1
|
Ahmad N, Hussain SM, Ali S, Sarker PK, Al-Ghanim KA, Mahmood M. Dietary nano-Selenium supplementation improves growth performance, nutrient digestibility and hematology in Cirrhinus mrigala fingerlings. J Trace Elem Med Biol 2024; 84:127443. [PMID: 38579498 DOI: 10.1016/j.jtemb.2024.127443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
The following investigation was carried out to determine the effects of Selenium nanoparticles (Se NPs) on the growth rates, nutrient digestibility, and hematology of Cirrhinus mrigala fingerlings fed sunflower meal as basal diet. The experiment included seven test diets with varying Se levels (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg) based on Se NPs supplementation. Chromic oxide, an inert maker, was also added. Fingerlings were fed at a rate of 5% of their body weight. The test meal of 1 mg/kg Se NPs resulted in the highest weight gain (12.31 g) and the lowest feed conversion ratio (1.58). Best hematological indices (RBCs 2.84 106 mm-3, WBCs 7.79 103 mm-3, PLT 66, Hb 8.5 g/100 ml, PCV 25% and MCV 190 fl) and maximum nutrient absorption (crude protein 72%, ether extract 73% and gross energy 67%) were also observed in the case of 1 mg/kg supplementation of Se NPs. Hematology studies indicated that when fish were fed 0.5 mg/kg Se NPs, their levels began to rise. Maximum results were achieved with feed containing 1 mg/kg of Se NPs, but when the concentration increased above 1 mg/kg, the values began to decline. Instead, nutrient digestibility began to increase when the concentration of Se NPs increased to 1 mg/kg and abruptly started to decline with a further increase in Se NPs. The results demonstrated that a sunflower meal-based diet supplemented with Se NPs (1 mg/kg) increased the growth performance, nutritional digestibility, and hematology of C. mrigala fingerlings.
Collapse
Affiliation(s)
- Nisar Ahmad
- Department of Zoology, University of Jhang, Punjab 35200, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Mahmood
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| |
Collapse
|
2
|
Skrodenytė-Arbačiauskienė V, Butrimienė R, Kalnaitytė-Vengelienė A, Bagdonas S, Montvydienė D, Stankevičiūtė M, Sauliutė G, Jokšas K, Kazlauskienė N, Karitonas R, Matviienko N, Jurgelėnė Ž. A multiscale study of the effects of a diet containing CdSe/ZnS-COOH quantum dots on Salmo trutta fario L.: Potential feed-related nanotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167696. [PMID: 37827305 DOI: 10.1016/j.scitotenv.2023.167696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Quantum dots (QDs) receive widespread attention in industrial and biomedical fields, but the risks posed by the use of nanoparticles to aquatic organisms and the associated toxicological effects are still not well understood. In this study, effects of the 7-day dietary exposure of Salmo trutta fario L. juveniles to CdSe/ZnS-COOH QDs were evaluated at molecular, cellular, physiological and whole-organism levels. Fish feeding with QDs-contaminated feed resulted in an increased somatic index of the liver, a genotoxic effect on peripheral blood erythrocytes, altered enzyme activity and decreased MDA level. Furthermore, Cd levels in the gills and liver tissues of the exposed fish were found to be significantly higher than in those of the control fish. Alpha diversity indexes of the gut microbiota of the QDs-exposed S. trutta fario L. individuals exhibited a decreasing trend. The principal coordinate analysis (PCoA) showed that the gut microbiota of the control fish was significantly different from that of the fish exposed to QDs (p < 0.05). Additionally, the linear discriminant analysis (LDA) performed using an effect size (LEfSe) algorithm unveiled 19 significant taxonomic differences at different taxonomic levels between the control group and the QDs-exposed group. In the QDs-exposed group, the relative abundance of the genus Citrobacter (Proteobacteria phylum) in the gut microbiota was found to be significantly increased whereas that of the genus Mycoplasma (Tenericutes phylum) significantly decreased compared to the control group. In summary, QDs-contaminated diet affects the gut microbiota of fish by significantly changing the relative abundance of some taxa, potentially leading to dysbiosis. This, together with morphophysiological, cytogenetic and biochemical changes, poses a risk to fish health.
