1
|
Zhang W, Chen L, Feng H, Wang J, Zeng F, Xiao X, Jian J, Wang N, Pang H. Functional characterization of Vibrio alginolyticus T3SS regulator ExsA and evaluation of its mutant as a live attenuated vaccine candidate in zebrafish ( Danio rerio) model. Front Vet Sci 2022; 9:938822. [PMID: 37265802 PMCID: PMC10230115 DOI: 10.3389/fvets.2022.938822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 06/03/2023] Open
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, is an opportunistic pathogen of both marine animals and humans, resulting in significant losses in the aquaculture industry. Type III secretion system (T3SS) is a crucial virulence mechanism of V. alginolyticus. In this study, the T3SS regulatory gene exsA, which was cloned from V. alginolyticus wild-type strain HY9901, is 861 bp encoding a protein of 286 amino acids. The ΔexsA was constructed by homologous recombination and Overlap-PCR. Although there was no difference in growth between HY9901 and ΔexsA, the ΔexsA exhibited significantly decreased extracellular protease activity and biofilm formation. Besides, the ΔexsA showed a weakened swarming phenotype and an ~100-fold decrease in virulence to zebrafish. Antibiotic susceptibility testing showed the HY9901ΔexsA was more sensitive to kanamycin, minocycline, tetracycline, gentamicin, doxycycline and neomycin. Compared to HY9901 there were 541 up-regulated genes and 663 down-regulated genes in ΔexsA, screened by transcriptome sequencing. qRT-PCR and β-galactosidase reporter assays were used to analyze the transcription levels of hop gene revealing that exsA gene could facilitate the expression of hop gene. Finally, Danio rerio, vaccinated with ΔexsA through intramuscular injection, induced a relative percent survival (RPS) value of 66.7% after challenging with HY9901 wild type strain. qRT-PCR assays showed that vaccination with ΔexsA increased the expression of immune-related genes, including GATA-1, IL6, IgM, and TNF-α in zebrafish. In summary, these results demonstrate the importance of exsA in V. alginolyticus and provide a basis for further investigations into the virulence and infection mechanism.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Liangchuan Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Haiyun Feng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Junlin Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Fuyuan Zeng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Xing Xiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang, China
| |
Collapse
|
2
|
Kim M, Cheong Y, Lee J, Lim J, Byun S, Jang YH, Seong BL. A Host-Restricted Self-Attenuated Influenza Virus Provides Broad Pan-Influenza A Protection in a Mouse Model. Front Immunol 2021; 12:779223. [PMID: 34925355 PMCID: PMC8674563 DOI: 10.3389/fimmu.2021.779223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infections can cause a broad range of symptoms, form mild respiratory problems to severe and fatal complications. While influenza virus poses a global health threat, the frequent antigenic change often significantly compromises the protective efficacy of seasonal vaccines, further increasing the vulnerability to viral infection. Therefore, it is in great need to employ strategies for the development of universal influenza vaccines (UIVs) which can elicit broad protection against diverse influenza viruses. Using a mouse infection model, we examined the breadth of protection of the caspase-triggered live attenuated influenza vaccine (ctLAIV), which was self-attenuated by the host caspase-dependent cleavage of internal viral proteins. A single vaccination in mice induced a broad reactive antibody response against four different influenza viruses, H1 and rH5 (HA group 1) and H3 and rH7 subtypes (HA group 2). Notably, despite the lack of detectable neutralizing antibodies, the vaccination provided heterosubtypic protection against the lethal challenge with the viruses. Sterile protection was confirmed by the complete absence of viral titers in the lungs and nasal turbinates after the challenge. Antibody-dependent cellular cytotoxicity (ADCC) activities of non-neutralizing antibodies contributed to cross-protection. The cross-protection remained robust even after in vivo depletion of T cells or NK cells, reflecting the strength and breadth of the antibody-dependent effector function. The robust mucosal secretion of sIgA reflects an additional level of cross-protection. Our data show that the host-restricted designer vaccine serves an option for developing a UIV, providing pan-influenza A protection against both group 1 and 2 influenza viruses. The present results of potency and breadth of protection from wild type and reassortant viruses addressed in the mouse model by single immunization merits further confirmation and validation, preferably in clinically relevant ferret models with wild type challenges.
