1
|
F1·Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis. Int J Mol Sci 2023; 24:ijms24065417. [PMID: 36982498 PMCID: PMC10049701 DOI: 10.3390/ijms24065417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
F1·Fo-ATP synthases/ATPases (F1·Fo) are molecular machines that couple either ATP synthesis from ADP and phosphate or ATP hydrolysis to the consumption or production of a transmembrane electrochemical gradient of protons. Currently, in view of the spread of drug-resistant disease-causing strains, there is an increasing interest in F1·Fo as new targets for antimicrobial drugs, in particular, anti-tuberculosis drugs, and inhibitors of these membrane proteins are being considered in this capacity. However, the specific drug search is hampered by the complex mechanism of regulation of F1·Fo in bacteria, in particular, in mycobacteria: the enzyme efficiently synthesizes ATP, but is not capable of ATP hydrolysis. In this review, we consider the current state of the problem of “unidirectional” F1·Fo catalysis found in a wide range of bacterial F1·Fo and enzymes from other organisms, the understanding of which will be useful for developing a strategy for the search for new drugs that selectively disrupt the energy production of bacterial cells.
Collapse
|
2
|
Mendoza-Hoffmann F, Zarco-Zavala M, Ortega R, Celis-Sandoval H, Torres-Larios A, García-Trejo JJ. Evolution of the Inhibitory and Non-Inhibitory ε, ζ, and IF 1 Subunits of the F 1F O-ATPase as Related to the Endosymbiotic Origin of Mitochondria. Microorganisms 2022; 10:microorganisms10071372. [PMID: 35889091 PMCID: PMC9317440 DOI: 10.3390/microorganisms10071372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 12/10/2022] Open
Abstract
The F1FO-ATP synthase nanomotor synthesizes >90% of the cellular ATP of almost all living beings by rotating in the “forward” direction, but it can also consume the same ATP pools by rotating in “reverse.” To prevent futile F1FO-ATPase activity, several different inhibitory proteins or domains in bacteria (ε and ζ subunits), mitochondria (IF1), and chloroplasts (ε and γ disulfide) emerged to block the F1FO-ATPase activity selectively. In this study, we analyze how these F1FO-ATPase inhibitory proteins have evolved. The phylogeny of the α-proteobacterial ε showed that it diverged in its C-terminal side, thus losing both the inhibitory function and the ATP-binding/sensor motif that controls this inhibition. The losses of inhibitory function and the ATP-binding site correlate with an evolutionary divergence of non-inhibitory α-proteobacterial ε and mitochondrial δ subunits from inhibitory bacterial and chloroplastidic ε subunits. Here, we confirm the lack of inhibitory function of wild-type and C-terminal truncated ε subunits of P. denitrificans. Taken together, the data show that ζ evolved to replace ε as the primary inhibitor of the F1FO-ATPase of free-living α-proteobacteria. However, the ζ inhibitory function was also partially lost in some symbiotic α-proteobacteria and totally lost in some strictly parasitic α-proteobacteria such as the Rickettsiales order. Finally, we found that ζ and IF1 likely evolved independently via convergent evolution before and after the endosymbiotic origin mitochondria, respectively. This led us to propose the ε and ζ subunits as tracer genes of the pre-endosymbiont that evolved into the actual mitochondria.
Collapse
Affiliation(s)
- Francisco Mendoza-Hoffmann
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California (UABC)—Campus Tijuana, Tijuana C.P. 22390, Baja California, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| | - Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Raquel Ortega
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Heliodoro Celis-Sandoval
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - Alfredo Torres-Larios
- Instituto de Fisiología Celular (IFC), Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
| | - José J. García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Ciudad de Mexico C.P. 04510, Coyoacan, Mexico
- Correspondence: (F.M.-H.); (J.J.G.-T.)