Collapse
Affiliation(s)
| | - Renata Butrimienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Agnė Kalnaitytė-Vengelienė
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Saulius Bagdonas
- Laser Research Center, Physics Faculty, Vilnius University, Saulėtekio Av. 9, Vilnius LT-10222, Lithuania
| | - Danguolė Montvydienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Milda Stankevičiūtė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Gintarė Sauliutė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Kęstutis Jokšas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Rolandas Karitonas
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania
| | - Nataliia Matviienko
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania; NAAS Institute of Fisheries, Obukhivska str. 135, Kyiv 03164, Ukraine
| | - Živilė Jurgelėnė
- Institute of Ecology, Nature Research Centre, Akademijos St. 2, Vilnius LT-08412, Lithuania.
| |
Collapse
|
3
|
Zlotnikov ID, Belogurova NG, Poddubnaya IV, Kudryashova EV. Mucosal Adhesive Chitosan Nanogel Formulations of Antibiotics and Adjuvants (Terpenoids, Flavonoids, etc.) and Their Potential for the Treatment of Infectious Diseases of the Gastrointestinal Tract. Pharmaceutics 2023; 15:2353. [PMID: 37765322 PMCID: PMC10535539 DOI: 10.3390/pharmaceutics15092353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bacterial infections are usually found in the stomach and the first part of the small intestine in association with various pathologies, including ulcers, inflammatory diseases, and sometimes cancer. Treatment options may include combinations of antibiotics with proton pump inhibitors and anti-inflammatory drugs. However, all of them have high systemic exposure and, hence, unfavorable side effects, whereas their exposure in stomach mucus, the predominant location of the bacteria, is limited. Chitosan and nanogels based on chitosan presumably are not absorbed from the gastrointestinal tract and are known to adhere to the mucus. Therefore, they can serve as a basis for the local delivery of antibacterial drugs, increasing their exposure at the predominant location of therapeutic targets, thus improving the risk/benefit ratio. We have used E. coli ATCC 25922 (as a screening model of pathogenic bacteria) and Lactobacilli (as a model of a normal microbiome) to study the antibacterial activity of antibacterial drugs entrapped in a chitosan nanogel. Classical antibiotics were studied in a monotherapeutic regimen as well as in combination with individual terpenoids and flavonoids as adjuvants. It has been shown that levofloxacin (LF) in combination with zephirol demonstrate synergistic effects against E. coli (cell viability decreased by about 50%) and, surprisingly, a much weaker effect against Lactobacilli. A number of other combinations of antibiotic + adjuvant were also shown to be effective. Using FTIR and UV spectroscopy, it has been confirmed that chitosan nanogels with the drug are well adsorbed on the mucosal model, providing prolonged release at the target location. Using an ABTS assay, the antioxidant properties of flavonoids and other drugs are shown, which are potentially necessary to minimize the harmful effects of toxins and radicals produced by pathogens. In vivo experiments (on sturgeon fish) showed the effective action of antibacterial formulations developed based on LF in chitosan nanogels for up to 11 days. Thus, chitosan nanogels loaded with a combination of drugs and adjuvants can be considered as a new strategy for the treatment of infectious diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Natalya G. Belogurova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Irina V. Poddubnaya
- Research Laboratory of Aquatic Environment Protection and Ichthyopathology, Saratov State University of Genetics, Biotechnology and Engineering Named after N.I. Vavilov, 410005 Saratov, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Nuzaiba PM, Gupta S, Gupta S, Jadhao SB. Synthesis of L-methionine-loaded chitosan nanoparticles for controlled release and their in vitro and in vivo evaluation. Sci Rep 2023; 13:7606. [PMID: 37164991 PMCID: PMC10172396 DOI: 10.1038/s41598-023-34448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
Therapeutically popular controlled release-enabling technology has forayed into the nutrition sector. Polymer coated forms of L-methionine used in soy protein diets, and its intermediate metabolite, S-adenosyl-L-methionine, used in myriad of medical conditions have proved more efficacious over (highly catabolized) free forms. In this premier study, L-methionine-loaded chitosan nanoparticles (M-NPs) were synthesized using ionic gelation method and their efficacy was evaluated. Biophysical characterization of the NPs was done using a Nanopartica SZ 100 analyser, transmission electron microscopy, and Fourier transform infrared spectroscopy. The M-NPs were spherical and smooth and 218.9 ± 7.4 nm in size and in vitro testing confirmed the controlled release of methionine. A 60-days feeding trial in L. rohita fish fingerlings was conducted. A basal diet suboptimal (0.85%) in methionine was provided with one of the supplements as under: none (control), 0.8% chitosan NPs (0.8% NPs), 1.2% L-methionine (1.2% M) (crystalline free form), 0.6% M-NPs and 1.2% M-NPs. While the addition of 0.6% M-NPs to the basal diet complemented towards meeting the established dietary requirement and resulted in significantly highest (P < 0.05) growth and protein efficiency and sero-immunological test scores (serum total protein, serum globulin, serum albumin: globulin ratio, phagocytic respiratory burst/NBT reduction and lysozyme activity), 1.2% supplementation in either form (free or nano), for being 0.85% excess, was counterproductive. Liver transaminases and dehydrogenases corroborated enhanced growth. It was inferred that part of the methionine requirement in nano form (M-NPs) can confer intended performance and health benefits in animals relying on plant proteins-based diets limiting in this essential amino acid. The study also paves the way for exploring chitosan NPs-based sustained delivery of amino acids in human medical conditions.
