1
|
Wu KKL, Xu X, Wu M, Li X, Hoque M, Li GHY, Lian Q, Long K, Zhou T, Piao H, Xu A, Hui HX, Cheng KKY. MDM2 induces pro-inflammatory and glycolytic responses in M1 macrophages by integrating iNOS-nitric oxide and HIF-1α pathways in mice. Nat Commun 2024; 15:8624. [PMID: 39366973 PMCID: PMC11452520 DOI: 10.1038/s41467-024-53006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
M1 macrophages induce protective immunity against infection, but also contribute to metabolic and inflammatory diseases. Here we show that the E3 ubiquitin ligase, MDM2, promotes the glycolytic and inflammatory activities of M1 macrophage by increasing the production of IL-1β, MCP-1 and nitric oxide (NO). Mechanistically, MDM2 triggers the ubiquitination and degradation of E3 ligase, SPSB2, to stabilize iNOS and increases production of NO, which s-nitrosylates and activates HIF-1α for triggering the glycolytic and pro-inflammatory programs in M1 macrophages. Myeloid-specific haplodeletion of MDM2 in mice not only blunts LPS-induced endotoxemia and NO production, but also alleviates obesity-induced adipose tissue-resident macrophage inflammation. By contrast, MDM2 haplodeletion induces higher mortality, tissue damage and bacterial burden, and also suppresses M1 macrophage response, in the cecal ligation and puncture-induced sepsis mouse model. Our findings thus identify MDM2 as an activator of glycolytic and inflammatory responses in M1 macrophages by connecting the iNOS-NO and HIF-1α pathways.
Collapse
Affiliation(s)
- Kelvin Ka-Lok Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaofan Xu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Manyin Wu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital Fudan University, Shanghai, China
| | - Moinul Hoque
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Gloria Hoi Yee Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Prenatal Diagnostic Center and Cord Blood Bank, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tongxi Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Piao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Liu G, Catacutan DB, Rathod K, Swanson K, Jin W, Mohammed JC, Chiappino-Pepe A, Syed SA, Fragis M, Rachwalski K, Magolan J, Surette MG, Coombes BK, Jaakkola T, Barzilay R, Collins JJ, Stokes JM. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat Chem Biol 2023; 19:1342-1350. [PMID: 37231267 DOI: 10.1038/s41589-023-01349-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Acinetobacter baumannii is a nosocomial Gram-negative pathogen that often displays multidrug resistance. Discovering new antibiotics against A. baumannii has proven challenging through conventional screening approaches. Fortunately, machine learning methods allow for the rapid exploration of chemical space, increasing the probability of discovering new antibacterial molecules. Here we screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. We trained a neural network with this growth inhibition dataset and performed in silico predictions for structurally new molecules with activity against A. baumannii. Through this approach, we discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii. Further investigations revealed that abaucin perturbs lipoprotein trafficking through a mechanism involving LolE. Moreover, abaucin could control an A. baumannii infection in a mouse wound model. This work highlights the utility of machine learning in antibiotic discovery and describes a promising lead with targeted activity against a challenging Gram-negative pathogen.
Collapse
Affiliation(s)
- Gary Liu
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Denise B Catacutan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Khushi Rathod
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Swanson
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wengong Jin
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jody C Mohammed
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Anush Chiappino-Pepe
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Saad A Syed
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Michael G Surette
- Department of Medicine, Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Tommi Jaakkola
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Regina Barzilay
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Abdul Latif Jameel Clinic for Machine Learning in Health, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Huang G, Chen J, Liu J, Zhang X, Duan H, Fang Q. MiR-935/HIF1α Feedback Loop Inhibits the Proliferation and Invasiveness of Glioma. Onco Targets Ther 2020; 13:10817-10828. [PMID: 33122920 PMCID: PMC7591158 DOI: 10.2147/ott.s244409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Objective The biological functions and molecular mechanisms of miR-935 have been widely investigated in various types of cancer. The aim of the present study was to explore the function of miR-935 in glioma. Methods Bioinformatic analysis and quantitative real-time fluorescent PCR (qRT-PCR) were used to determine the expression of miR-935 in glioma tissues and glioma cell lines. Chi-square test was performed to analyze the relationship between the expression of miR-935 and clinical traits. CCK-8 assay, colony formation assay, cell cycle analysis and subcutaneous tumorigenesis model in nude mice were conducted to determine the effects of miR-935 on the proliferation of glioma cells both in vitro and in vivo. Wound healing and transwell assays were used to detect the effects of miR-935 on the migration and invasion of glioma cells in vitro. The relationship between miR-935 and HIF1α was analyzed using bioinformatics, luciferase reporter assay and Western blotting. Results The expression of miR-935 was lower in glioma tissues than in the adjacent tissues, and in cell lines than in the normal human astrocytes (NHAs), and the low expression levels of miR-935 predicted a poor outcome. Exogenous overexpression of miR-935 inhibited the proliferation of glioma cells both in vitro and in vivo, and suppressed the migration and invasion of glioma cells in vitro. HIF1α was identified as the target of miR-935, whereas miR-935 overexpression decreased the expression of HIF1α and its target genes VEGF, MCL1 and GLUT1. Strikingly, overexpression of HIF1α significantly decreased the expression of miR-935, whereas silencing HIF1α increased the expression of miR-935. Similarly, HIF1α overexpression remarkably reversed the inhibitory effects of miR-935 on the proliferation, migration and invasion of glioma cells. Conclusion Overall, present study reveals the presence of miR-935/HIF1α feedback loop in glioma, which inhibits the development of glioma. This feedback loop may be a potential target for the treatment of glioma.
