1
|
Jeong KY, Park JW. Neglected but Clinically Relevant Allergens in Korea. Curr Allergy Asthma Rep 2024; 24:519-526. [PMID: 38980649 DOI: 10.1007/s11882-024-01161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW Allergy diagnostics and immunotherapeutics in Asia heavily rely on imported products from Western countries, raising concerns about the accuracy and efficacy of these products for the management of Asian allergy patients. RECENT FINDINGS Recent advancements in allergen research have led to the identification and characterization of novel allergens from indigenous Korean species. While some allergens share homology with well-known allergens, others lack counterparts in imported allergen extracts. Classifying regional allergens in Asia into three categories based on their cross-reactivity with imported allergens offers valuable insights. Highly cross-reactive allergens, such as oak allergens Que m 1 from Quercus mongolica and Que ac 1 from Q. acutissima, can be effectively substituted with the imported allergens. Allergens with partial cross-reactivity, like the Asian needle ant allergen Pac c 3 (Antigen 5), permit limited diagnostic value by the currently available products. Unique allergens, including the Japanese hop allergen Hum j 6 (pectin methylesterase inhibitor) and the silkworm pupa allergen Bomb m 4 (30 kDa hemolymph lipoprotein) lack alternatives in the available product list. Greater attention is needed, particularly for species listed as ecologically invasive in Western regions. Additionally, allergens from domestic fruits and vegetables causing pollen food allergy syndrome require characterization for the development of improved diagnostics.
Collapse
Affiliation(s)
- Kyoung Yong Jeong
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Jung-Won Park
- Department of Internal Medicine, Institute of Allergy, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
2
|
Buczkowski G. Termite cuticular extracts improve acceptance of bait for controlling invasive Asian needle ants, Brachyponera chinensis. PEST MANAGEMENT SCIENCE 2023; 79:4004-4010. [PMID: 37288874 DOI: 10.1002/ps.7601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND The Asian needle ant, Brachyponera chinensis, is an invasive ant currently spreading in urban and natural habitats throughout the eastern United States. Recent studies have documented the negative impact of B. chinensis on native ecosystems and human health, yet effective control strategies are lacking. Control difficulties are, in part, due to the unique biology of B. chinensis, which is a predatory ant and a termite specialist. Given that subterranean termites are an important nutritional resource for B. chinensis, the current study evaluated the potential of termite cuticular extract to improve the target-specificity and efficacy of commercial bait used for B. chinensis control. RESULTS The efficacy of bait augmented with termite cuticular extracts was evaluated in laboratory and field trials. In laboratory assays, B. chinensis colonies were offered granular bait treated with termite cuticular extract. Results demonstrated that the acceptance of commercial bait is significantly increased by the addition of termite cuticular extract or synthetic (Z)-9-pentacosene, a major component of termite cuticular extract. Foraging activity of Asian needle ants was significantly greater on baits augmented with termite cuticular extract or (Z)-9-pentacosene relative to standard bait. Furthermore, bait augmented with termite cuticular extract worked substantially faster relative to standard bait. To evaluate population effects, field studies were conducted in forested areas invaded by B. chinensis. Bait treated with termite cuticular extract scattered on the forest floor provided rapid control of B. chinensis and ant densities throughout the treated plots declined by 98% within 14 days. CONCLUSION The incorporation of termite cuticular extracts and individual cuticular hydrocarbons such as (Z)-9-pentacosene into traditional baits used for B. chinensis control may offer a novel tool to manage this increasingly problematic invasive ant. © 2023 The Author. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
3
|