Collapse
Affiliation(s)
- Pallath Muhammed Nuzaiba
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Subodh Gupta
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Shobha Gupta
- Department of Biotechnology, Annasaheb Vartak College of Arts, Commerce, Science, Vasai West, Mumbai, 401202, India
| | - Sanjay Balkrishna Jadhao
- Division of Fish Nutrition, Biochemistry and Physiology, Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
5
|
Siddaiah G, Kumar R, Kumari R, Chandan N, Debbarma J, Damle D, Das A, Giri S. Dietary fishmeal replacement with Hermetia illucens (Black soldier fly, BSF) larvae meal affected production performance, whole body composition, antioxidant status, and health of snakehead (Channa striata) juveniles. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Nanoparticles Containing Tamarind Isolate Protein Potentiate the Satiety without Promoting the Anti-Inflammatory Effect in a Preclinical Model of Diet-Induced Obesity. Foods 2022; 11:foods11213526. [PMID: 36360138 PMCID: PMC9658257 DOI: 10.3390/foods11213526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The study aimed to evaluate the nanoparticles (ECW) containing tamarind trypsin inhibitor (TTI) concerning the storage effect under different conditions on antitrypsin activity and the bioactive potential in a preclinical model. ECW was exposed to different pH and temperatures to evaluate the interaction between TTI and its encapsulating agents, monitored by antitrypsin activity. Wistar rats (n = 25) with obesity induced by diet were divided into groups: untreated; treatment with nutritionally adequate diet; treatment with nutritionally adequate diet and ECW/12.5 mg/kg; treatment with ECW/12.5 mg/kg; and treatment with TTI/25 mg/kg. The groups were evaluated over ten days with regards to satiety, zoometric, biochemical, and inflammatory parameters, using ten times less TTI (2.5 mg/kg) contained in ECW. TTI was protected and encapsulated in ECW without showing residual inhibitory activity. Only at gastric pH did ECW show antitrypsin activity. At different temperatures, it showed high antitrypsin activity, similar to TTI. The animals treated with ECW had significantly reduced body weight variation (p < 0.05), and only TTI treatment reduced the inflammatory parameters significantly (p < 0.05). The study showed that by using lower concentrations of TTI in ECW it was possible to perceive promising effects with perspectives of use in functional products for managing obesity and its complications.
Collapse
|
7
|
Gallab RS, Hassanein EM, Rashad AM, El-Shereif AA. Maximizing the reproductive performances of anestrus dairy buffalo cows using GnRH analogue-loaded chitosan nanoparticles during the low breeding season. Anim Reprod Sci 2022; 244:107044. [DOI: 10.1016/j.anireprosci.2022.107044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
|
8
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
9
|
Rajendran D, Ezhuthupurakkal PB, Lakshman R, Gowda NKS, Manimaran A, Rao SBN. Application of encapsulated nano materials as feed additive in livestock and poultry: a review. Vet Res Commun 2022; 46:315-328. [DOI: 10.1007/s11259-022-09895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
|
10
|
Ahmad N, Hussain SM, Azam SM, Shahzad MM, Noureen A, Yaqoob R, Lateef M, Yawer A, Riaz D, Usman A, Faizan M, Hassan S, Ishtiaq A, Riaz P, Ali A, Amin F, Imran M, Kausar R, Ahmed M, Bashir W, Adnan M, Siddique A, Farooq M, Ahmad S. Effects of Se nanoparticles supplementation on growth performance, hematological parameters and nutrient digestibility of Labeo rohita fingerling fed sunflower meal based diet. BRAZ J BIOL 2022; 84:e253555. [PMID: 35019098 DOI: 10.1590/1519-6984.253555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study is to assess the effects of selenium nanoparticles on the growth, hematology and nutrients digestibility of Labeorohita fingerlings. Fingerlings were fed with seven isocaloric sunflower meal-based diet supplemented with different concentrations of nanoparticles naming T1 to T7 (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg), with 5% wet body weight while chromic oxide was used as an indigestible marker. After experimentation for 90 days T3 treated group (1mg/kg -1Se-nano level) showed the best result in hematological parameters (WBC's 7.97 ×103mm-3, RBC's 2.98 ×106 mm-3 and Platelet count 67), nutrient digestibility (crude protein: 74%, ether extract: 76%, gross energy: 70%) and growth performance (weight gain 13.24 g, weight gain% 198, feed conversion ratio 1.5, survival rate 100%) as compared to the other treatment groups. Specific growth rates were found significantly higher in T5 than in other groups. The present study indicated positive effect of 1 mg/kg Se-nanoparticles on growth advancement, hematological parameters, and nutrients digestibility of L. rohita fingerlings.