| |
Collapse
|
3
|
Jarman OD, Biner O, Hirst J. Regulation of ATP hydrolysis by the ε subunit, ζ subunit and Mg-ADP in the ATP synthase of Paracoccus denitrificans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148355. [PMID: 33321110 PMCID: PMC8039183 DOI: 10.1016/j.bbabio.2020.148355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
F1FO-ATP synthase is a crucial metabolic enzyme that uses the proton motive force from respiration to regenerate ATP. For maximum thermodynamic efficiency ATP synthesis should be fully reversible, but the enzyme from Paracoccus denitrificans catalyzes ATP hydrolysis at far lower rates than it catalyzes ATP synthesis, an effect often attributed to its unique ζ subunit. Recently, we showed that deleting ζ increases hydrolysis only marginally, indicating that other common inhibitory mechanisms such as inhibition by the C-terminal domain of the ε subunit (ε-CTD) or Mg-ADP may be more important. Here, we created mutants lacking the ε-CTD, and double mutants lacking both the ε-CTD and ζ subunit. No substantial activation of ATP hydrolysis was observed in any of these strains. Instead, hydrolysis in even the double mutant strains could only be activated by oxyanions, the detergent lauryldimethylamine oxide, or a proton motive force, which are all considered to release Mg-ADP inhibition. Our results establish that P. denitrificans ATP synthase is regulated by a combination of the ε and ζ subunits and Mg-ADP inhibition.
Collapse
Affiliation(s)
- Owen D Jarman
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Olivier Biner
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
4
|
Milgrom YM, Duncan TM. F-ATP-ase of Escherichia coli membranes: The ubiquitous MgADP-inhibited state and the inhibited state induced by the ε-subunit's C-terminal domain are mutually exclusive. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148189. [PMID: 32194063 DOI: 10.1016/j.bbabio.2020.148189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).
Collapse
Affiliation(s)
- Yakov M Milgrom
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | - Thomas M Duncan
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|
5
|
Akanuma G, Tagana T, Sawada M, Suzuki S, Shimada T, Tanaka K, Kawamura F, Kato-Yamada Y. C-terminal regulatory domain of the ε subunit of F o F 1 ATP synthase enhances the ATP-dependent H + pumping that is involved in the maintenance of cellular membrane potential in Bacillus subtilis. Microbiologyopen 2019; 8:e00815. [PMID: 30809948 PMCID: PMC6692558 DOI: 10.1002/mbo3.815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 01/23/2023] Open
Abstract
The ε subunit of FoF1‐ATPase/synthase (FoF1) plays a crucial role in regulating FoF1 activity. To understand the physiological significance of the ε subunit‐mediated regulation of FoF1 in Bacillus subtilis, we constructed and characterized a mutant harboring a deletion in the C‐terminal regulatory domain of the ε subunit (ε∆C). Analyses using inverted membrane vesicles revealed that the ε∆C mutation decreased ATPase activity and the ATP‐dependent H+‐pumping activity of FoF1. To enhance the effects of ε∆C mutation, this mutation was introduced into a ∆rrn8 strain harboring only two of the 10 rrn (rRNA) operons (∆rrn8 ε∆C mutant strain). Interestingly, growth of the ∆rrn8 ε∆C mutant stalled at late‐exponential phase. During the stalled growth phase, the membrane potential of the ∆rrn8 ε∆C mutant cells was significantly reduced, which led to a decrease in the cellular level of 70S ribosomes. The growth stalling was suppressed by adding glucose into the culture medium. Our findings suggest that the C‐terminal region of the ε subunit is important for alleviating the temporal reduction in the membrane potential, by enhancing the ATP‐dependent H+‐pumping activity of FoF1.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomoaki Tagana
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Maho Sawada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Shota Suzuki
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Tomohiro Shimada
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Yokohama, Midori-ku, Japan
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan.,Research Center for Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
6
|
Mutation Q259L in subunit beta in Bacillus subtilis ATP synthase attenuates ADP-inhibition and decreases fitness in mixed cultures. Biochem Biophys Res Commun 2018; 509:102-107. [PMID: 30580998 DOI: 10.1016/j.bbrc.2018.12.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022]
Abstract
The ATPase activity of H+-FOF1-ATP synthase (FOF1) is down-regulated by several mechanisms. The most universal of them found in bacterial, chloroplast and mitochondrial enzymes is non-competitive inhibition by MgADP (ADP-inhibition). When MgADP binds in a catalytic site in the absence of phosphate, the nucleotide might be trapped instead of being released and replaced by new MgATP. In this case the enzyme becomes inactivated, and MgADP release is required for re-activation. The degree of ADP-inhibition varies between different organisms: it is strong in mitochondrial and chloroplast FOF1 and in enzymes of some bacteria (including Bacillus PS3 sp., and Bacillus subtilis), but in FOF1 of Escherichia coli it is much weaker. It was shown that mutation betaGln259Leu in Bacillus PS3 FOF1 noticeably relieves its strong ADP-inhibition. In this work, we introduced the same mutation in FOF1 from B. subtilis. ADP-inhibition in the mutant FOF1 was also attenuated in comparison to the wild-type enzyme. The ATPase activity in membrane preparations was 3 fold higher in the mutant. Mutant enzyme was capable of ATP-driven proton pumping, and its ATPase activity was stimulated by dissipation of the protonmotive force, implying that the coupling efficiency between ATP hydrolysis and proton transport was not impaired by the mutation. We observed no effect of mutation on the growth rate of B. subtilis in pure cultures. However, in competition growth experiments when the wild type and the mutant strains were cultivated together in mixed cultures, the wild type strain always crowded out the mutant. To our knowledge, this is the first demonstration of the negative effect of FOF1 ADP-inhibition attenuation in vivo.
