1
|
Phinney NZ, Huang X, Toombs JE, Brekken RA. Development of betabodies: The next generation of phosphatidylserine targeting agents. J Biol Chem 2024; 300:107681. [PMID: 39159812 PMCID: PMC11416255 DOI: 10.1016/j.jbc.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Externalized phosphatidylserine (PS) is a phospholipid and a selective marker of the tumor microenvironment (TME). It is exposed on the outer leaflet of the plasma membrane of tumor-associated endothelial cells, apoptotic tumor cells, and some viable tumor cells, where it functions in part to suppress immune responses by binding to PS receptors expressed on tumor-infiltrating myeloid cells. PS has been targeted with antibodies, such as bavituximab, that bind the phospholipid via a cofactor, β2-glycoprotein 1 (β2GP1); these antibodies showed excellent specificity for tumor vasculature and induce an immune stimulatory environment. We have advanced this concept by developing the next generation of PS targeting agent, a fusion protein (betabody) constructed by linking PS-binding domain V of β2GP1 to the Fc of an IgG2a. Betabodies bind to externalized PS with high affinity (∼1 nM), without the requirement of a co-factor and localize robustly to the TME. We demonstrate that betabodies are a direct PS-targeting agent that has the potential to be used as anti-tumor therapy, drug delivery vehicles, and tools for imaging the TME.
Collapse
Affiliation(s)
- Natalie Z Phinney
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xianming Huang
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jason E Toombs
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rolf A Brekken
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA; Cancer Biology Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Kaynak A, N’Guessan KF, Patel PH, Lee JH, Kogan AB, Narmoneva DA, Qi X. Electric Fields Regulate In Vitro Surface Phosphatidylserine Exposure of Cancer Cells via a Calcium-Dependent Pathway. Biomedicines 2023; 11:biomedicines11020466. [PMID: 36831002 PMCID: PMC9953458 DOI: 10.3390/biomedicines11020466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Cancer is the second leading cause of death worldwide after heart disease. The current treatment options to fight cancer are limited, and there is a critical need for better treatment strategies. During the last several decades, several electric field (EF)-based approaches for anti-cancer therapies have been introduced, such as electroporation and tumor-treating fields; still, they are far from optimal due to their invasive nature, limited efficacy and significant side effects. In this study, we developed a non-contact EF stimulation system to investigate the in vitro effects of a novel EF modality on cancer biomarkers in normal (human astrocytes, human pancreatic ductal epithelial -HDPE-cells) and cancer cell lines (glioblastoma U87-GBM, human pancreatic cancer cfPac-1, and MiaPaCa-2). Our results demonstrate that this EF modality can successfully modulate an important cancer cell biomarker-cell surface phosphatidylserine (PS). Our results further suggest that moderate, but not low, amplitude EF induces p38 mitogen-activated protein kinase (MAPK), actin polymerization, and cell cycle arrest in cancer cell lines. Based on our results, we propose a mechanism for EF-mediated PS exposure in cancer cells, where the magnitude of induced EF on the cell surface can differentially regulate intracellular calcium (Ca2+) levels, thereby modulating surface PS exposure.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kombo F. N’Guessan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Priyankaben H. Patel
- Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Andrei B. Kogan
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-513-558-4025
| |
Collapse
|
3
|
Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2536. [PMID: 35626139 PMCID: PMC9139557 DOI: 10.3390/cancers14102536] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is among the leading causes of death worldwide. In recent years, many cancer-associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening, and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effectiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab, (Tarvacin, human-mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss PS-based anticancer strategies that are currently under active development.
Collapse
Affiliation(s)
- Ahmet Kaynak
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Harold W. Davis
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Andrei B. Kogan
- Physics Department, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Jing-Huei Lee
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Daria A. Narmoneva
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
| | - Xiaoyang Qi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (A.K.); (J.-H.L.); (D.A.N.)