Collapse
Affiliation(s)
- N Ahmad
- University of Jhang, Department of Zoology, Punjab, Pakistan
| | - S M Hussain
- Government College University, Department of Zoology, Fish Nutrition Lab, Faisalabad, Pakistan
| | - S M Azam
- University of Education Lahore, Division of Science and Technology, Department of Zoology, Punjab, Pakistan
| | - M M Shahzad
- University of Education Lahore, Division of Science and Technology, Department of Zoology, Punjab, Pakistan
| | - A Noureen
- The University of Lahore, Institute of Molecular Biology & Biotechnology - IMBB, Department of Zoology, Lahore,Pakistan
| | - R Yaqoob
- University of Education Lahore, Division of Science and Technology, Department of Zoology, Punjab, Pakistan
| | - M Lateef
- University of Education Lahore, Division of Science and Technology, Department of Zoology, Punjab, Pakistan
| | - A Yawer
- Racetox, Masaryk University, Faculty of Science, Kamenice, Brno Czech Republic
| | - D Riaz
- University of Education Lahore, Division of Science and Technology, Department of Zoology, Punjab, Pakistan
| | - A Usman
- Government College University, Department of Chemistry, Faisalabad, Pakistan Lahore, Punjab, Pakistan
| | - M Faizan
- University of Agriculture, Department of Zoology, Faisalabad, Punjab, Pakistan
| | - S Hassan
- Institute of Pure & Applied Biology Bahauddin Zakariya University, Multan, Pakistan
| | - A Ishtiaq
- Institute of Pure & Applied Biology Bahauddin Zakariya University, Multan, Pakistan
| | - P Riaz
- Institute of Pure & Applied Biology Bahauddin Zakariya University, Multan, Pakistan
| | - A Ali
- Institute of Pure & Applied Biology Bahauddin Zakariya University, Multan, Pakistan
| | - F Amin
- University of Veterinary & Animal Sciences Punjab, Department of Zoology, Lahore,Pakistan
| | - M Imran
- BahuddinZakariya University Multan, Department of Statistics, Punjab, Pakistan
| | - R Kausar
- University of Baluchistan, Department of Zoology, Quetta, Pakistan
| | - M Ahmed
- COMSATS University Islamabad, Department of Management Sciences, Vehari Campus, Vehari, Pakistan
| | - W Bashir
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - M Adnan
- Department of Zoology, Government Graduate Taleem-ul-Islam College Chenab Nagar, Chiniot, Pakistan
| | - A Siddique
- Department of Chemistry, Lahore College for Women University Lahore, Pakistan
| | - M Farooq
- Department of Zoology, Ghazi University Dera Ghazi Khan, Pakistan
| | - S Ahmad
- Institute of Pure & Applied Biology Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
11
|
Aguiar AJFC, de Queiroz JLC, Santos PPA, Camillo CS, Serquiz AC, Costa IS, Oliveira GS, Gomes AFT, Matias LLR, Costa ROA, Passos TS, Morais AHA. Beneficial Effects of Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles on Hepatic Injury Induced High Glycemic Index Diet: A Preclinical Study. Int J Mol Sci 2021; 22:9968. [PMID: 34576130 PMCID: PMC8470918 DOI: 10.3390/ijms22189968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies have sought new therapies for obesity and liver diseases. This study investigated the effect of the trypsin inhibitor isolated from tamarind seeds (TTI), nanoencapsulated in chitosan and whey protein isolate (ECW), on the liver health status of the Wistar rats fed with a high glycemic index (HGLI) diet. The nanoformulations without TTI (CW) and ECW were obtained by nanoprecipitation technique, physically and chemically characterized, and then administered to the animals. The adult male Wistar rats (n = 20) were allocated to four groups: HGLI diet + water; standard diet + water; HGLI diet + ECW (12.5 mg/kg); and HGLI diet + CW (10.0 mg/kg), 1 mL per gagave, for ten days. They were evaluated using biochemical and hematological parameters, Fibrosis-4 Index for Liver Fibrosis (FIB-4), AST to Platelet Ratio Index (APRI) scores, and liver morphology. Both nanoparticles presented spherical shape, smooth surface, and nanometric size [120.7 nm (ECW) and 136.4 nm (CW)]. In animals, ECW reduced (p < 0.05) blood glucose (17%), glutamic oxalacetic transaminase (39%), and alkaline phosphatase (24%). Besides, ECW reduced (p < 0.05) APRI and FIB-4 scores and presented a better aspect of hepatic morphology. ECW promoted benefits over a liver injury caused by the HGLI diet.