Collapse
|
7
|
Lapashina AS, Feniouk BA. ADP-Inhibition of H+-F OF 1-ATP Synthase. BIOCHEMISTRY (MOSCOW) 2018; 83:1141-1160. [PMID: 30472953 DOI: 10.1134/s0006297918100012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
H+-FOF1-ATP synthase (F-ATPase, F-type ATPase, FOF1 complex) catalyzes ATP synthesis from ADP and inorganic phosphate in eubacteria, mitochondria, chloroplasts, and some archaea. ATP synthesis is powered by the transmembrane proton transport driven by the proton motive force (PMF) generated by the respiratory or photosynthetic electron transport chains. When the PMF is decreased or absent, ATP synthase catalyzes the reverse reaction, working as an ATP-dependent proton pump. The ATPase activity of the enzyme is regulated by several mechanisms, of which the most conserved is the non-competitive inhibition by the MgADP complex (ADP-inhibition). When ADP binds to the catalytic site without phosphate, the enzyme may undergo conformational changes that lock bound ADP, resulting in enzyme inactivation. PMF can induce release of inhibitory ADP and reactivate ATP synthase; the threshold PMF value required for enzyme reactivation might exceed the PMF for ATP synthesis. Moreover, membrane energization increases the catalytic site affinity to phosphate, thereby reducing the probability of ADP binding without phosphate and preventing enzyme transition to the ADP-inhibited state. Besides phosphate, oxyanions (e.g., sulfite and bicarbonate), alcohols, lauryldimethylamine oxide, and a number of other detergents can weaken ADP-inhibition and increase ATPase activity of the enzyme. In this paper, we review the data on ADP-inhibition of ATP synthases from different organisms and discuss the in vivo role of this phenomenon and its relationship with other regulatory mechanisms, such as ATPase activity inhibition by subunit ε and nucleotide binding in the noncatalytic sites of the enzyme. It should be noted that in Escherichia coli enzyme, ADP-inhibition is relatively weak and rather enhanced than prevented by phosphate.
Collapse
Affiliation(s)
- A S Lapashina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - B A Feniouk
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
8
|
Zarco-Zavala M, Mendoza-Hoffmann F, García-Trejo JJ. Unidirectional regulation of the F 1F O-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2018; 1859:762-774. [PMID: 29886048 DOI: 10.1016/j.bbabio.2018.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF1 subunits, prevent the wasteful CCW F1FO-ATPase activity by blocking γ rotation at the αDP/βDP/γ interface of the F1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F1-ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF1, it also binds to the αDP/βDP/γ interface of the F1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the αDP/βDP/γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F1FO-ATPase rotation without affecting the CW-F1FO-ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as a unidirectional pawl-ratchet PdF1FO-ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is a useful model that mimics mitochondrial IF1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF1) of this unique ATP synthase nanomotor, essential for life.