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| |
Collapse
|
4
|
Yu L, Sun R, Xu K, Pu Y, Huang J, Liu M, Chen M, Zhang J, Yin L, Pu Y. Lipidomic analysis reveals disturbances in glycerophospholipid and sphingolipid metabolic pathways in benzene-exposed mice. Toxicol Res (Camb) 2021; 10:706-718. [PMID: 34484662 DOI: 10.1093/toxres/tfab053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Benzene, a known occupational and environmental contaminant, has been recognized as the hematotoxin and human carcinogen. Lipids have a variety of important physiological functions and the abnormal lipid metabolism has been reported to be closely related to the occurrence and development of many diseases. In the present study, we aim to utilize LC-MS/MS lipidomic platform to identify novel biomarkers and provide scientific clues for mechanism study of benzene hematotoxicity. Results showed that a total of 294 differential metabolites were obtained from the comparison of benzene-treated group and control group. The glycerophospholipid pathway was altered involving the down-regulation of the levels of phosphatidylcholine and phosphatidylserine. In addition, phosphatidylethanolamine (PE) and 1-Acyl-sn-glycero-3-phosphocholine levels were increased in benzene-treated group. Based on the relationship between PE and autophagy, we then found that effective biomarker of autophagy, Beclin1 and LC3B, were increased remarkably. Furthermore, following benzene treatment, significant decreases in glucosylceramide (GlcCer) and phytosphingosine (PHS) levels in sphingolipid pathway were observed. Simultaneously, the levels of proliferation marker (PCNA and Ki67) and apoptosis regulator (Bax and Caspase-3) showed clear increases in benzene-exposed group. Based on our results, we speculate that disturbances in glycerophospholipid pathway play an important role in the process of benzene-induced hematopoietic toxicity by affecting autophagy, while sphingolipid pathway may also serve as a vital role in benzene-caused toxicity by regulating proliferation and apoptosis. Our study provides basic study information for the future biomarker and mechanism research underlying the development of benzene-induced blood toxicity.
Collapse
Affiliation(s)
- Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
5
|
Davis HW, Kaynak A, Vallabhapurapu SD, Qi X. Targeting of elevated cell surface phosphatidylserine with saposin C-dioleoylphosphatidylserine nanodrug as individual or combination therapy for pancreatic cancer. World J Gastrointest Oncol 2021; 13:550-559. [PMID: 34163572 PMCID: PMC8204355 DOI: 10.4251/wjgo.v13.i6.550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the deadliest of cancers with a five-year survival of roughly 8%. Current therapies are: surgery, radiation and chemotherapy. Surgery is curative only if the cancer is caught very early, which is rare, and the latter two modalities are only marginally effective and have significant side effects. We have developed a nanosome comprised of the lysosomal protein, saposin C (SapC) and the acidic phospholipid, dioleoylphosphatidylserine (DOPS). In the acidic tumor microenvironment, this molecule, SapC-DOPS, targets the phosphatidylserine cancer-biomarker which is predominantly elevated on the surface of cancer cells. Importantly, SapC-DOPS can selectively target pancreatic tumors and metastases. Furthermore, SapC-DOPS has exhibited an impressive safety profile with only a few minor side effects in both preclinical experiments and in phase I clinical trials. With the dismal outcomes for pancreatic cancer there is an urgent need for better treatments and SapC-DOPS is a good candidate for addition to the oncologist’s toolbox.
Collapse
Affiliation(s)
- Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Ahmet Kaynak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Brain Tumor Center at UC Neuroscience Institute, Cincinnati, OH 45267, United States
- Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
6
|
Sandin SI, Gravano DM, Randolph CJ, Sharma M, de Alba E. Engineering of Saposin C Protein Chimeras for Enhanced Cytotoxicity and Optimized Liposome Binding Capability. Pharmaceutics 2021; 13:pharmaceutics13040583. [PMID: 33921905 PMCID: PMC8072984 DOI: 10.3390/pharmaceutics13040583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Saposin C (sapC) is a lysosomal, peripheral-membrane protein displaying liposome fusogenic capabilities. Proteoliposomes of sapC and phosphatidylserine have been shown to be toxic for cancer cells and are currently on clinical trial to treat glioblastoma. As proof-of-concept, we show two strategies to enhance the applications of sapC proteoliposomes: (1) Engineering chimeras composed of sapC to modulate proteoliposome function; (2) Engineering sapC to modify its lipid binding capabilities. In the chimera design, sapC is linked to a cell death-inducing peptide: the BH3 domain of the Bcl-2 protein PUMA. We show by solution NMR and dynamic light scattering that the chimera is functional at the molecular level by fusing liposomes and by interacting with prosurvival Bcl-xL, which is PUMA’s known mechanism to induce cell death. Furthermore, sapC-PUMA proteoliposomes enhance cytotoxicity in glioblastoma cells compared to sapC. Finally, the sapC domain of the chimera has been engineered to optimize liposome binding at pH close to physiological values as protein–lipid interactions are favored at acidic pH in the native protein. Altogether, our results indicate that the properties of sapC proteoliposomes can be modified by engineering the protein surface and by the addition of small peptides as fusion constructs.