Collapse
Affiliation(s)
- Minjin Kim
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yucheol Cheong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinhee Lee
- Department of Integrated OMICS for Biomedical Science, College of Life science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jongkwan Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sanguine Byun
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong, South Korea.,Vaccine Industry Research Institute, Andong National University, Andong, South Korea
| | - Baik Lin Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Yu L, Liu A, Zhang B, Kuang J, Guo X, Tian C, Lu Y. Dipolar coupling-based electron paramagnetic resonance method for protease enzymatic characterization and inhibitor screening. Chem Commun (Camb) 2021; 57:9602-9605. [PMID: 34546243 DOI: 10.1039/d1cc03301h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report an EPR-based method for protease enzymatic characterization and inhibitor screening. This method utilizes dual paramagnetically-labeled probes consisting of a nitroxide spin probe and a Gd3+ ion flanking a peptide that could be specifically cleaved by protease caspase-3. Distance-dependent dipolar coupling between the two paramagnetic centers can be modulated by the protease cleavage activity, thus providing a straightforward and convenient method for protease activity detection using EPR spectroscopy under ambient conditions. Moreover, time-course monitoring of the protease-catalyzed cleavage reaction demonstrated that this EPR-based method could not only allow a direct quantitative enzymatic kinetic assessment, but also could be used for protease inhibitor screening, thus holding great potential in drug discovery studies.
Collapse
Affiliation(s)
- Lu Yu
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China.
| | - Aokun Liu
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China. .,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingbo Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoqi Guo
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changlin Tian
- The Anhui Provincial Key Laboratory of High Field Magnetic Resonance Image, High Magnetic Field Laboratory, Chinese Academy of Science, Hefei, Anhui 230031, P. R. China. .,The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
5
|
Jang YH, Seong BL. Immune Responses Elicited by Live Attenuated Influenza Vaccines as Correlates of Universal Protection against Influenza Viruses. Vaccines (Basel) 2021; 9:vaccines9040353. [PMID: 33916924 PMCID: PMC8067561 DOI: 10.3390/vaccines9040353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biological Sciences and Biotechnology Major in Bio-Vaccine Engineering, Andong National University, Andong 1375, Korea;
- Vaccine Industry Research Institute, Andong National University, Andong 1375, Korea
| | - Baik L. Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Vaccine Innovation Technology Alliance (VITAL)-Korea, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-7416
| |
Collapse
|
6
|
Jang YH, Seong BL. The Quest for a Truly Universal Influenza Vaccine. Front Cell Infect Microbiol 2019; 9:344. [PMID: 31649895 PMCID: PMC6795694 DOI: 10.3389/fcimb.2019.00344] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
There is an unmet public health need for a universal influenza vaccine (UIV) to provide broad and durable protection from influenza virus infections. The identification of broadly protective antibodies and cross-reactive T cells directed to influenza viral targets present a promising prospect for the development of a UIV. Multiple targets for cross-protection have been identified in the stalk and head of hemagglutinin (HA) to develop a UIV. Recently, neuraminidase (NA) has received significant attention as a critical component for increasing the breadth of protection. The HA stalk-based approaches have shown promising results of broader protection in animal studies, and their feasibility in humans are being evaluated in clinical trials. Mucosal immune responses and cross-reactive T cell immunity across influenza A and B viruses intrinsic to live attenuated influenza vaccine (LAIV) have emerged as essential features to be incorporated into a UIV. Complementing the weakness of the stand-alone approaches, prime-boost vaccination combining HA stalk, and LAIV is under clinical evaluation, with the aim to increase the efficacy and broaden the spectrum of protection. Preexisting immunity in humans established by prior exposure to influenza viruses may affect the hierarchy and magnitude of immune responses elicited by an influenza vaccine, limiting the interpretation of preclinical data based on naive animals, necessitating human challenge studies. A consensus is yet to be achieved on the spectrum of protection, efficacy, target population, and duration of protection to define a “universal” vaccine. This review discusses the recent advancements in the development of UIVs, rationales behind cross-protection and vaccine designs, and challenges faced in obtaining balanced protection potency, a wide spectrum of protection, and safety relevant to UIVs.