Collapse
Affiliation(s)
- Guangjing Huang
- Department of Biomedicine, Medical College of Guizhou University, Guiyang, Guizhou, 550000, People's Republic of China.,Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Jie Chen
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Jing Liu
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Xiaoyan Zhang
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Haijie Duan
- Anesthesiology Department, Guizhou Provincial People' s Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| | - Qian Fang
- Medical College of Guizhou University, Guiyang, Guizhou, 550000, People's Republic of China.,Nursing Department, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550000, People's Republic of China
| |
Collapse
|
4
|
Han W, Shi J, Cao J, Dong B, Guan W. Emerging Roles and Therapeutic Interventions of Aerobic Glycolysis in Glioma. Onco Targets Ther 2020; 13:6937-6955. [PMID: 32764985 PMCID: PMC7371605 DOI: 10.2147/ott.s260376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is the most common type of intracranial malignant tumor, with a great recurrence rate due to its infiltrative growth, treatment resistance, intra- and intertumoral genetic heterogeneity. Recently, accumulating studies have illustrated that activated aerobic glycolysis participated in various cellular and clinical activities of glioma, thus influencing the efficacy of radiotherapy and chemotherapy. However, the glycolytic process is too complicated and ambiguous to serve as a novel therapy for glioma. In this review, we generalized the implication of key enzymes, glucose transporters (GLUTs), signalings and transcription factors in the glycolytic process of glioma. In addition, we summarized therapeutic interventions via the above aspects and discussed promising clinical applications for glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
5
|
Gunasegaran B, Neilsen PM, Smid SD. P53 activation suppresses irinotecan metabolite SN-38-induced cell damage in non-malignant but not malignant epithelial colonic cells. Toxicol In Vitro 2020; 67:104908. [PMID: 32502622 DOI: 10.1016/j.tiv.2020.104908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Nutlin-3a is a p53 activator and potential cyclotherapy approach that may also mitigate side effects of chemotherapeutic drugs in the treatment of colorectal cancer. We investigated cell proliferation in a panel of colorectal cancer (CRC) cell lines with wild-type or mutant p53, as well as a non-tumorigenic fetal intestinal cell line following Nutlin-3a treatment (10 μM). We then assessed apoptosis at 24 and 48 h following administration of the active irinotecan metabolite, SN-38 (0.001 μM - 1 μM), alone or following pre-treatment with Nutlin-3a (10 μM). Nutlin-3a treatment (10 μM) significantly reduced proliferation in wild-type p53 expressing cell lines (FHS 74 and HCT116+/+) at 72 and 96 h, but was without effect in cell lines with mutated or deleted p53 (Caco-2, SW480, and HCT 116-/-). SN-38 treatment induced significant apoptosis in all cell lines after 48 h. Nutlin-3a unexpectedly increased cell death in the p53 wild-type CRC cell line, HCT116+/+, while Nutlin-3a pre-treatment provided protection from SN-38 in the p53 wild-type normal cell line, FHs 74. These results demonstrate Nutlin-3a's selective growth-arresting efficacy in p53 wild-type non-malignant intestinal cell lines, enabling the selective targeting of malignant cells with chemotherapy drugs. These studies highlight the potential of Nutlin-3a to minimise intestinal mucosal damage following chemotherapy.