Collapse
Affiliation(s)
- Suzanne I. Sandin
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Chemistry and Chemical Biology Ph.D. Program, University of California, Merced, CA 95343, USA
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, CA 95343, USA;
| | - Christopher J. Randolph
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Meenakshi Sharma
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Correspondence:
| |
Collapse
|
7
|
Landry MR, Walker JM, Sun C. Exploiting Phagocytic Checkpoints in Nanomedicine: Applications in Imaging and Combination Therapies. Front Chem 2021; 9:642530. [PMID: 33748077 PMCID: PMC7966415 DOI: 10.3389/fchem.2021.642530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Recent interest in cancer immunotherapy has largely been focused on the adaptive immune system, particularly adoptive T-cell therapy and immune checkpoint blockade (ICB). Despite improvements in overall survival and progression-free survival across multiple cancer types, neither cell-based therapies nor ICB results in durable disease control in the majority of patients. A critical component of antitumor immunity is the mononuclear phagocyte system and its role in both innate and adaptive immunity. The phagocytic functions of these cells have been shown to be modulated through multiple pathways, including the CD47-SIRPα axis, which is manipulated by cancer cells for immune evasion. In addition to CD47, tumors express a variety of other “don’t eat me” signals, including beta-2-microglobulin and CD24, and “eat me” signals, including calreticulin and phosphatidylserine. Therapies targeting these signals can lead to increased phagocytosis of cancer cells; however, because “don’t eat me” signals are markers of “self” on normal cells, treatment can result in negative off-target effects, such as anemia and B-cell depletion. Recent preclinical research has demonstrated the potential of nanocarriers to synergize with prophagocytic therapies, address the off-target effects, improve pharmacokinetics, and codeliver chemotherapeutics. The high surface area-to-volume ratio of nanoparticles paired with preferential size for passive targeting allows for greater accumulation of therapeutic cargo. In addition, nanomaterials hold promise as molecular imaging agents for the detection of phagocytic markers. This mini review highlights the unique capabilities of nanotechnology to expand the application and efficacy of immunotherapy through recently discovered phagocytotic checkpoint therapies.
Collapse
Affiliation(s)
- Madeleine R Landry
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, United States
| | - Joshua M Walker
- Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States.,Department of Cell, Developmental, and Cancer Biology, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, United States.,Department of Radiation Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
8
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
9
|
Biotherapy of Brain Tumors with Phosphatidylserine-Targeted Radioiodinated SapC-DOPS Nanovesicles. Cells 2020; 9:cells9091960. [PMID: 32854321 PMCID: PMC7565346 DOI: 10.3390/cells9091960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM), a common type of brain cancer, has a very poor prognosis. In general, viable GBM cells exhibit elevated phosphatidylserine (PS) on their membrane surface compared to healthy cells. We have developed a drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), that selectively targets cancer cells by honing in on this surface PS. To examine whether SapC-DOPS, a stable, blood–brain barrier-penetrable nanovesicle, could be an effective delivery system for precise targeted therapy of radiation, we iodinated several carbocyanine-based fluorescent reporters with either stable iodine (127I) or radioactive isotopes (125I and 131I). While all of the compounds, when incorporated into the SapC-DOPS delivery system, were taken up by human GBM cell lines, we chose the two that best accumulated in the cells (DiI (22,3) and DiD (16,16)). Pharmacokinetics were conducted with 125I-labeled compounds and indicated that DiI (22,3)-SapC-DOPS had a time to peak in the blood of 0.66 h and an elimination half-life of 8.4 h. These values were 4 h and 11.5 h, respectively, for DiD (16,16)-SapC-DOPS. Adult nude mice with GBM cells implanted in their brains were treated with 131I-DID (16,16)-SapC-DOPS. Mice receiving the radionuclide survived nearly 50% longer than the control groups. These data suggest a potential novel, personalized treatment for a devastating brain disease.