Collapse
Affiliation(s)
- Ana J. F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Jaluza L. C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (P.P.A.S.); (C.S.C.)
| | - Alexandre C. Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59.014-545, RN, Brazil;
| | - Izael S. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Course, Potiguar University, Natal 59.056-000, RN, Brazil
| | - Gerciane S. Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Ana F. T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
| | - Lídia L. R. Matias
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Rafael O. A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| | - Ana H. A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.); (I.S.C.); (L.L.R.M.); (R.O.A.C.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (G.S.O.); (A.F.T.G.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil;
| |
Collapse
|
12
|
Fu Y, Liang X, Li D, Gao H, Wang Y, Li W, Xu K, Hu F. Effect of Dietary Tryptophan on Growth, Intestinal Microbiota, and Intestinal Gene Expression in an Improved Triploid Crucian Carp. Front Nutr 2021; 8:676035. [PMID: 34222302 PMCID: PMC8247481 DOI: 10.3389/fnut.2021.676035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Tryptophan (Trp) has received increasing attention in the maintenance of intestinal function. In this study, improved triploid crucian carp (ITCC) fed diets containing 6.35 g kg−1 Trp had higher average daily gain (ADG) and improved villus height (VH) and crypt depth (CD) in the intestine compared to the control group. To elucidate the potential mechanisms, we used RNA sequencing (RNA-seq) to investigate changes in the intestinal transcriptome and 16S rRNA gene sequencing to measure the intestinal microbiota in response to 6.35 g kg−1 Trp feeding in ITCC. Dietary Trp altered intestinal gene expression involved in nutrient transport and metabolism. Differentially expressed transcripts (DETs) were highly enriched in key pathways containing protein digestion and absorption and the AMPK signaling pathway. 16S rRNA sequencing showed that 6.35 g kg−1 Trp significantly increased the abundance of the genus Cetobacterium, and the Firmicutes/Bacteroidetes ratio at the phylum level (P < 0.05). In addition, bacterial richness indices (Simpson index) significantly increased (P < 0.05) community evenness in response to 6.35 g kg−1 Trp. In conclusion, appropriate dietary Trp improves the growth performance, and influences the intestinal flora of ITCC. This study might be helpful to guide the supply of dietary exogenous Trp in ITCC breeding.
Collapse
Affiliation(s)
- Yawei Fu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xiaoxiao Liang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hu Gao
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yadong Wang
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Kang Xu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fangzhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Hassanein EM, Hashem NM, El-Azrak KEDM, Gonzalez-Bulnes A, Hassan GA, Salem MH. Efficiency of GnRH-Loaded Chitosan Nanoparticles for Inducing LH Secretion and Fertile Ovulations in Protocols for Artificial Insemination in Rabbit Does. Animals (Basel) 2021; 11:ani11020440. [PMID: 33567711 PMCID: PMC7914616 DOI: 10.3390/ani11020440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Nano-drug delivery systems can be employed for improving ovulation induction prior to artificial insemination (AI) in rabbits. In this study, different routes of administration and different doses of GnRH–loaded chitosan nanoparticles (GnRH–ChNPs) were assessed for inducing ovulation in rabbits, proving their usefulness to reduce the GnRH dose and animal handling and improving AI outcomes. The use of GnRH–ChNPs allows for the reduction of the conventional intramuscular GnRH dose to half without compromising fertility. However, the addition of GnRH–ChNPs to semen extenders, although successfully inducing ovulation, has negative impacts on fertility. Thus, more studies are needed to allow further adjustments. Abstract Gonadotropin-releasing hormone (GnRH)–loaded chitosan nanoparticles (GnRH–ChNPs) were used at different doses and routes of administration to induce ovulation in rabbits as an attempt to improve artificial insemination (AI) procedures and outcomes. In this study, the characteristics (size, polydispersity, loading efficiency, and zeta-potential) of GnRH–ChNPs and the GnRH release pattern were determined in an in vitro study. A first in vivo study assessed the pituitary and ovarian response to different GnRH–ChNPs doses and routes of administration (two i.m. doses, Group HM = 0.4 µg and Group QM = 0.2 µg, and two intravaginal doses, Group HV = 4 µg and Group QV = 2 µg) against a control group (C) receiving bare GnRH (0.8 µg). The HM, QM, and HV treatments induced an earlier LH-surge (90 min) than that observed in group C (120 min), whilst the QV treatment failed to induce such LH surge. The number of ovulation points was similar among treatments, except for the QV treatment (no ovulation points). A second in vivo study was consequently developed to determine the hormonal (progesterone, P4, and estradiol, E2) profile and pregnancy outcomes of both HM and HV treatments against group C. The treatment HM, but not the treatment HV, showed adequate P4 and E2 concentrations, conception and parturition rates, litter size, litter weight, and viability rate at birth. Overall, the use of GnRH–ChNPs allows for a reduction in the conventional intramuscular GnRH dose to half without compromising fertility. However, the addition of GnRH–ChNPs to semen extenders, although successfully inducing ovulation, has negative impacts on fertility. Thus, more studies are needed to explore this point and allow further adjustments.
