identified transcripts including TLR 8 and complement component C8 were validated for reliability by RT-PCR. Collectively, the results obtained in this study will provide a basis for the study of molecular mechanisms in grass carp spleen development.
Collapse
Affiliation(s)
- Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, PR China.
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Bianzhi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Xiangli Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Shuang Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Jianxin Feng
- Laboratory of Aquaculture and Genetic Breeding, Henan Academy of Fishery Science, Zhengzhou, Henan Province 450044, PR China.
| |
Collapse
|
24
|
Ma Y, Wang Q, Gao X, Zhang Y. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. J Microbiol 2016; 55:44-55. [PMID: 28035596 DOI: 10.1007/s12275-017-6370-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/28/2022]
Abstract
Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, P. R. China
| | - Xiating Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, P. R. China.
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, 200237, P. R. China.
| |
Collapse
|
25
|
Caruffo M, Navarrete NC, Salgado OA, Faúndez NB, Gajardo MC, Feijóo CG, Reyes-Jara A, García K, Navarrete P. Protective Yeasts Control V. anguillarum Pathogenicity and Modulate the Innate Immune Response of Challenged Zebrafish ( Danio rerio) Larvae. Front Cell Infect Microbiol 2016; 6:127. [PMID: 27790411 PMCID: PMC5063852 DOI: 10.3389/fcimb.2016.00127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated mechanisms involved in the protection of zebrafish (Danio rerio) larvae by two probiotic candidate yeasts, Debaryomyces hansenii 97 (Dh97) and Yarrowia lypolitica 242 (Yl242), against a Vibrio anguillarum challenge. We determined the effect of different yeast concentrations (104-107 CFU/mL) to: (i) protect larvae from the challenge, (ii) reduce the in vivo pathogen concentration and (iii) modulate the innate immune response of the host. To evaluate the role of zebrafish microbiota in protection, the experiments were performed in conventionally raised and germ-free larvae. In vitro co-aggregation assays were performed to determine a direct yeast-pathogen interaction. Results showed that both yeasts significantly increased the survival rate of conventionally raised larvae challenged with V. anguillarum. The concentration of yeasts in larvae tended to increase with yeast inoculum, which was more pronounced for Dh97. Better protection was observed with Dh97 at a concentration of 106 CFU/mL compared to 104 CFU/mL. In germ-free conditions V. anguillarum reached higher concentrations in larvae and provoked significantly more mortality than in conventional conditions, revealing the protective role of the host microbiota. Interestingly, yeasts were equally (Dh97) or more effective (Yl242) in protecting germ-free than conventionally-raised larvae, showing that protection can be exerted only by yeasts and is not necessarily related to modulation of the host microbiota. Although none of the yeasts co-aggregated with V. anguillarum, they were able to reduce its proliferation in conventionally raised larvae, reduce initial pathogen concentration in germ-free larvae and prevent the upregulation of key components of the inflammatory/anti-inflammatory response (il1b, tnfa, c3, mpx, and il10, respectively). These results show that protection by yeasts of zebrafish larvae challenged with V. anguillarum relates to an in vivo anti-pathogen effect, the modulation of the innate immune system, and suggests that yeasts avoid the host-pathogen interaction through mechanisms independent of co-aggregation. This study shows, for the first time, the protective role of zebrafish microbiota against V. anguillarum infection, and reveals mechanisms involved in protection by two non-Saccharomyces yeasts against this pathogen.
Collapse
Affiliation(s)
- Mario Caruffo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Natalie C. Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Oscar A. Salgado
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Nelly B. Faúndez
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Miguel C. Gajardo
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Carmen G. Feijóo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSantiago, Chile
| | - Paola Navarrete
- Laboratorio de Microbiología y Probióticos, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de ChileSantiago, Chile
| |
Collapse
|
26
|
Wang L, Zhang YZ, Xu WT, Jia XD, Chen SL. Molecular cloning, structure and expressional profiles of two novel single-exon genes (PoCCR6A and PoCCR6B) in the Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2016; 52:179-188. [PMID: 26997201 DOI: 10.1016/j.fsi.2016.03.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
CCR6 is an important binding receptor of CCL20 and beta-defensins, and has multiple functions in the innate and acquired immune responses. In this study, we cloned the PoCCR6A and PoCCR6B genes of the Japanese flounder and studied the gene structure and expression patterns of these two genes in bacterial infection. The full-length PoCCR6A cDNA is 1415 bp and the open reading frame (ORF) is 1113 bp, encoding a 370-amino-acid peptide. The full-length PoCCR6B cDNA is 2193 bp and the ORF is 1029 bp, encoding a 363-amino-acid peptide. The structures of PoCCR6A and PoCCR6B indicate that they are single-exon genes. The predicted proteins encoded by PoCCR6A and PoCCR6B have the typical G-protein-coupled receptor (GPCR) family signature of seven transmembrane domains and several conserved structural features. A tissue distribution analysis showed that PoCCR6A is predominately expressed in the intestine, gill, and blood, and PoCCR6B in the gill, spleen, and liver. The expression patterns of the two chemokine receptors were analyzed during bacterial infection. In spleen and kidney, the expression of PoCCR6A was significantly upregulated at 24 h after infection, whereas the expression of PoCCR6B was steady at these time points. While in intestine, both of them were upregulated at 6 h-12 h after infection, and in gill the expression levels of them were upregulated at 24 h. The patterns of expression suggested that PoCCR6A and PoCCR6B play an important role in the immune response of the Japanese flounder, especially in the mucosal tissues.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Yong-zhen Zhang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Wen-teng Xu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Xiao-dong Jia
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| | - Song-lin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China.