Collapse
|
10
|
N'Guessan KF, Davis HW, Chu Z, Vallabhapurapu SD, Lewis CS, Franco RS, Olowokure O, Ahmad SA, Yeh JJ, Bogdanov VY, Qi X. Enhanced Efficacy of Combination of Gemcitabine and Phosphatidylserine-Targeted Nanovesicles against Pancreatic Cancer. Mol Ther 2020; 28:1876-1886. [PMID: 32516572 DOI: 10.1016/j.ymthe.2020.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/23/2022] Open
Abstract
Phosphatidylserine (PS) is often externalized in viable pancreatic cancer cells and is therapeutically targetable using PS-selective drugs. One of the first-line treatments for advanced pancreatic cancer disease, gemcitabine (GEM), provides only marginal benefit to patients. We therefore investigated the therapeutic benefits of combining GEM and the PS-targeting drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), for treating pancreatic ductal adenocarcinoma (PDAC). Using cell-cycle analyses and a cell surface PS-based sorting method in vitro, we observed an increase in surface PS as cells progress through the cell cycle from G1 to G2/M. We also observed that GEM treatment preferentially targets G1 phase cells that have low surface PS, resulting in an increased median surface PS level of PDAC cells. Inversely, SapC-DOPS preferentially targets high surface PS cells that are predominantly in the G2/M phase. Finally, combination therapy in subcutaneous and orthotopic PDAC tumors in vivo with SapC-DOPS and GEM or Abraxane (Abr)/GEM (one of the current standards of care) significantly inhibits tumor growth and increases survival compared with individual treatments. Our studies confirm a surface PS and cell cycle-based enhancement of cancer cytotoxicity following SapC-DOPS treatment in combination with GEM or Abr/GEM. Thus, PDAC patients treated with Abr/GEM may benefit from concurrent administration of SapC-DOPS.
Collapse
Affiliation(s)
- Kombo F N'Guessan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Harold W Davis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhengtao Chu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Clayton S Lewis
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Robert S Franco
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Olugbenga Olowokure
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syed A Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, Departments of Surgery and Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA; Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital and Medical Center, Cincinnati, OH 45267, USA; Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
11
|
Guan S, Zhang Q, Bao J, Hu R, Czech T, Tang J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr Drug Metab 2020; 20:815-834. [PMID: 31580248 DOI: 10.2174/1389200220666191003161114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Target-homing drug delivery systems are now gaining significant attention for use as novel therapeutic approaches in antitumor targeting for cancer therapy. Numerous targeted drug delivery systems have been designed to improve the targeting effects because these systems can display a range of favorable properties, thus, providing suitable characteristics for clinical applicability of anticancer drugs, such as increasing the solubility, and improving the drug distribution at target sites. The majority of these targeting systems are designed with respect to differences between cancerous and normal tissues, for instance, the low pH of tumor tissues or overexpressed receptors on tumor cell membranes. Due to the growing number of targeting possibilities, it is important to know the tumor-specific recognition strategies for designing novel, targeted, drug delivery systems. Herein, we identify and summarize literature pertaining to various recognition sites for optimizing the design of targeted drug delivery systems to augment current chemotherapeutic approaches. OBJECTIVE This review focuses on the identification of the recognition sites for developing targeted drug delivery systems for use in cancer therapeutics. METHODS We have reviewed and compiled cancer-specific recognition sites and their abnormal characteristics within tumor tissues (low pH, high glutathione, targetable receptors, etc.), tumor cells (receptor overexpression or tumor cell membrane changes) and tumor cell organelles (nuclear and endoplasmic reticular dysregulation) utilizing existing scientific literature. Moreover, we have highlighted the design of some targeted drug delivery systems that can be used as homing tools for these recognition sites. RESULTS AND CONCLUSION Targeted drug delivery systems are a promising therapeutic approach for tumor chemotherapy. Additional research focused on finding novel recognition sites, and subsequent development of targeting moieties for use with drug delivery systems will aid in the evaluation and clinical application of new and improved chemotherapeutics.
