1
|
Interacting with Hemoglobin: Paracoccidioides spp. Recruits hsp30 on Its Cell Surface for Enhanced Ability to Use This Iron Source. J Fungi (Basel) 2021; 7:jof7010021. [PMID: 33401497 PMCID: PMC7823998 DOI: 10.3390/jof7010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022] Open
Abstract
Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.
Collapse
|
2
|
Gonçales RA, Ricci-Azevedo R, Vieira VCS, Fernandes FF, Thomaz SMDO, Carvalho A, Vendruscolo PE, Cunha C, Roque-Barreira MC, Rodrigues F. Paracoccin Overexpression in Paracoccidioides brasiliensis Enhances Fungal Virulence by Remodeling Chitin Properties of the Cell Wall. J Infect Dis 2020; 224:164-174. [PMID: 33201217 DOI: 10.1093/infdis/jiaa707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The thermodimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from Paracoccidioides brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that affect disease development. METHODS Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media. RESULTS ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis. CONCLUSIONS Our data are consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.
Collapse
Affiliation(s)
- Relber Aguiar Gonçales
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil.,Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rafael Ricci-Azevedo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Vanessa C S Vieira
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal
| | - Fabrício F Fernandes
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Sandra M de O Thomaz
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia E Vendruscolo
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Cristina Cunha
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Cristina Roque-Barreira
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto/São Paulo, Brazil
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Virulence factors of Paracoccidioides brasiliensis as therapeutic targets: a review. Antonie van Leeuwenhoek 2020; 113:593-604. [PMID: 31902009 DOI: 10.1007/s10482-019-01382-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidiodomycosis (PCM) is a systemic mycosis caused by the fungus Paracoccidioides brasiliensis and Paracoccidioides lutzii. The disease requires long and complicated treatment. The aim of this review is to address the fungal virulence factors that could be the target of the development of new drugs for PCM treatment. Virulence factors favoring the process of fungal infection and pathogenicity are considered as a microbial attribute associated with host susceptibility. P. brasiliensis has some known virulence factors which are 43 kDa glycoprotein (gp 43) which is an important fungal antigen, 70 kDa glycoprotein (gp 70), the carbohydrates constituting the fungal cell wall α-1,3, glucan and β-1,3-glucan, cell adhesion molecules and the presence of melanin pigments. The discovery and development of drugs that interact with these factors, such as inhibitors of β-1,3-glucan, reduced synthesis of gp 43, inhibitors of melanin production, is of great importance for the treatment of PCM. The study of virulence factors favors the understanding of pathogen-host relationships, aiming to evaluate the possibility of developing new therapeutic targets and mechanisms that these molecules play in the infectious process, favoring the design of a more specific treatment for this disease.
Collapse
|
4
|
Zhang X, Xu M, Wu J, Dong W, Chen D, Wang L, Chi Y. Draft Genome Sequence of Phoma arachidicola Wb2 Causing Peanut Web Blotch in China. Curr Microbiol 2018; 76:200-206. [PMID: 30535834 DOI: 10.1007/s00284-018-1612-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022]
Abstract
Peanut web blotch, a peanut disease with both web and blotch symptom leaflets, is an emerging threat for peanut cultivation worldwide and one of the most important fungal diseases in China. However, the limited pieces of information in genomic resources and pathogenesis are the major constraints to integrated disease management. The genome contains a large number of pathogenicity-related genes, but the genomic information of the pathogen is still blank. Considering this fact, current study presented the draft genome sequence of a Phoma arachidicola isolate named Wb2. Strain Wb2 was isolated from peanut leaves with typical web blotch symptoms, and identified as Phoma arachidicola based on morphological characteristics and phylogenic analysis using ITS sequence. The draft genome of Wb2 is about 34.11 Mb and contains 37330 open reading frames (ORFs), with G + C content 49.23%. The strain Wb2 has an abundance of secreted oxidases, peroxidases, and carbohydrate-active enzymes for degrading cell wall polysaccharides and penetrating into the host tissue. The genome information of Wb2 will help to better understand the mechanisms of interaction between P. arachidicola and peanuts. Furthermore, the genome-based plant-pathogen interaction analysis will provide clues for disease control, which is essential to ensure peanut production and food security.