Collapse
Affiliation(s)
- Eman M. Hassanein
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Nesrein M. Hashem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Kheir El-Din M. El-Azrak
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Antonio Gonzalez-Bulnes
- Departamento de Reproduccion Animal, INIA, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/ Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
- Correspondence: (N.M.H.); (A.G.-B.)
| | - Gamal A. Hassan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| | - Mohamed H. Salem
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt; (E.M.H.); (K.E.-D.M.E.-A.); (G.A.H.); (M.H.S.)
| |
Collapse
|
14
|
Costa RODA, Matias LLR, Passos TS, de Queiroz JLC, de Carvalho FMC, Maciel BLL, Uchôa AF, Amado IR, Gonçalves C, Pastrana L, Morais AHA. Safety and potential functionality of nanoparticles loaded with a trypsin inhibitor isolated from tamarind seeds. FUTURE FOODS 2020. [DOI: 10.1016/j.fufo.2020.100001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Wu Y, Rashidpour A, Almajano MP, Metón I. Chitosan-Based Drug Delivery System: Applications in Fish Biotechnology. Polymers (Basel) 2020; 12:E1177. [PMID: 32455572 PMCID: PMC7285272 DOI: 10.3390/polym12051177] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chitosan is increasingly used for safe nucleic acid delivery in gene therapy studies, due to well-known properties such as bioadhesion, low toxicity, biodegradability and biocompatibility. Furthermore, chitosan derivatization can be easily performed to improve the solubility and stability of chitosan-nucleic acid polyplexes, and enhance efficient target cell drug delivery, cell uptake, intracellular endosomal escape, unpacking and nuclear import of expression plasmids. As in other fields, chitosan is a promising drug delivery vector with great potential for the fish farming industry. This review highlights state-of-the-art assays using chitosan-based methodologies for delivering nucleic acids into cells, and focuses attention on recent advances in chitosan-mediated gene delivery for fish biotechnology applications. The efficiency of chitosan for gene therapy studies in fish biotechnology is discussed in fields such as fish vaccination against bacterial and viral infection, control of gonadal development and gene overexpression and silencing for overcoming metabolic limitations, such as dependence on protein-rich diets and the low glucose tolerance of farmed fish. Finally, challenges and perspectives on the future developments of chitosan-based gene delivery in fish are also discussed.
Collapse
Affiliation(s)
- Yuanbing Wu
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - Ania Rashidpour
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| | - María Pilar Almajano
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain;
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27–31, 08028 Barcelona, Spain; (Y.W.); (A.R.)
| |
Collapse
|
16
|
Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R. Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan-ZnO NPs. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:547-561. [PMID: 32002716 DOI: 10.1007/s10695-019-00726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to investigate the effects of dietary supplementation with zinc oxide (ZnO) and chitosan-zinc nanoparticles (chitosan-ZnO NPs) on biochemical, immunological, and antioxidant biomarkers in blood of juvenile belugas (Huso huso). The beluga juveniles with initial weight of 287 ± 46 g were fed with eight experimental diets containing 0 g kg-1 ZnO (the control diet); 10, 20, and 40 mg kg-1 ZnO; and 10, 20, and 40 mg kg-1 chitosan-ZnO NPs and 36 mg kg-1 chitosan. After 28 days of culture, the fish were fed with ZnO and chitosan-ZnO NP-supplemented diets showed a more significant increase in total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activity (p < 0.05) compared to the control group. There were no significant differences (p > 0.05) in malondialdehyde (MDA) and glucose level in all treatment groups. The results showed that with increasing levels of ZnO and chitosan-ZnO NPs, alternative complement activity (ACH50), and total immunoglobulin, total protein, albumin, and lysozyme had a significant increase in fish fed with ZnO and chitosan-ZnO NP-supplemented diets compared to the control group (p < 0.05). ALP, ALT, and AST enzyme activities showed significant difference between control and treatment groups (p > 0.05), while the levels of LDH enzyme activity, urea, and creatinine decreased by increasing both ZnO and chitosan-ZnO NP levels. These results demonstrated that dietary chitosan-ZnO NPs could improve the health status, immune function, and antioxidant capacity of the cultured beluga juvenile.