Collapse
Affiliation(s)
- Siyu Guan
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rongfeng Hu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Anhui "115" Xin'an Medicine Research & Development Innovation Team, Hefei 230038, China
| | - Tori Czech
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Jihui Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
12
|
Naeini MB, Bianconi V, Pirro M, Sahebkar A. The role of phosphatidylserine recognition receptors in multiple biological functions. Cell Mol Biol Lett 2020; 25:23. [PMID: 32226456 PMCID: PMC7098104 DOI: 10.1186/s11658-020-00214-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cells are rapidly engulfed and degraded by phagocytes through efferocytosis. Efferocytosis is a highly regulated process. It is triggered upon the activation of caspase-dependent apoptosis, which in turn promotes the expression of "eat me" signals on the surface of dying cells and the release of soluble "find me" signals for the recruitment of phagocytes. To date, many "eat me" signals have been recognized, including phosphatidylserine (PS), intercellular adhesion molecule-3, carbohydrates (e.g., amino sugars, mannose) and calreticulin. Among them, PS is the most studied one. PS recognition receptors are different functionally active receptors expressed by phagocytes. Various PS recognition receptors with different structure, cell type expression, and ability to bind to PS have been recognized. Although PS recognition receptors do not fall into a single classification or family of proteins due to their structural differences, they all share the common ability to activate downstream signaling pathways leading to the production of anti-inflammatory mediators. In this review, available evidence regarding molecular mechanisms underlying PS recognition receptor-regulated clearance of apoptotic cells is discussed. In addition, some efferocytosis-independent biological functions of PS recognition receptors are reviewed.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, School of Medicine, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran
| |
Collapse
|
13
|
N'Guessan KF, Patel PH, Qi X. SapC-DOPS - a Phosphatidylserine-targeted Nanovesicle for selective Cancer therapy. Cell Commun Signal 2020; 18:6. [PMID: 31918715 PMCID: PMC6950924 DOI: 10.1186/s12964-019-0476-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kombo F N'Guessan
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Priyankaben H Patel
- Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Department of Biomedical Sciences, University of Cincinnati, Cincinnati, OH, USA. .,Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children's Hospital and Medical Center, Cincinnati, OH, USA. .,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Matsumura S, Minamisawa T, Suga K, Kishita H, Akagi T, Ichiki T, Ichikawa Y, Shiba K. Subtypes of tumour cell-derived small extracellular vesicles having differently externalized phosphatidylserine. J Extracell Vesicles 2019; 8:1579541. [PMID: 30834072 PMCID: PMC6394288 DOI: 10.1080/20013078.2019.1579541] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/08/2023] Open
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes - or, more properly, small extracellular vesicles (sEVs) - which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (-28 mV vs. -21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanako Suga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromi Kishita
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Akagi
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Ichiki
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
15
|
Davis HW, Vallabhapurapu SD, Chu Z, Vallabhapurapu SL, Franco RS, Mierzwa M, Kassing W, Barrett WL, Qi X. Enhanced phosphatidylserine-selective cancer therapy with irradiation and SapC-DOPS nanovesicles. Oncotarget 2019; 10:856-868. [PMID: 30783515 PMCID: PMC6368238 DOI: 10.18632/oncotarget.26615] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
Normal living cells exhibit phosphatidylserine (PS) primarily within the intracellular leaflet of the plasma membrane. In contrast, viable cancer cells have high levels of PS on the external surface, and exhibit a broad range of surface PS, even within specific types of cancer. Agents that target surface PS have recently been developed to treat tumors and are expected to be more effective with higher surface PS levels. In this context, we examined whether surface PS is increased with irradiation. In vitro irradiation of cancer cell lines selected surviving cells that had higher surface PS in a dose- and time-dependent manner. This was more pronounced if surface PS was initially in the lower range for cancer cells. Radiation also increased the surface PS of tumor cells in subcutaneous xenografts in nude mice. We found an inverse relationship between steady state surface PS level of cancer cell lines and their sensitivity to radiation-induced cell death. In addition, serial irradiation, which selected surviving cells with higher surface PS, also increased resistance to radiation and to some chemotherapeutic drugs, suggesting a PS-dependent mechanism for development of resistance to therapy. On the other hand, fractionated radiation enhanced the effect of a novel anti-cancer, PS-targeting drug, SapC-DOPS, in some cancer cell lines. Our data suggest that we can group cancer cells into cells with low surface PS, which are sensitive to radiation, and high surface PS, which are sensitive to SapC-DOPS. Combination of these interventions may provide a potential new combination therapy.