Gruber MAM, Santoro D, Cooling M, Lester PJ, Hoffmann BD, Boser C, Lach L. A global review of socioeconomic and environmental impacts of ants reveals new insights for risk assessment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2577. [PMID: 35191120 DOI: 10.1002/eap.2577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Risk assessments are fundamental to invasive species management and are underpinned by comprehensive characterization of invasive species impacts. Our understanding of the impacts of invasive species is growing constantly, and several recently developed frameworks offer the opportunity to systematically categorize environmental and socioeconomic impacts of invasive species. Invasive ants are among the most widespread and damaging invaders. Although a handful of species receives most of the policy attention, nearly 200 species have established outside their native range. Here, we provide a global, comprehensive assessment of the impacts of ants and propose a priority list of risk species. We used the Socioeconomic Impact Classification for Alien Taxa (SEICAT), Environmental Impact Classification for Alien Taxa (EICAT) and Generic Impact Scoring System (GISS) to analyze 642 unique sources for 100 named species. Different methodologies provided generally consistent results. The most frequently identified socioeconomic impacts were to human health. Environmental impacts were primarily on animal and plant populations, with the most common mechanisms being predation and competition. Species recognized as harmful nearly 20 years ago featured prominently, including Wasmannia auropunctata (little fire ant, electric ant), Solenopsis invicta (red imported fire ant), Anoplolepis gracilipes (yellow crazy ant), and Pheidole megacephala (African big-headed ant). All these species except W. auropunctata have been implicated in local extinctions of native species. Although our assessments affirmed that the most serious impacts have been driven by a small number of species, our results also highlighted a substantial number of less well publicized species that have had major environmental impacts and may currently be overlooked when prioritizing prevention efforts. Several of these species were ranked as high or higher than some of the previously recognized "usual suspects," most notably Nylanderia fulva (tawny crazy ant). We compared and combined our assessments with trait-based profiles and other lists to propose a consensus set of 31 priority species. Ever-increasing global trade contributes to growing rates of species introductions. The integrated approaches we used can contribute to robust, holistic risk assessments for many taxa entrained in these pathways.
Collapse
Affiliation(s)
- Monica A M Gruber
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Pacific Biosecurity, Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand
| | - Davide Santoro
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Pacific Biosecurity, Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand
| | - Meghan Cooling
- Pacific Biosecurity, Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J Lester
- Centre for Biodiversity and Restoration Ecology, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Pacific Biosecurity, Wellington UniVentures, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin D Hoffmann
- CSIRO, Health & Biosecurity, Tropical Ecosystems Research Centre, Winnellie, Northwest Territories, Australia
| | | | - Lori Lach
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
4
|
Li J, Xue Y, Hacker CE, Zhang Y, Li Y, Cong W, Jin L, Li G, Wu B, Li D, Zhang Y. Projected impacts of climate change on snow leopard habitat in Qinghai Province, China. Ecol Evol 2021; 11:17202-17218. [PMID: 34938503 PMCID: PMC8668752 DOI: 10.1002/ece3.8358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022] Open
Abstract
Assessing species' vulnerability to climate change is a prerequisite for developing effective strategies to reduce emerging climate-related threats. We used the maximum entropy algorithm (MaxEnt model) to assess potential changes in suitable snow leopard (Panthera uncia) habitat in Qinghai Province, China, under a mild climate change scenario. Our results showed that the area of suitable snow leopard habitat in Qinghai Province was 302,821 km2 under current conditions and 228,997 km2 under the 2050s climatic scenario, with a mean upward shift in elevation of 90 m. At present, nature reserves protect 38.78% of currently suitable habitat and will protect 42.56% of future suitable habitat. Current areas of climate refugia amounted to 212,341 km2 and are mainly distributed in the Sanjiangyuan region, Qilian mountains, and surrounding areas. Our results provide valuable information for formulating strategies to meet future conservation challenges brought on by climate stress. We suggest that conservation efforts in Qinghai Province should focus on protecting areas of climate refugia and on maintaining or building corridors when planning for future species management.