Collapse
Affiliation(s)
- Ahmad Gharaei
- Department of Fisheries, Hamoun International Wetland Research Institute and Faculty of Natural Resources, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran.
| | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Ali Khosravanizadeh
- Department of Fisheries, Hamoun International Wetland Research Institute, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Javad Mirdar
- Department of Fisheries, Faculty of Natural Resources, University of Zabol, 98615-538, Zabol, Sistan & Balouchestan, Iran
| | - Reza Fadai
- Iran Fisheries Organization, Native Fish Restoration Center of Zahak, Zabol, Sistan & Balouchestan, Iran
| |
Collapse
|
17
|
Matias LLR, Costa ROA, Passos TS, Queiroz JLC, Serquiz AC, Maciel BLL, Santos PPA, Camillo CS, Gonçalves C, Amado IR, Pastrana L, Morais AHA. Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles Reduces Fasting Blood Glucose Levels without Compromising Insulinemia: A Preclinical Study. Nutrients 2019; 11:E2770. [PMID: 31739532 PMCID: PMC6893787 DOI: 10.3390/nu11112770] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
In vivo studies show the benefits of the trypsin inhibitor isolated from tamarind (Tamarindusindica L.) (TTI) seeds in satiety and obesity. In the present study, TTI nanoencapsulation (ECW) was performed to potentialize the effect of TTI and allow a controlled release in the stomach. The impact on glycemia, insulin, and lipid profile was evaluated in Wistar rats overfed with a high glycemic index diet (HGLI). Characterization of the nanoparticles and in vitro stability in simulated gastrointestinal conditions, monitored by antitrypsin activity and HPLC, was performed. ECW and empty nanoparticles (CW) were administered by gavage, using 12.5 and 10.0 mg/kg, respectively. Both nanoformulations presented a spherical shape and smooth surface, with an average diameter of 117.4 nm (24.1) for ECW and 123.9 nm (11.3) for CW. ECW maintained the antitrypsin activity (95.5%) in the gastric phase, while TTI was completely hydrolyzed. In Wistar rats, the nanoformulations significantly reduced glycemia and HOMA IR, and ECW increased HDL-c compared to CW (p < 0.05).Pancreas histopathology of animals treated with ECW suggested an onset of tissue repair. Thenanoencapsulation provided TTI protection, gradual release in the desired condition, and improvement of biochemical parameters related to carbohydrate metabolism disorders,without compromising insulinemia.
Collapse
Affiliation(s)
- Lídia L. R. Matias
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
| | - Rafael O. A. Costa
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| | - Jaluza L. C. Queiroz
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
| | - Alexandre C. Serquiz
- Course of Nutrition, Center University of Rio Grande do Norte, Natal, RN 59014-545, Brazil;
| | - Bruna L. L. Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (C.S.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
- Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Campus As Lagoas s/n, Ourense, 32004 Galicia, Spain
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| | - Ana H. A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| |
Collapse
|
18
|
Ahmed F, Soliman FM, Adly MA, Soliman HAM, El-Matbouli M, Saleh M. Recent progress in biomedical applications of chitosan and its nanocomposites in aquaculture: A review. Res Vet Sci 2019; 126:68-82. [PMID: 31442715 DOI: 10.1016/j.rvsc.2019.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 08/04/2019] [Indexed: 01/06/2023]
Abstract
Chitosan nanoparticles (CSNPs) are the nanostructures of chitosan biopolymer which is derived from chitin polysaccharide, the main component of crustacean shells. Chitosan is a biocompatible, nontoxic and biodegradable polymer soluble in acidic solutions and easily excreted from kidneys. It is widely used in medical and pharmaceutical applications including artificial matrices for tissue engineering, drug transport, targeted drug delivery and protein or gene delivery. The antimicrobial activities of chitosan and CSNPS against different bacterial, fungal and viral pathogens made them valuable for several biological applications including food preservation purposes. In addition, they have immunomodulatory effects on fish and crustaceans providing direct positive impact on aquaculture and fish farming industry. Sustained release of some bioactive ingredients such as hormones, vitamins, nutrients and antioxidants has improved the biological activities of fish. Furthermore, CSNPs have recently been employed to diagnose fish diseases. In this review, we present the medical and biological applications of chitosan and CSNPs on aquatics to provide an update on recent advances and the potential for further advanced applications for aquaculture in the future.