Collapse
Affiliation(s)
- Harold W Davis
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhengtao Chu
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Swarajya L Vallabhapurapu
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert S Franco
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William Kassing
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William L Barrett
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Translational Research Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
16
|
Sharma B, Kanwar SS. Phosphatidylserine: A cancer cell targeting biomarker. Semin Cancer Biol 2018; 52:17-25. [DOI: 10.1016/j.semcancer.2017.08.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/12/2017] [Accepted: 08/30/2017] [Indexed: 12/11/2022]
|
17
|
Harris M, Svensson F, Kopanitsa L, Ladds G, Bailey D. Emerging patents in the therapeutic areas of glioma and glioblastoma. Expert Opin Ther Pat 2018; 28:573-590. [DOI: 10.1080/13543776.2018.1494155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Matthew Harris
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Fredrik Svensson
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge CB4 0WS, UK
| | - Liliya Kopanitsa
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge CB4 0WS, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - David Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge CB4 0WS, UK
| |
Collapse
|
18
|
Blanco VM, Chu Z, LaSance K, Gray BD, Pak KY, Rider T, Greis KD, Qi X. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles. Oncotarget 2017; 7:32866-75. [PMID: 27096954 PMCID: PMC5078058 DOI: 10.18632/oncotarget.8763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
Multimodal tumor imaging with targeted nanoparticles potentially offers both enhanced specificity and sensitivity, leading to more precise cancer diagnosis and monitoring. We describe the synthesis and characterization of phenol-substituted, lipophilic orange and far-red fluorescent dyes and a simple radioiodination procedure to generate a dual (optical and nuclear) imaging probe. MALDI-ToF analyses revealed high iodination efficiency of the lipophilic reporters, achieved by electrophilic aromatic substitution using the chloramide 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen) as the oxidizing agent in an organic/aqueous co-solvent mixture. Upon conjugation of iodine-127 or iodine-124-labeled reporters to tumor-targeting SapC-DOPS nanovesicles, optical (fluorescent) and PET imaging was performed in mice bearing intracranial glioblastomas. In addition, tumor vs non-tumor (normal brain) uptake was compared using iodine-125. These data provide proof-of-principle for the potential value of SapC-DOPS for multimodal imaging of glioblastoma, the most aggressive primary brain tumor.
Collapse
Affiliation(s)
- Víctor M Blanco
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Zhengtao Chu
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Brian D Gray
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, USA
| | - Koon Yan Pak
- Molecular Targeting Technologies, Inc., West Chester, Pennsylvania 19380, USA
| | - Therese Rider
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Xiaoyang Qi
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
19
|
Orr-Asman MA, Chu Z, Jiang M, Worley M, LaSance K, Koch SE, Carreira VS, Dahche HM, Plas DR, Komurov K, Qi X, Mercer CA, Anthony LB, Rubinstein J, Thomas HE. mTOR Kinase Inhibition Effectively Decreases Progression of a Subset of Neuroendocrine Tumors that Progress on Rapalog Therapy and Delays Cardiac Impairment. Mol Cancer Ther 2017; 16:2432-2441. [PMID: 28864682 DOI: 10.1158/1535-7163.mct-17-0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/01/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
Inhibition of mTOR signaling using the rapalog everolimus is an FDA-approved targeted therapy for patients with lung and gastroenteropancreatic neuroendocrine tumors (NET). However, patients eventually progress on treatment, highlighting the need for additional therapies. We focused on pancreatic NETs (pNET) and reasoned that treatment of these tumors upon progression on rapalog therapy, with an mTOR kinase inhibitor (mTORKi), such as CC-223, could overcome a number of resistance mechanisms in tumors and delay cardiac carcinoid disease. We performed preclinical studies using human pNET cells in vitro and injected them subcutaneously or orthotopically to determine tumor progression and cardiac function in mice treated with either rapamycin alone or switched to CC-223 upon progression. Detailed signaling and RNA sequencing analyses were performed on tumors that were sensitive or progressed on mTOR treatment. Approximately 57% of mice bearing pNET tumors that progressed on rapalog therapy showed a significant decrease in tumor volume upon a switch to CC-223. Moreover, mice treated with an mTORKi exhibited decreased cardiac dilation and thickening of heart valves than those treated with placebo or rapamycin alone. In conclusion, in the majority of pNETs that progress on rapalogs, it is possible to reduce disease progression using an mTORKi, such as CC-223. Moreover, CC-223 had an additional transient cardiac benefit on valvular fibrosis compared with placebo- or rapalog-treated mice. These results provide the preclinical rationale to further develop mTORKi clinically upon progression on rapalog therapy and to further test their long-term cardioprotective benefit in those NET patients prone to carcinoid syndrome. Mol Cancer Ther; 16(11); 2432-41. ©2017 AACR.