Collapse
Affiliation(s)
- Jia Li
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Yadong Xue
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| | - Charlotte E. Hacker
- Department of Biological SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Yu Zhang
- Research Institute of Nature Protected AreasChinese Academy of ForestryBeijingChina
| | - Ye Li
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| | - Wei Cong
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| | - Lixiao Jin
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| | - Gang Li
- Social Information Department of CCTV News CenterChina Media GroupBeijingChina
| | - Bo Wu
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Diqiang Li
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| | - Yuguang Zhang
- Research Institute of Forest Ecology, Environment and ProtectionChinese Academy of ForestryBeijingChina
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland AdministrationBeijingChina
| |
Collapse
|
5
|
Demain JG. Insect Migration and Changes in Venom Allergy due to Climate Change. Immunol Allergy Clin North Am 2021; 41:85-95. [PMID: 33228875 DOI: 10.1016/j.iac.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Insects are highly successful animals. They have limited ability to regulate their temperature and therefore will expand range in response to warming temperatures. Climate change and associated rising global temperature is impacting the range and distribution of stinging insects. There is evidence that many species are expanding range toward the poles, primarily in response to warming. With expanded distribution of stinging insects, increased interaction with humans is anticipated with consequently increased rates of sting-related reactions and need for intervention. This article focuses on evidence that insects are expanding their range in response to warming temperature, increasing likelihood of human interaction.
Collapse
Affiliation(s)
- Jeffrey G Demain
- Department of Pediatrics, Allergy Asthma & Immunology Center of Alaska, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Hymenoptera allergy and anaphylaxis: are warmer temperatures changing the impact? Curr Opin Allergy Clin Immunol 2020; 20:438-444. [PMID: 32842036 DOI: 10.1097/aci.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Climate change has brought about many changes in our ecosystem. Prolongation of pollen seasons has been reported, related to earlier frost off in the spring and later onset of frost on in the fall. This review considers recent global evidence that stinging insects are redistributing toward the poles, thereby potentially increasing human exposure and risk of sting events. RECENT FINDINGS With changing climate, particularly climate warming, range expansion of insects is occurring in both the Northern and Southern Hemispheres. Likewise, stinging insects, such as Hymenoptera and Lepidoptera, are also expanding range. Though there is scant data on associated increase of insect-related anaphylaxis, increased insect-human interaction is certain. SUMMARY It is likely that climate change will continue to alter the distribution and population of Hymenoptera and other insects. As temperatures warm and regions become suitable for nesting and establishment of colonies, many insects will expand their territory. As already reported in Alaska, one would anticipate expansion of range, especially toward the poles, thereby increasing the probability of human encounters and likewise anaphylaxis.
Collapse
|
7
|
Wang F, Wang D, Guo G, Hu Y, Wei J, Liu J. Species delimitation of the Dermacentor ticks based on phylogenetic clustering and niche modeling. PeerJ 2019; 7:e6911. [PMID: 31123639 PMCID: PMC6512763 DOI: 10.7717/peerj.6911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022] Open
Abstract
Three species belonging to the genus Dermacentor (Acari: Ixodidae), D. marginatus, D. nuttalli and D. silvarum are well known as vectors for a great variety of infection pathogens. All three of them are host ticks, which are very similar in morphology characteristics, life cycle, seasonal variation and ecological conditions, making it difficult to distinguish the three species. In the present study, these three species were delimitated based on molecular data and ecological niche. The molecular analysis showed that the three species can be distinguished by COI and ITS2 sequences. We created future potential distribution maps for the three species under climate changes with MaxEnt, which highlighted the different levels of the suitable habitats for each tick species. In addition, niche comparisons among the three species in Dermacentor were conducted, and the analysis suggested that niche overlap was relatively high with D. nuttalli and D. silvarum compared to the other species pairs, which was consistent with the molecular data. Niche equivalency and similarity test confirmed that these Dermacentor species were closely related but distinct species. In conclusion, delimitation of these three species within Dermacentor was supported by molecular phylogeny and quantitative ecological space. This study will provide deep insights into the biology, ecology, and diversification processes within Dermacentor species, and for the development of effective control for ticks.