| |
Collapse
|
27
|
Liu X, Wu H, Liu Q, Wang Q, Xiao J, Chang X, Zhang Y. Profiling immune response in zebrafish intestine, skin, spleen and kidney bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2015; 45:342-345. [PMID: 25956722 DOI: 10.1016/j.fsi.2015.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 03/22/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
28
|
Li G, Zhao Y, Liu Z, Gao C, Yan F, Liu B, Feng J. De novo assembly and characterization of the spleen transcriptome of common carp (Cyprinus carpio) using Illumina paired-end sequencing. FISH & SHELLFISH IMMUNOLOGY 2015; 44:420-429. [PMID: 25804493 DOI: 10.1016/j.fsi.2015.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Common carp (Cyprinus carpio) is one of the most important aquacultured species of the family Cyprinidae, and breeding this species for disease resistance is becoming more and more important. However, at the genome or transcriptome levels, study of the immunogenetics of disease resistance in the common carp is lacking. In this study, 60,316,906 and 75,200,328 paired-end clean reads were obtained from two cDNA libraries of the common carp spleen by Illumina paired-end sequencing technology. Totally, 130,293 unique transcript fragments (unigenes) were assembled, with an average length of 1400.57 bp. Approximately 105,612 (81.06%) unigenes could be annotated according to their homology with matches in the Nr, Nt, Swiss-Prot, COG, GO, or KEGG databases, and they were found to represent 46,747 non-redundant genes. Comparative analysis showed that 59.82% of the unigenes have significant similarity to zebrafish Refseq proteins. Gene expression comparison revealed that 10,432 and 6889 annotated unigenes were, respectively, up- and down-regulated with at least twofold changes between two developmental stages of the common carp spleen. Gene ontology and KEGG analysis were performed to classify all unigenes into functional categories for understanding gene functions and regulation pathways. In addition, 46,847 simple sequence repeats (SSRs) were detected from 35,618 unigenes, and a large number of single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites were identified in the spleen transcriptome of common carp. This study has characterized the spleen transcriptome of the common carp for the first time, providing a valuable resource for a better understanding of the common carp immune system and defense mechanisms. This knowledge will also facilitate future functional studies on common carp immunogenetics that may eventually be applied in breeding programs.
Collapse
Affiliation(s)
- Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Yinli Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan Province 450001, PR China.
| | - Zhonghu Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Chunsheng Gao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Bianzhi Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province 450002, PR China.
| | - Jianxin Feng
- Laboratory of Aquaculture and Genetic Breeding, Henan Academy of Fishery Science, Zhengzhou, Henan Province 450044, PR China.