Collapse
Affiliation(s)
- Melissa A Orr-Asman
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Zhengtao Chu
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Min Jiang
- Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio
| | - Mariah Worley
- Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio
| | - Kathleen LaSance
- Department of Radiology, University of Cincinnati, Cincinnati, Ohio
| | - Sheryl E Koch
- Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio
| | - Vinicius S Carreira
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati, Cincinnati, Ohio
| | - Hanan M Dahche
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio
| | - Kakajan Komurov
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Ohio
| | - Xiaoyang Qi
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Carol A Mercer
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Lowell B Anthony
- Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jack Rubinstein
- Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio
| | - Hala E Thomas
- Division of Hematology and Oncology, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
20
|
Oyler-Yaniv J, Oyler-Yaniv A, Shakiba M, Min NK, Chen YH, Cheng SY, Krichevsky O, Altan-Bonnet N, Altan-Bonnet G. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation. Mol Cell 2017; 66:635-647.e7. [PMID: 28575659 PMCID: PMC6611463 DOI: 10.1016/j.molcel.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/28/2017] [Accepted: 05/08/2017] [Indexed: 01/05/2023]
Abstract
Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways.
Collapse
MESH Headings
- Animals
- Cell Communication
- Cell Line, Tumor
- Coculture Techniques
- Computational Biology
- Computer Simulation
- Databases, Genetic
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation Mediators/metabolism
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Janus Kinases/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Male
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Phosphatidylserines/immunology
- Phosphatidylserines/metabolism
- Phosphorylation
- RAW 264.7 Cells
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/immunology
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Time Factors
- Transcription, Genetic
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jennifer Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alon Oyler-Yaniv
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Mojdeh Shakiba
- Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Nina K Min
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ying-Han Chen
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Oleg Krichevsky
- Physics Department, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel; Ilse Kats Center for Nanoscience, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nihal Altan-Bonnet
- Laboratory of Host-Pathogen Dynamics, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Grégoire Altan-Bonnet
- ImmunoDynamics Group, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Program in Computational Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
21
|
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113:24-48. [PMID: 27497513 DOI: 10.1016/j.addr.2016.07.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and resistance to therapy. It is different from normal tissue in the extracellular matrix, vascular and lymphatic networks, as well as physiologic conditions. Molecular imaging of the tumor microenvironment provides a better understanding of its function in cancer biology, and thus allowing for the design of new diagnostics and therapeutics for early cancer diagnosis and treatment. The clinical translation of cancer molecular imaging is often hampered by the high cost of commercialization of targeted imaging agents as well as the limited clinical applications and small market size of some of the agents. Because many different cancer types share similar tumor microenvironment features, the ability to target these biomarkers has the potential to provide clinically translatable molecular imaging technologies for a spectrum of cancers and broad clinical applications. There has been significant progress in targeting the tumor microenvironment for cancer molecular imaging. In this review, we summarize the principles and strategies of recent advances made in molecular imaging of the tumor microenvironment, using various imaging modalities for early detection and diagnosis of cancer.