Collapse
Affiliation(s)
- Fang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Duo Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Ge Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Yonghong Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Jiufeng Wei
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
8
|
Eyer PA, Matsuura K, Vargo EL, Kobayashi K, Yashiro T, Suehiro W, Himuro C, Yokoi T, Guénard B, Dunn RR, Tsuji K. Inbreeding tolerance as a pre-adapted trait for invasion success in the invasive ant Brachyponera chinensis. Mol Ecol 2018; 27:4711-4724. [PMID: 30368959 DOI: 10.1111/mec.14910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023]
Abstract
Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, Texas
| | - Kazuya Kobayashi
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Toshihisa Yashiro
- Molecular Ecology, Evolution, and Phylogenetics (MEEP) laboratory School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Wataru Suehiro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Chihiro Himuro
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, University of Tsukuba, Tsukuba, Japan
| | - Benoit Guénard
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany.,Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen Ø, Denmark
| | - Kazuki Tsuji
- Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
9
|
Billen J, Al-Khalifa M. Morphology and ultrastructure of the mandibular gland in the ant Brachyponera sennaarensis (Hymenoptera, Formicidae). Micron 2018; 104:66-71. [DOI: 10.1016/j.micron.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/29/2017] [Accepted: 10/29/2017] [Indexed: 11/26/2022]
|
10
|
Climate changes and Hymenoptera venom allergy: are there some connections? Curr Opin Allergy Clin Immunol 2017; 17:344-349. [DOI: 10.1097/aci.0000000000000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Ellis-Soto D, Blake S, Soultan A, Guézou A, Cabrera F, Lötters S. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change. PLoS One 2017; 12:e0181333. [PMID: 28727747 PMCID: PMC5519159 DOI: 10.1371/journal.pone.0181333] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/29/2017] [Indexed: 11/18/2022] Open
Abstract
Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoidis spp.). Tortoises transport large quantities of seeds over long distances into environments in which they have little or no chance of germination and survival under current climate conditions. However, climate change is projected to modify environmental conditions on Galapagos with unknown consequences for the distribution of native and introduced biodiversity. We quantified seed dispersal of guava and passion fruit in tortoise dung piles and the distribution of adult plants along two elevation gradients on Santa Cruz to assess current levels of 'wasted' seed dispersal. We computed species distribution models for both taxa under current and predicted future climate conditions. Assuming that tortoise migratory behaviour continues, current levels of "wasted" seed dispersal in lowlands were projected to decline dramatically in the future for guava but not for passion fruit. Tortoises will facilitate rapid range expansion for guava into lowland areas within the Galapagos National Park where this species is currently absent. Coupled with putative reduction in arid habitat for native species caused by climate change, tortoise driven guava invasion will pose a serious threat to local plant communities.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Biogeography, Trier University, Trier, Germany
| | - Stephen Blake
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
- WildCare Institute, St. Louis Zoo, St. Louis, Missouri, United States of America
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
- State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Charles Darwin Foundation, Puerto Ayora, Santa Cruz, Galapagos, Ecuador
| | - Alaaeldin Soultan
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anne Guézou
- Charles Darwin Foundation, Puerto Ayora, Santa Cruz, Galapagos, Ecuador
| | - Fredy Cabrera
- Charles Darwin Foundation, Puerto Ayora, Santa Cruz, Galapagos, Ecuador
| | | |
Collapse
|
12
|
Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLoS One 2017; 12:e0180913. [PMID: 28700721 PMCID: PMC5507313 DOI: 10.1371/journal.pone.0180913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a serious invasive species that significantly damages plants of approximately 60 families around the world. It is originally from North America and has also been introduced to other continents. Our goals were to create a current and future potential global distribution map for this pest under climate change with MaxEnt software. We tested the hypothesis of niche conservatism for P. solenopsis by comparing its native niche in North America to its invasive niches on other continents using Principal components analyses (PCA) in R. The potentially suitable habitat for P. solenopsis in its native and non-native ranges is presented in the present paper. The results suggested that the mean temperature of the wettest quarter and the mean temperature of the driest quarter are the most important environmental variables determining the potential distribution of P. solenopsis. We found strong evidence for niche shifts in the realized climatic niche of this pest in South America and Australia due to niche unfilling; however, a niche shift in the realized climatic niche of this pest in Eurasian owing to niche expansion.