Collapse
Affiliation(s)
- Yo Han Jang
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Molecular Medicine Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
7
|
Park ES, Byun YH, Park S, Jang YH, Han WR, Won J, Cho KC, Kim DH, Lee AR, Shin GC, Park YK, Kang HS, Sim H, Ha YN, Jae B, Son A, Kim P, Yu J, Lee HM, Kwon SB, Kim KP, Lee SH, Park YM, Seong BL, Kim KH. Co-degradation of interferon signaling factor DDX3 by PB1-F2 as a basis for high virulence of 1918 pandemic influenza. EMBO J 2019; 38:embj.201899475. [PMID: 30979777 DOI: 10.15252/embj.201899475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/16/2022] Open
Abstract
The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.
Collapse
Affiliation(s)
- Eun-Sook Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea.,KU Open Innovation Center, Konkuk University, Seoul, Korea
| | - Young Ho Byun
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Soree Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Woo-Ry Han
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Juhee Won
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Kyung Cho Cho
- Department of Applied Chemistry, Kyung Hee University, Yongin, Korea
| | - Doo Hyun Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Gu-Choul Shin
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yong Kwang Park
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Hong Seok Kang
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Heewoo Sim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Yea Na Ha
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Byeongjune Jae
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea
| | - Ahyun Son
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Paul Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Jieun Yu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hye-Min Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sun-Bin Kwon
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin, Korea
| | - Seung-Hyun Lee
- Department of Microbiology, School of Medicine, Konkuk University, Seoul, Korea
| | - Yeong-Min Park
- Laboratory of Dendritic Cell Differentiation and Regulation, Department of Immunology, School of Medicine, Konkuk University, Seoul, Korea
| | - Baik L Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea .,Vaccine Translational Research Center, Yonsei University, Seoul, Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Korea .,KU Open Innovation Center, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
8
|
Chen S, Lin F, Chen S, Hu Q, Cheng X, Jiang B, Zhu X, Wang S, Zheng M, Huang M. Development of a live attenuated vaccine against Muscovy duck reovirus infection. Vaccine 2018; 36:8001-8007. [PMID: 30420117 DOI: 10.1016/j.vaccine.2018.10.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/30/2023]
Abstract
The Muscovy duck reovirus (MDRV) is a highly pathogenic virus that causes substantial economic losses in the Muscovy duck industry. While MDRV poses a significant threat to Muscovy ducklings, no vaccine candidates are available to date to alleviate MDRV infection throughout the world. The present study presents efforts toward establishing an attenuated vaccine for MDRV. For this purpose, a live attenuated vaccine strain named CA was obtained via alternate propagation of the MDRV isolate MW9710 in both Muscovy duck embryo fibroblasts (MDEFs) and chicken embryo fibroblasts (CEFs) for 90 passages. The CA strain achieved an adaptive growth capacity in CEFs with a viral titer that ranged between 105.0-105.5 TCID50/100 μL and lost its pathogenicity in 1-day-old Muscovy ducklings. Compared to the parent strain MW9710, the CA strain has 42 scattered amino acid substitutions, most of which are located in the λB, λC, μB, σB, and σC protein. The CA strain maintained its attenuation and showed no gene mutation or virulence reversion after back propagation into 1-day-old ducklings for five rounds. The minimum protective dose was calculated to be 300 TCID50 of the CA strain. Furthermore, a single dose of CA vaccine protected immunized ducklings against lethal challenge by the virulent MDRV strain MW9710 and significantly decreased viral loads. In summary, the CA strain exhibited striking genetic stability, excellent safety, and effective immunogenicity. This CA strain of MDRV is a promising vaccine candidate for the prevention and control of MDRV infection.