Collapse
Affiliation(s)
- Fatma Ahmed
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria; Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Faiza M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed A Adly
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
19
|
Sharifi M, Karim AY, Mustafa Qadir Nanakali N, Salihi A, Aziz FM, Hong J, Khan RH, Saboury AA, Hasan A, Abou-Zied OK, Falahati M. Strategies of enzyme immobilization on nanomatrix supports and their intracellular delivery. J Biomol Struct Dyn 2019; 38:2746-2762. [DOI: 10.1080/07391102.2019.1643787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Majid Sharifi
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdulkarim Yasin Karim
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Research Center, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Science, Cihan University, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Jun Hong
- School of Life Sciences, Henan University, China
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Akbar Saboury
- Inistitute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Research Centre (BRC), Qatar University, Doha, Qatar
| | - Osama K. Abou-Zied
- Department of Chemistry, Faculty of Science,Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Mojtaba Falahati
- Faculty of Advanced Sciences and Technology, Department of Nanotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Hosseini SA, Meimandipour A. Feeding broilers with thyme essential oil loaded in chitosan nanoparticles: an efficient strategy for successful delivery. Br Poult Sci 2018; 59:669-678. [DOI: 10.1080/00071668.2018.1521511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- S. A. Hosseini
- Agricultural Research, Education and Extension Organization (AREEO), Animal Science Research Institute, Karaj, Iran
| | - A. Meimandipour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Jesús-de la Cruz K, Álvarez-González CA, Peña E, Morales-Contreras JA, Ávila-Fernández Á. Fish trypsins: potential applications in biomedicine and prospects for production. 3 Biotech 2018; 8:186. [PMID: 29556440 DOI: 10.1007/s13205-018-1208-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 03/09/2018] [Indexed: 11/28/2022] Open
Abstract
In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli-based systems have been tested for the production of fish trypsins; however, P. pastoris-based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.
Collapse
Affiliation(s)
- Kristal Jesús-de la Cruz
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
| | | | - Emyr Peña
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco México
- Cátedra Consejo Nacional de Ciencia y Tecnología-UJAT, Villahermosa, Tabasco México
| | - José Antonio Morales-Contreras
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| | - Ángela Ávila-Fernández
- 2Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez No. 2838-A. Col. Tamulté, 86150 Villahermosa, Tabasco México
| |
Collapse
|
22
|
Kamali Najafabad M, Imanpoor MR, Taghizadeh V, Alishahi A. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1063-1071. [PMID: 26780636 DOI: 10.1007/s10695-016-0197-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
This study was conducted to investigate the effects of dietary chitosan on growth performance, hematological parameters, intestinal histology, stress resistance and body composition in the Caspian kutum (Rutilus frisii kutum, Kamenskii, 1901) fingerlings. Fish (1.7 ± 0.15 g) were fed diets containing chitosan at different levels (0, 0.25, 0.5, 1 and 2 g kg(-1) diet) for a period of 60 days. Results showed that the feed conversion ratio significantly decreased in fish fed diet containing 1 g kg(-1) of chitosan compared to the other groups (P < 0.05), but there were no significant differences between treatments in terms of specific growth rate and condition factor (P > 0.05). Leukocyte increased in fish fed diet containing 2 g kg(-1) of chitosan compared to the other groups (P < 0.05). Lymphocytes, eosinophils and neutrophils did not significantly change among dietary treatments (P > 0.05). Also, the chitosan supplementation did not affect the whole-fish body composition (P > 0.05). Light microscopy demonstrated that the intestinal villus length increased in fish fed diet containing 1 g kg(-1) of chitosan compared to control group (P < 0.05). While 11 and 13 ‰ salinity and 30 °C thermal stress had no effect, 1 g kg(-1) of chitosan (P < 0.05) showed highest survival rate (70 %) in 34 °C thermal stress. The results showed that chitosan in the diet of the Caspian kutum fingerlings could improve feed conversion ratio, the nonspecific defense mechanisms and resistance to some of the environmental stresses.
Collapse
Affiliation(s)
- Masume Kamali Najafabad
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resource, Gorgan, Iran.
| | - Mohammad Reza Imanpoor
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resource, Gorgan, Iran
| | - Vahid Taghizadeh
- Department of Fishery, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resource, Gorgan, Iran
| | - Alireza Alishahi
- Department of Fishery, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resource, Gorgan, Iran
| |
Collapse
|