Collapse
|
13
|
Lopes TM, Bailly D, Almeida BA, Santos NCL, Gimenez BCG, Landgraf GO, Sales PCL, Lima-Ribeiro MS, Cassemiro FAS, Rangel TF, Diniz-Filho JAF, Agostinho AA, Gomes LC. Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS One 2017; 12:e0179684. [PMID: 28654663 PMCID: PMC5487012 DOI: 10.1371/journal.pone.0179684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/04/2017] [Indexed: 11/30/2022] Open
Abstract
Climate change and species invasions interact in nature, disrupting biological communities. Based on this knowledge, we simultaneously assessed the effects of climate change on the native distribution of the Amazonian fish Colossoma macropomum as well as on its invasiveness across river basins of South America, using ecological niche modeling. We used six niche models within the ensemble forecast context to predict the geographical distribution of C. macropomum for the present time, 2050 and 2080. Given that this species has been continuously introduced into non-native South American basins by fish farming activities, we added the locations of C. macropomum farms into the modeling process to obtain a more realistic scenario of its invasive potential. Based on modelling outputs we mapped climate refuge areas at different times. Our results showed that a plenty of climatically suitable areas for the occurrence of C. macropomum occurrence are located outside the original basins at the present time and that its invasive potential is greatly amplified by fish farms. Simulations of future geographic ranges revealed drastic range contraction in the native region, implying concerns not only with respect to the species conservation but also from a socio-economic perspective since the species is a cornerstone of artisanal and commercial fisheries in the Amazon. Although the invasive potential is projected to decrease in the face of climate change, climate refugia will concentrate in Paraná River, Southeast Atlantic and East Atlantic basins, putting intense, negative pressures on the native fish fauna these regions. Our findings show that short and long-term management actions are required for: i) the conservation of natural stocks of C. macropomum in the Amazon, and ii) protecting native fish fauna in the climate refuges of the invaded regions.
Collapse
Affiliation(s)
- Taise M. Lopes
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
- * E-mail:
| | - Dayani Bailly
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Bia A. Almeida
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Natália C. L. Santos
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Barbara C. G. Gimenez
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
- Programa de Pós-Graduação em Sistemas Costeiros e Oceânicos, Universidade Federal do Paraná/CEM, Pontal do Paraná, PR, Brazil
| | - Guilherme O. Landgraf
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Paulo C. L. Sales
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
- Universidade Federal do Piauí, Departamento de Biologia, Picos, PI, Brazil
| | | | - Fernanda A. S. Cassemiro
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Thiago F. Rangel
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Angelo A. Agostinho
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Luiz C. Gomes
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, Maringá, PR, Brazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPÉLIA), Universidade Estadual de Maringá, Maringá, PR, Brazil
| |
Collapse
|
14
|
Buczkowski G, Bertelsmeier C. Invasive termites in a changing climate: A global perspective. Ecol Evol 2017; 7:974-985. [PMID: 28168033 PMCID: PMC5288252 DOI: 10.1002/ece3.2674] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/05/2016] [Accepted: 11/20/2016] [Indexed: 11/06/2022] Open
Abstract
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human-made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species-rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.