Collapse
Affiliation(s)
- Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Fengqiang Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China.
| | - Qilin Hu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Xiaoxia Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Bin Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Xiaoli Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Meiqing Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| |
Collapse
|
9
|
Lee YH, Jang YH, Kim YS, Kim J, Seong BL. Evaluation of green tea extract as a safe personal hygiene against viral infections. J Biol Eng 2018; 12:1. [PMID: 29339972 PMCID: PMC5759362 DOI: 10.1186/s13036-017-0092-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Background Viral infections often pose tremendous public health concerns as well as economic burdens. Despite the availability of vaccines or antiviral drugs, personal hygiene is considered as effective means as the first-hand measure against viral infections. The green tea catechins, in particular, epigallocatechin-3-gallate (EGCG), are known to exert potent antiviral activity. In this study, we evaluated the green tea extract as a safe personal hygiene against viral infections. Results Using the influenza virus A/Puerto Rico/8/34 (H1N1) as a model, we examined the duration of the viral inactivating activity of green tea extract (GTE) under prolonged storage at various temperature conditions. Even after the storage for 56 days at different temperatures, 0.1% GTE completely inactivated 106 PFU of the virus (6 log10 reduction), and 0.01% and 0.05% GTE resulted in 2 log10 reduction of the viral titers. When supplemented with 2% citric acid, 0.1% sodium benzoate, and 0.2% ascorbic acid as anti-oxidant, the inactivating activity of GTE was temporarily compromised during earlier times of storage. However, the antiviral activity of the GTE was steadily recovered up to similar levels with those of the same concentrations of GTE without the supplements, effectively prolonging the duration of the virucidal function over extended period. Cryo-EM and DLS analyses showed a slight increase in the overall size of virus particles by GTE treatment. The results suggest that the virucidal activity of GTE is mediated by oxidative crosslinking of catechins to the viral proteins and the change of physical properties of viral membranes. Conclusions The durability of antiviral effects of GTE was examined as solution type and powder types over extended periods at various temperature conditions using human influenza A/H1N1 virus. GTE with supplements demonstrated potent viral inactivating activity, resulting in greater than 4 log10 reduction of viral titers even after storage for up to two months at a wide range of temperatures. These data suggest that GTE-based antiviral agents could be formulated as a safe and environmentally friendly personal hygiene against viral infections.
Collapse
Affiliation(s)
- Yun Ha Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Young-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Jinku Kim
- Department of Biological and Chemical Engineering, College of Science and Technology, Hongik University, Sejong, South Korea.,Peachchem Co. Ltd., Sejong, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| |
Collapse
|
10
|
Wang C, Peng B, Li H, Peng XX. TolC plays a crucial role in immune protection conferred by Edwardsiella tarda whole-cell vaccines. Sci Rep 2016; 6:29488. [PMID: 27406266 PMCID: PMC4942608 DOI: 10.1038/srep29488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
Although vaccines developed from live organisms have better efficacy than those developed from dead organisms, the mechanisms underlying this differential efficacy remain unexplored. In this study, we combined sub-immunoproteomics with immune challenge to investigate the action of the outer membrane proteome in the immune protection conferred by four Edwardsiella tarda whole-cell vaccines prepared via different treatments and to identify protective immunogens that play a key role in this immune protection. Thirteen spots representing five outer membrane proteins and one cytoplasmic protein were identified, and it was found that their abundance was altered in relation with the immune protective abilities of the four vaccines. Among these proteins, TolC and OmpA were found to be the key immunogens conferring the first and second highest degrees of protection, respectively. TolC was detected in the two effective vaccines (live and inactivated-30-F). The total antiserum and anti-OmpA titers were higher for the two effective vaccines than for the two ineffective vaccines (inactivated-80-F and inactivated-100). Further evidence demonstrated that the live and inactivated-30-F vaccines demonstrated stronger abilities to induce CD8+ and CD4+ T cell differentiation than the other two evaluated vaccines. Our results indicate that the outer membrane proteome changes dramatically following different treatments, which contributes to the effectiveness of whole-cell vaccines.