Collapse
Affiliation(s)
- Xia Zhang
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Manlin Xu
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Juxiang Wu
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Weibo Dong
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Dianxu Chen
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Lei Wang
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China
| | - Yucheng Chi
- Shandong Peanut Research Institute, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Abstract
Among the endemic deep mycoses in Latin America, paracoccidioidomycosis (PCM), caused by thermodimorphic fungi of the Paracoccidioides genus, is a major cause of morbidity. Disease development and its manifestations are associated with both host and fungal factors. Concerning the latter, several recent studies have employed the methodology of gene modulation in P. brasiliensis using antisense RNA (AsRNA) and Agrobacterium tumefaciens-mediated transformation (ATMT) to identify proteins that influence fungus virulence. Our previous observations suggested that paracoccin (PCN), a multidomain fungal protein with both lectin and enzymatic activities, may be a potential P. brasiliensis virulence factor. To explore this, we used AsRNA and ATMT methodology to obtain three independent PCN-silenced P. brasiliensis yeast strains (AsPCN1, AsPCN2, and AsPCN3) and characterized them with regard to P. brasiliensis biology and pathogenicity. AsPCN1, AsPCN2, and AsPCN3 showed relative PCN expression levels that were 60%, 40%, and 60% of that of the wild-type (WT) strain, respectively. PCN silencing led to the aggregation of fungal cells, blocked the morphological yeast-to-mycelium transition, and rendered the yeast less resistant to macrophage fungicidal activity. In addition, mice infected with AsPCN1, AsPCN2, and AsPCN3 showed a reduction in fungal burden of approximately 96% compared with those inoculated with the WT strain, which displayed a more extensive destruction of lung tissue. Finally, mice infected with the PCN-silenced yeast strains had lower mortality than those infected with the WT strain. These data demonstrate that PCN acts as a P. brasiliensis contributory virulence factor directly affecting fungal pathogenesis. The nonexistence of efficient genetic transformation systems has hampered studies in the dimorphic fungus Paracoccidioides brasiliensis, the etiological agent of the most frequent systemic mycosis in Latin America. The recent development of a method for gene expression knockdown by antisense RNA technology, associated with an Agrobacterium tumefaciens-mediated transformation system, provides new strategies for studying P. brasiliensis. Through this technology, we generated yeasts that were silenced for paracoccin (PCN), a P. brasiliensis component that has lectin and enzymatic properties. By comparing the phenotypes of PCN-silenced and wild-type strains of P. brasiliensis, we identified PCN as a virulence factor whose absence renders the yeasts unable to undergo the transition to mycelium and causes a milder pulmonary disease in mice, with a lower mortality rate. Our report highlights the importance of the technology used for P. brasiliensis transformation and demonstrates that paracoccin is a virulence factor acting on fungal biology and pathogenesis.
Collapse
|
6
|
Camacho E, Niño-Vega GA. Paracoccidioides Spp.: Virulence Factors and Immune-Evasion Strategies. Mediators Inflamm 2017; 2017:5313691. [PMID: 28553014 PMCID: PMC5434249 DOI: 10.1155/2017/5313691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Paracoccidioides spp. are dimorphic fungal pathogens responsible for one of the most relevant systemic mycoses in Latin America, paracoccidioidomycosis (PCM). Their exact ecological niche remains unknown; however, they have been isolated from soil samples and armadillos (Dasypus novemcinctus), which have been proposed as animal reservoir for these fungi. Human infection occurs by inhalation of conidia or mycelia fragments and is mostly associated with immunocompetent hosts inhabiting and/or working in endemic rural areas. In this review focusing on the pathogen perspective, we will discuss some of the microbial attributes and molecular mechanisms that enable Paracoccidioides spp. to tolerate, adapt, and ultimately avoid the host immune response, establishing infection.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunobiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gustavo A. Niño-Vega
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, GTO, Mexico
| |
Collapse
|
7
|
Amich J, Bignell E. Amino acid biosynthetic routes as drug targets for pulmonary fungal pathogens: what is known and why do we need to know more? Curr Opin Microbiol 2016; 32:151-158. [DOI: 10.1016/j.mib.2016.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
|
8
|
Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infect Immun 2016; 84:917-929. [PMID: 26787716 DOI: 10.1128/iai.01124-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022] Open
Abstract
Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection.