Collapse
Affiliation(s)
- Grzegorz Buczkowski
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
- Purdue Climate Change Research CenterPurdue UniversityWest LafayetteINUSA
| | - Cleo Bertelsmeier
- Department of Ecology and EvolutionBiophoreUNIL‐SorgeUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
15
|
Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 2015. [DOI: 10.1007/s10530-015-1025-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
The Trojan horse approach for managing invasive ants: a study with Asian needle ants, Pachycondyla chinensis. Biol Invasions 2015. [DOI: 10.1007/s10530-015-1023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Kaczmarek J, Kedziora A, Brachaczek A, Latunde-Dada AO, Dakowska S, Karg G, Jedryczka M. Effect of climate change on sporulation of the teleomorphs of Leptosphaeria species causing stem canker of brassicas. AEROBIOLOGIA 2015; 32:39-51. [PMID: 27034535 PMCID: PMC4773465 DOI: 10.1007/s10453-015-9404-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 05/04/2023]
Abstract
Leptosphaeria maculans and L. biglobosa are closely related sibling fungal pathogens that cause phoma leaf spotting, stem canker (blackleg) and stem necrosis of oilseed rape (Brassica napus). The disease is distributed worldwide, and it is one of the main causes of considerable decrease in seed yield and quality. Information about the time of ascospore release at a particular location provides important data for decision making in plant protection, thereby enabling fungicides to be used only when necessary and at optimal times and doses. Although the pathogens have been studied very extensively, the effect of climate change on the frequencies and distributions of their aerially dispersed primary inoculum has not been reported to date. We have collected a large dataset of spore counts from Poznan, located in central-west part of Poland, and studied the relationships between climate and the daily concentrations of airborne propagules over a period of 17 years (1998-2014). The average air temperature and precipitation for the time of development of pseudothecia and ascospore release (July-November), increased during the years under study at the rates of 0.1 °C and 6.3 mm per year. The day of the year (DOY) for the first detection of spores, as well as the date with maximum of spores, shifted from 270 to 248 DOY, and from 315 to 265 DOY, respectively. The acceleration of the former parameter by 22 days and the latter by 50 days has great influence on the severity of stem canker of oilseed rape.
Collapse
Affiliation(s)
- Joanna Kaczmarek
- />Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Andrzej Kedziora
- />Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznan, Poland
| | | | | | - Sylwia Dakowska
- />Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| | - Grzegorz Karg
- />Institute of Agricultural and Forest Environment, Polish Academy of Sciences, Bukowska 19, 60-809 Poznan, Poland
| | - Małgorzata Jedryczka
- />Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| |
Collapse
|
18
|
Chen YH, Robinson EJH. The relationship between canopy cover and colony size of the wood ant Formica lugubris--implications for the thermal effects on a keystone ant species. PLoS One 2015; 9:e116113. [PMID: 25551636 PMCID: PMC4281126 DOI: 10.1371/journal.pone.0116113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
Climate change may affect ecosystems and biodiversity through the impacts of rising temperature on species' body size. In terms of physiology and genetics, the colony is the unit of selection for ants so colony size can be considered the body size of a colony. For polydomous ant species, a colony is spread across several nests. This study aims to clarify how climate change may influence an ecologically significant ant species group by investigating thermal effects on wood ant colony size. The strong link between canopy cover and the local temperatures of wood ant's nesting location provides a feasible approach for our study. Our results showed that nests were larger in shadier areas where the thermal environment was colder and more stable compared to open areas. Colonies (sum of nests in a polydomous colony) also tended to be larger in shadier areas than in open areas. In addition to temperature, our results supported that food resource availability may be an additional factor mediating the relationship between canopy cover and nest size. The effects of canopy cover on total colony size may act at the nest level because of the positive relationship between total colony size and mean nest size, rather than at the colony level due to lack of link between canopy cover and number of nests per colony. Causal relationships between the environment and the life-history characteristics may suggest possible future impacts of climate change on these species.
Collapse
Affiliation(s)
- Yi-Huei Chen
- York Centre for Complex Systems Analysis, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
- * E-mail:
| | - Elva J. H. Robinson
- York Centre for Complex Systems Analysis, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, United Kingdom
| |
Collapse
|