Collapse
Affiliation(s)
- Chao Wang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China.,Freshwater fisheries Academy of Shandong province, Jinan 250117, People's Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, MOE Key Lab Aquat Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
11
|
Lee YJ, Jang YH, Kim P, Lee YH, Lee YJ, Byun YH, Lee KH, Kim K, Seong BL. Enhancement of the safety of live influenza vaccine by attenuating mutations from cold-adapted hemagglutinin. Virology 2016; 491:1-9. [PMID: 26874012 DOI: 10.1016/j.virol.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
Abstract
In our previous study, X-31ca-based H5N1 LAIVs, in particular, became more virulent in mice than the X-31ca MDV, possibly by the introduction of the surface antigens of highly pathogenic H5N1 influenza virus, implying that additional attenuation is needed in this cases to increase the safety level of the vaccine. In this report we suggest an approach to further increase the safety of LAIV through additional cold-adapted mutations in the hemagglutinin. The cold-adaptation of X-31 virus resulted in four amino acid mutations in the HA. We generated a panel of 7:1 reassortant viruses each carrying the hemagglutinins with individual single amino acid mutations. We examined their phenotypes and found a major attenuating mutation, N81K. This attenuation marker conferred additional temperature-sensitive and attenuation phenotype to the LAIV. Our data indicate that the cold-adapted mutation in the HA confers additional attenuation to the LAIV strain, without compromising its productivity and immune response.
Collapse
Affiliation(s)
- Yoon Jae Lee
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Paul Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Yun Ha Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Jae Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea
| | - Young Ho Byun
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang-Hee Lee
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kyusik Kim
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Graduate Program in Biomaterials Science and Engineering, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea; Vaccine Translational Research Center, Yonsei University, Seoul, South Korea.
| |
Collapse
|
12
|
Jang YH, Seong BL. Options and obstacles for designing a universal influenza vaccine. Viruses 2014; 6:3159-80. [PMID: 25196381 PMCID: PMC4147691 DOI: 10.3390/v6083159] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of antibodies specific to a highly conserved stalk region of the influenza virus hemagglutinin (HA), eliciting such antibodies has been considered the key to developing a universal influenza vaccine that confers broad-spectrum protection against various influenza subtypes. To achieve this goal, a prime/boost immunization strategy has been heralded to redirect host immune responses from the variable globular head domain to the conserved stalk domain of HA. While this approach has been successful in eliciting cross-reactive antibodies against the HA stalk domain, protective efficacy remains relatively poor due to the low immunogenicity of the domain, and the cross-reactivity was only within the same group, rather than among different groups. Additionally, concerns are raised on the possibility of vaccine-associated enhancement of viral infection and whether multiple boost immunization protocols would be considered practical from a clinical standpoint. Live attenuated vaccine hitherto remains unexplored, but is expected to serve as an alternative approach, considering its superior cross-reactivity. This review summarizes recent advancements in the HA stalk-based universal influenza vaccines, discusses the pros and cons of these approaches with respect to the potentially beneficial and harmful effects of neutralizing and non-neutralizing antibodies, and suggests future guidelines towards the design of a truly protective universal influenza vaccine.
Collapse
Affiliation(s)
- Yo Han Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea.
| |
Collapse
|
13
|
Jang YH, Cho SH, Son A, Lee YH, Lee J, Lee KH, Seong BL. High-yield soluble expression of recombinant influenza virus antigens from Escherichia coli and their potential uses in diagnosis. J Virol Methods 2014; 196:56-64. [DOI: 10.1016/j.jviromet.2013.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
|