Collapse
|
9
|
Gonzalez A, Hernandez O. New insights into a complex fungal pathogen: the case of Paracoccidioides spp. Yeast 2016; 33:113-28. [PMID: 26683539 DOI: 10.1002/yea.3147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 01/31/2023] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis endemic to Latin America, with Paracoccidioides brasiliensis and P. lutzii being the causal agents of this disorder. Several issues have been raised in the 100 years since its discovery and in this article we discuss features of this fascinating fungal pathogen, including its biology, eco-epidemiology and aspects of its pathogenicity. We also consider some of its virulence determinants, the most recent advances in the study of its metabolic pathways and the molecular and genetic research tools developed for this research. We also review the animal models used to study host-fungal interactions and how the host defence mechanisms against this pathogen work.
Collapse
Affiliation(s)
- Angel Gonzalez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Orville Hernandez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
10
|
Marcos CM, da Silva JDF, de Oliveira HC, Assato PA, Singulani JDL, Lopez AM, Tamayo DP, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJS, Fusco-Almeida AM. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis. Virulence 2015; 7:72-84. [PMID: 26646480 PMCID: PMC4994830 DOI: 10.1080/21505594.2015.1122166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Patrícia Akemi Assato
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Angela Maria Lopez
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Diana Patricia Tamayo
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Orville Hernandez-Ruiz
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Escuela de Microbiología; Universidad de Antioquia; Medellín, Colombia
| | - Juan G McEwen
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Facultad de Medicina; Universidad de Antioquia; Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
11
|
Garfoot AL, Rappleye CA. Histoplasma capsulatum surmounts obstacles to intracellular pathogenesis. FEBS J 2015; 283:619-33. [PMID: 26235362 DOI: 10.1111/febs.13389] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
Abstract
The fungal pathogen Histoplasma capsulatum causes respiratory and disseminated disease, even in immunocompetent hosts. In contrast to opportunistic pathogens, which are readily controlled by phagocytic cells, H. capsulatum yeasts are able to infect macrophages, survive antimicrobial defenses, and proliferate as an intracellular pathogen. In this review, we discuss some of the molecular mechanisms that enable H. capsulatum yeasts to overcome obstacles to intracellular pathogenesis. H. capsulatum yeasts gain refuge from extracellular obstacles such as antimicrobial lung surfactant proteins by engaging the β-integrin family of phagocytic receptors to promote entry into macrophages. In addition, H. capsulatum yeasts conceal immunostimulatory β-glucans to avoid triggering signaling receptors such as the β-glucan receptor Dectin-1. H. capsulatum yeasts counteract phagocyte-produced reactive oxygen species by expression of oxidative stress defense enzymes including an extracellular superoxide dismutase and an extracellular catalase. Within the phagosome, H. capsulatum yeasts block phagosome acidification, acquire essential metals such as iron and zinc, and utilize de novo biosynthesis pathways to overcome nutritional limitations. These mechanisms explain how H. capsulatum yeasts avoid and negate macrophage defense strategies and establish a hospitable intracellular niche, making H. capsulatum a successful intracellular pathogen of macrophages.
Collapse
Affiliation(s)
- Andrew L Garfoot
- Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Chad A Rappleye
- Department of Microbiology, Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Tavares AH, Fernandes L, Bocca AL, Silva-Pereira I, Felipe MS. Transcriptomic reprogramming of genus Paracoccidioides in dimorphism and host niches. Fungal Genet Biol 2015; 81:98-109. [DOI: 10.1016/j.fgb.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 01/04/2023]
|
13
|
Teixeira MM, Theodoro RC, Nino-Vega G, Bagagli E, Felipe MSS. Paracoccidioides species complex: ecology, phylogeny, sexual reproduction, and virulence. PLoS Pathog 2014; 10:e1004397. [PMID: 25357210 PMCID: PMC4214758 DOI: 10.1371/journal.ppat.1004397] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Marcus M. Teixeira
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
| | - Raquel C. Theodoro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Gustavo Nino-Vega
- Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, Brazil
| | - Maria S. S. Felipe
- Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília, Brazil
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|