| |
Collapse
|
29
|
Zhang H, Wu H, Gao L, Qiu Y, Xiao J, Zhang Y. Identification, expression and immunological responses to bacterial challenge following vaccination of BLT1 gene from turbot, Scophthalmus maximus. Gene 2014; 557:229-35. [PMID: 25541026 DOI: 10.1016/j.gene.2014.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/26/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Leukotriene B4 (LTB4) is well known as a chemoattractant for leucocytes, recent studies also showed its involvement in adaptive immunity. The purpose of this work is to report the cloning, characterization and gene expression of leukotriene B4 receptor (BLT1) in turbot (Scophthalmus maximus), as well as the immunological response to challenge following vaccination with a live attenuated vaccine Vibrio anguillarum MVAV6203. The full cDNA sequence of turbot BLT1 was cloned. The open reading frame consists of 1119bp nucleotides, which translate into 372 amino acid protein. A high conservation of amino acid sequence was found in the seven transmembrane (TM) domains and intracellular loops. The intracellular loop 3 consisting of a unique cluster of basic amino acid residues might be associated with signal transduction. High amino acid similarity and a phylogenetic tree confirmed it as a leukotriene B4 receptor member. The BLT1 gene is expressed in a wide range of tissues with the highest expression in kidney followed by spleen. The expression of turbot BLT1 was significantly up-regulated in spleen, gut and gill after vaccination and in kidney and skin after challenge. These results suggest a potential role of turbot BLT1 in protection against infection.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Center for Translational Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ying Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
30
|
A live attenuated combination vaccine evokes effective immune-mediated protection against Edwardsiella tarda and Vibrio anguillarum. Vaccine 2014; 32:5937-44. [DOI: 10.1016/j.vaccine.2014.08.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/12/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
|
31
|
Liu X, Wu H, Chang X, Tang Y, Liu Q, Zhang Y. Notable mucosal immune responses induced in the intestine of zebrafish (Danio rerio) bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. FISH & SHELLFISH IMMUNOLOGY 2014; 40:99-108. [PMID: 24997435 DOI: 10.1016/j.fsi.2014.06.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Live attenuated vaccine is one of the efficient vaccine candidates in aquaculture, which can be easily delivered to fish via bath-vaccination. An outstanding advantage of bath-vaccination is that vaccine delivery is through the same route as that utilized by many fish pathogens, generating specific mucosal immune responses. In this work, we investigated the mucosal immune responses induced by a live attenuated Vibrio anguillarum vaccine in zebrafish via bath-vaccination. Bacteria proliferated rapidly in 3 h after vaccination and maintained at a high level until 6 h in the intestine. Besides, bacteria persisted in the intestine for a longer time whereas decreased rapidly in the skin and gills. Moreover, a significant up-regulation of TLR5 triggering a MyD88-dependent signaling pathway was observed in the intestine, which implied that flagella were the crucial antigenic component of the live attenuated vaccine. And macrophages and neutrophils showed active responses participating in antigen recognition and sampling after vaccination. Furthermore, an inflammation was observed with plenty of lymphocytes in the intestine at 24 h post vaccination but eliminated within 7 days. In conclusion, the live attenuated V. anguillarum vaccine induced notable mucosal immune responses in the intestine which could be used as a mucosal vaccine vector in the future.
Collapse
Affiliation(s)
- Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China.
| | - Xinyue Chang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yufei Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
32
|
Gratacap RL, Wheeler RT. Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:108-15. [PMID: 24491522 PMCID: PMC4028364 DOI: 10.1016/j.dci.2014.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 05/04/2023]
Abstract
Unique imaging tools and practical advantages have made zebrafish a popular model to investigate in vivo host-pathogen interactions. These studies have uncovered details of the mechanisms involved in several human infections. Until recently, studies using this versatile host were limited to viral and prokaryotic pathogens. Eukaryotic pathogens are a diverse group with a major impact on the human and fish populations. The relationships of eukaryote pathogens with their hosts are complex and many aspects remain obscure. The small and transparent zebrafish, with its conserved immune system and amenability to genetic manipulation, make it an exciting model for quantitative study of the core strategies of eukaryotic pathogens and their hosts. The only thing to do now is realize its potential for advancement of biomedical and aquaculture research.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
33
|
Zhang H, Shen B, Wu H, Gao L, Liu Q, Wang Q, Xiao J, Zhang Y. Th17-like immune response in fish mucosal tissues after administration of live attenuated Vibrio anguillarum via different vaccination routes. FISH & SHELLFISH IMMUNOLOGY 2014; 37:229-238. [PMID: 24561130 DOI: 10.1016/j.fsi.2014.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the protective mucosal immunity elicited by live attenuated Vibrio anguillarum in fish. Zebrafish were immunized by bath or injection way, and undertook bath challenge at 28 days post vaccination. The results implied that bath vaccination was the better delivery route for inducing the protective immunity against bath challenge in zebrafish. The expressions of genes related to Th1, Th2 and Th17 cells were measured in the mucosal tissues of vaccinated and challenged zebrafish. Gene expression profiles showed that Th17-like responses were induced in mucosal immune system by vaccination via bath and injection routes while Th1 and Th2-like responses were not remarkable. Compared to injection vaccination, bath vaccination elicited the intense Th17-like immune responses in the gut tissue of zebrafish. Additionally, in gills and skin, Th17-like mucosal immunity elicited by injection vaccination occurred later than that by bath vaccination. Our results proved the immunological importance of gut in bath vaccination and the presence of two-compartmental model for immune response in zebrafish. In conclusion, bath vaccination more efficiently elicited protective Th17-like immunity than injection vaccination in mucosal tissues of vaccinated zebrafish. In turbot, effective immune protection against wild-type V. anguillarum was obtained by bath-vaccinated and the Th17-like responses were found in mucosal and systemic tissues.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|