Collapse
Affiliation(s)
- Mariel Zarco-Zavala
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico; Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Francisco Mendoza-Hoffmann
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico
| | - José J García-Trejo
- Departamento de Biología, Facultad de Química, Ciudad Universitaria, Universidad Nacional Autónoma de México (U.N.A.M.), Delegación Coyoacán, Ciudad de México (CDMX), CP 04510, Mexico.
| |
Collapse
|
9
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
10
|
Zharova TV, Vinogradov AD. Functional heterogeneity of F o·F 1H +-ATPase/synthase in coupled Paracoccus denitrificans plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:939-944. [PMID: 28803911 DOI: 10.1016/j.bbabio.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/10/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022]
Abstract
Fo·F1H+-ATPase/synthase in coupled plasma membrane vesicles of Paracoccus denitrificans catalyzes ATP hydrolysis and/or ATP synthesis with comparable enzyme turnover. Significant difference in pH-profile of these alternative activities is seen: decreasing pH from 8.0 to 7.0 results in reversible inhibition of hydrolytic activity, whereas ATP synthesis activity is not changed. The inhibition of ATPase activity upon acidification results from neither change in ADP(Mg2+)-induced deactivation nor the energy-dependent enzyme activation. Vmax, not apparent KmATP is affected by lowering the pH. Venturicidin noncompetitively inhibits ATP synthesis and coupled ATP hydrolysis, showing significant difference in the affinity to its inhibitory site depending on the direction of the catalysis. This difference cannot be attributed to variations of the substrate-enzyme intermediates for steady-state forward and back reactions or to possible equilibrium between ATP hydrolase and ATP synthase Fo·F1 modes of the opposite directions of catalysis. The data are interpreted as to suggest that distinct non-equilibrated molecular isoforms of Fo·F1 ATP synthase and ATP hydrolase exist in coupled energy-transducing membranes.
Collapse
Affiliation(s)
- Tatyana V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russian Federation
| | - Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119234, Russian Federation.
| |
Collapse
|
11
|
On the ATP binding site of the ε subunit from bacterial F-type ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:332-40. [PMID: 26780667 DOI: 10.1016/j.bbabio.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/11/2015] [Accepted: 01/14/2016] [Indexed: 11/20/2022]
Abstract
F-type ATP synthases are reversible machinery that not only synthesize adenosine triphosphate (ATP) using an electrochemical gradient across the membrane, but also can hydrolyze ATP to pump ions under certain conditions. To prevent wasteful ATP hydrolysis, subunit ε in bacterial ATP synthases changes its conformation from the non-inhibitory down- to the inhibitory up-state at a low cellular ATP concentration. Recently, a crystal structure of the ε subunit in complex with ATP was solved in a non-biologically relevant dimeric form. Here, to derive the functional ATP binding site motif, we carried out molecular dynamics simulations and free energy calculations. Our results suggest that the ATP binding site markedly differs from the experimental resolved one; we observe a reorientation of several residues, which bind to ATP in the crystal structure. In addition we find that an Mg(2+) ion is coordinated by ATP, replacing interactions of the second chain in the crystal structure. Thus we demonstrate more generally the influence of crystallization effects on ligand binding sites and their respective binding modes. Furthermore, we propose a role for two highly conserved residues to control the ATP binding/unbinding event, which have not been considered before. Additionally our results provide the basis for the rational development of new biosensors based on subunit ε, as shown previously for novel sensors measuring the ATP concentration in cells.
Collapse
|
12
|
Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:94-102. [DOI: 10.1016/j.pbiomolbio.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023]
|
13
|
On the Mg2+ binding site of the ε subunit from bacterial F-type ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1101-12. [DOI: 10.1016/j.bbabio.2015.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022]
|
14
|
Ishikawa T, Kato-Yamada Y. Severe MgADP inhibition of Bacillus subtilis F1-ATPase is not due to the absence of nucleotide binding to the noncatalytic nucleotide binding sites. PLoS One 2014; 9:e107197. [PMID: 25244289 PMCID: PMC4171097 DOI: 10.1371/journal.pone.0107197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/13/2014] [Indexed: 11/18/2022] Open
Abstract
F1-ATPase from Bacillus subtilis (BF1) is severely suppressed by the MgADP inhibition. Here, we have tested if this is due to the loss of nucleotide binding to the noncatalytic site that is required for the activation. Measurements with a tryptophan mutant of BF1 indicated that the noncatalytic sites could bind ATP normally. Furthermore, the mutant BF1 that cannot bind ATP to the noncatalytic sites showed much lower ATPase activity. It was concluded that the cause of strong MgADP inhibition of BF1 is not the weak nucleotide binding to the noncatalytic sites but the other steps required for the activation.