Collapse
Affiliation(s)
- Bavani Gunasegaran
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Paul M Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland, Australia; Centre for Personalized Cancer Medicine, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
6
|
Carter BZ, Mak PY, Mu H, Wang X, Tao W, Mak DH, Dettman EJ, Cardone M, Zernovak O, Seki T, Andreeff M. Combined inhibition of MDM2 and BCR-ABL1 tyrosine kinase targets chronic myeloid leukemia stem/progenitor cells in a murine model. Haematologica 2019; 105:1274-1284. [PMID: 31371419 PMCID: PMC7193504 DOI: 10.3324/haematol.2019.219261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Although highly effective, BCR-ABL1 tyrosine kinase inhibitors do not target chronic myeloid leukemia (CML) stem cells. Most patients relapse upon tyrosine kinase inhibitor therapy cessation. We reported previously that combined BCR-ABL1 and BCL-2 inhibition synergistically targets CML stem/progenitor cells. p53 induces apoptosis mainly by modulating BCL-2 family proteins. Although infrequently mutated in CML, p53 is antagonized by MDM2, which is regulated by BCR-ABL1 signaling. We hypothesized that MDM2 inhibition could sensitize CML cells to tyrosine kinase inhibitors. Using an inducible transgenic Scl-tTa-BCR-ABL1 murine CML model, we found, by RT-PCR and CyTOF proteomics increased p53 signaling in CML bone marrow (BM) cells compared with controls in CD45+ and linage-SCA-1+C-KIT+ populations. CML BM cells were more sensitive to exogenous BH3 peptides than controls. Combined inhibition of BCR-ABL1 with imatinib and MDM2 with DS-5272 increased NOXA level, markedly reduced leukemic linage-SCA-1+C-KIT+ cells and hematopoiesis, decreased leukemia burden, significantly prolonged the survival of mice engrafted with BM cells from Scl-tTa-BCR-ABL1 mice, and significantly decreased CML stem cell frequency in secondary transplantations. Our results suggest that CML stem/progenitor cells have increased p53 signaling and a propensity for apoptosis. Combined MDM2 and BCR-ABL1 inhibition targets CML stem/progenitor cells and has the potential to improve cure rates for CML.
Collapse
Affiliation(s)
- Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Po Yee Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiangmeng Wang
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenjing Tao
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Duncan H Mak
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Oleg Zernovak
- Daiichi Sankyo Co. Ltd., Oncology Laboratories, R&D Division, 2-58, Hiromachi 1-Chrome, Shinagawa-ku, Tokyo, Japan
| | - Takahiko Seki
- Daiichi Sankyo Co. Ltd., Oncology Laboratories, R&D Division, 2-58, Hiromachi 1-Chrome, Shinagawa-ku, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
You L, Liu H, Huang J, Xie W, Wei J, Ye X, Qian W. The novel anticancer agent JNJ-26854165 is active in chronic myeloid leukemic cells with unmutated BCR/ABL and T315I mutant BCR/ABL through promoting proteosomal degradation of BCR/ABL proteins. Oncotarget 2018; 8:7777-7790. [PMID: 27999193 PMCID: PMC5352360 DOI: 10.18632/oncotarget.13951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal malignant disease caused by the expression of BCR/ABL. MDM2 (human homolog of the murine double minute-2) inhibitors such as Nutlin-3 have been shown to induce apoptosis in a p53-dependent manner in CML cells and sensitize cells to Imatinib. Here, we demonstrate that JNJ-26854165, an inhibitor of MDM2, inhibits proliferation and triggers cell death in a p53-independent manner in various BCR/ABL-expressing cells, which include primary leukemic cells from patients with CML blast crisis and cells expressing the Imatinib-resistant T315I BCR/ABL mutant. The response to JNJ-26854165 is associated with the downregulation of BCR/ABL dependently of proteosome activation. Moreover, in all tested CML cells, with the exception of T315I mutation cells, combining JNJ-26854165 and tyrosine kinase inhibitor (TKI) Imatinib or PD180970 leads to a synergistic effect. In conclusion, our results suggest that JNJ-26854165, used either alone or in combination with TKIs, represents a promising novel targeted approach to overcome TKI resistance and improve patient outcome in CML.
Collapse
Affiliation(s)
- Liangshun You
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Hui Liu
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Jian Huang
- Department of Hematology, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Yiwu 322000, P.R. China
| | - Wanzhuo Xie
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Jueying Wei
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Xiujin Ye
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| | - Wenbin Qian
- Institute of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P.R. China
| |
Collapse
|
8
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
9
|
Uhr K, Prager-van der Smissen WJC, Heine AAJ, Ozturk B, Smid M, Göhlmann HWH, Jager A, Foekens JA, Martens JWM. Understanding drugs in breast cancer through drug sensitivity screening. SPRINGERPLUS 2015; 4:611. [PMID: 26543746 PMCID: PMC4628005 DOI: 10.1186/s40064-015-1406-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/06/2015] [Indexed: 01/18/2023]
Abstract
With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships between drugs which might have implications for cancer treatment regimens.
Collapse
Affiliation(s)
- Katharina Uhr
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - Wendy J. C. Prager-van der Smissen
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - Anouk A. J. Heine
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - Bahar Ozturk
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - Marcel Smid
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - Hinrich W. H. Göhlmann
- />Division of Janssen Pharmaceutica, Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Agnes Jager
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - John A. Foekens
- />Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| | - John W. M. Martens
- />Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus University Medical Center, Postbus 2040, ‘s-Gravendijkwal 230, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|