Collapse
Affiliation(s)
- Toru Ishikawa
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- Research Center for Life Science, Rikkyo University, Toshima-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Zarco-Zavala M, Morales-Ríos E, Mendoza-Hernández G, Ramírez-Silva L, Pérez-Hernández G, García-Trejo JJ. The ζ subunit of the F1FO-ATP synthase of α-proteobacteria controls rotation of the nanomotor with a different structure. FASEB J 2014; 28:2146-57. [PMID: 24522203 DOI: 10.1096/fj.13-241430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ζ subunit is a novel natural inhibitor of the α-proteobacterial F1FO-ATPase described originally in Paracoccus denitrificans. To characterize the mechanism by which this subunit inhibits the F1FO nanomotor, the ζ subunit of Paracoccus denitrificans (Pd-ζ) was analyzed by the combination of kinetic, biochemical, bioinformatic, proteomic, and structural approaches. The ζ subunit causes full inhibition of the sulfite-activated PdF1-ATPase with an apparent IC50 of 270 nM by a mechanism independent of the ε subunit. The inhibitory region of the ζ subunit resides in the first 14 N-terminal residues of the protein, which protrude from the 4-α-helix bundle structure of the isolated ζ subunit, as resolved by NMR. Cross-linking experiments show that the ζ subunit interacts with rotor (γ) and stator (α, β) subunits of the F1-ATPase, indicating that the ζ subunit hinders rotation of the central stalk. In addition, a putatively regulatory nucleotide-binding site was found in the ζ subunit by isothermal titration calorimetry. Together, the data show that the ζ subunit controls the rotation of F1FO-ATPase by a mechanism reminiscent of, but different from, those described for mitochondrial IF1 and bacterial ε subunits where the 4-α-helix bundle of ζ seems to work as an anchoring domain that orients the N-terminal inhibitory domain to hinder rotation of the central stalk.
Collapse
Affiliation(s)
- Mariel Zarco-Zavala
- 1Universidad Nacional Autónoma de México (UNAM), Facultad de Química, Departamento de Biología, Circuito Escolar, s/n, Laboratorio 206, Edificio F, Ciudad Universitaria, Coyoacán, CP 04510, México, DF.
| | | | | | | | | | | |
Collapse
|
16
|
Lu P, Lill H, Bald D. ATP synthase in mycobacteria: special features and implications for a function as drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1208-18. [PMID: 24513197 DOI: 10.1016/j.bbabio.2014.01.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
ATP synthase is a ubiquitous enzyme that is largely conserved across the kingdoms of life. This conservation is in accordance with its central role in chemiosmotic energy conversion, a pathway utilized by far by most living cells. On the other hand, in particular pathogenic bacteria whilst employing ATP synthase have to deal with energetically unfavorable conditions such as low oxygen tensions in the human host, e.g. Mycobacterium tuberculosis can survive in human macrophages for an extended time. It is well conceivable that such ATP synthases may carry idiosyncratic features that contribute to efficient ATP production. In this review genetic and biochemical data on mycobacterial ATP synthase are discussed in terms of rotary catalysis, stator composition, and regulation of activity. ATP synthase in mycobacteria is of particular interest as this enzyme has been validated as a target for promising new antibacterial drugs. A deeper understanding of the working of mycobacterial ATP synthase and its atypical features can provide insight in adaptations of bacterial energy metabolism. Moreover, pinpointing and understanding critical differences as compared with human ATP synthase may provide input for the design and development of selective ATP synthase inhibitors as antibacterials. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Ping Lu
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Holger Lill
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Dirk Bald
- Department of Molecular Cell Biology, AIMMS, Faculty of Earth- and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Assessment of the requirements for magnesium transporters in Bacillus subtilis. J Bacteriol 2014; 196:1206-14. [PMID: 24415722 DOI: 10.1128/jb.01238-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions.
Collapse
|