Collapse
|
22
|
Guillen KP, Ruben EA, Virani N, Harrison RG. Annexin-directed β-glucuronidase for the targeted treatment of solid tumors. Protein Eng Des Sel 2017; 30:85-94. [PMID: 27986920 PMCID: PMC5241760 DOI: 10.1093/protein/gzw063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Enzyme prodrug therapy has the potential to remedy the lack of selectivity associated with the systemic administration of chemotherapy. However, most current systems are immunogenic and constrained to a monotherapeutic approach. We developed a new class of fusion proteins centered about the human enzyme β-glucuronidase (βG), capable of converting several innocuous prodrugs into chemotherapeutics. We targeted βG to phosphatidylserine on tumor cells, tumor vasculature and metastases via annexin A1/A5. Phosphatidylserine shows promise as a universal marker for solid tumors and allows for tumor type-independent targeting. To create fusion proteins, human annexin A1/A5 was genetically fused to the activity-enhancing 16a3 mutant of human βG, expressed in chemically defined, fed-batch suspension culture, and chromatographically purified. All fusion constructs achieved >95% purity with yields up to 740 μg/l. Fusion proteins displayed cancer selective cell-surface binding with cell line-dependent binding stability. One fusion protein in combination with the prodrug SN-38 glucuronide was as effective as the drug SN-38 on Panc-1 pancreatic cancer cells and HAAE-1 endothelial cells, and demonstrated efficacy against MCF-7 breast cancer cells. βG fusion proteins effectively enable localized combination therapy that can be tailored to each patient via prodrug selection, with promising clinical potential based on their near fully human design.
Collapse
Affiliation(s)
- Katrin P Guillen
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Eliza A Ruben
- Protein Production Core, Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Needa Virani
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
| | - Roger G Harrison
- Biomedical Engineering Program and School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 E. Boyd St., Norman, OK 73019, USA
- Stephenson Cancer Center, Health Sciences Center, University of Oklahoma, 800 Northeast 10th St., Oklahoma City, OK 73104, USA
| |
Collapse
|
23
|
Ríos Peces S, Díaz Navarro C, Márquez López C, Caba O, Jiménez-Luna C, Melguizo C, Prados JC, Genilloud O, Vicente Pérez F, Pérez Del Palacio J. Untargeted LC-HRMS-Based Metabolomics for Searching New Biomarkers of Pancreatic Ductal Adenocarcinoma: A Pilot Study. SLAS DISCOVERY 2016; 22:348-359. [PMID: 27655283 DOI: 10.1177/1087057116671490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal tumors since it is usually detected at an advanced stage in which surgery and/or current chemotherapy have limited efficacy. The lack of sensitive and specific markers for diagnosis leads to a dismal prognosis. The purpose of this study is to identify metabolites in serum of pancreatic ductal adenocarcinoma patients that could be used as diagnostic biomarkers of this pathology. We used liquid chromatography-high-resolution mass spectrometry for a nontargeted metabolomics approach with serum samples from 28 individuals, including 16 patients with pancreatic ductal adenocarcinoma and 12 healthy controls. Multivariate statistical analysis, which included principal component analysis and partial least squares, revealed clear separation between the patient and control groups analyzed by liquid chromatography-high-resolution mass spectrometry using a nontargeted metabolomics approach. The metabolic analysis showed significantly lower levels of phospholipids in the serum from patients with pancreatic ductal adenocarcinoma compared with serum from controls. Our results suggest that the liquid chromatography-high-resolution mass spectrometry-based metabolomics approach provides a potent and promising tool for the diagnosis of pancreatic ductal adenocarcinoma patients using the specific metabolites identified as novel biomarkers that could be used for an earlier detection and treatment of these patients.
Collapse
Affiliation(s)
- Sandra Ríos Peces
- 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Caridad Díaz Navarro
- 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Cristina Márquez López
- 2 Fundacion Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Octavio Caba
- 3 Department of Health Science, University of Jaen, Jaen, Spain.,4 Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Cristina Jiménez-Luna
- 4 Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,5 Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- 4 Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,6 Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - José Carlos Prados
- 4 Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain.,6 Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada, Spain
| | - Olga Genilloud
- 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - Francisca Vicente Pérez
- 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| | - José Pérez Del Palacio
- 1 Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Granada, Spain
| |
Collapse
|
24
|
Vallabhapurapu SD, Blanco VM, Sulaiman MK, Vallabhapurapu SL, Chu Z, Franco RS, Qi X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget 2016; 6:34375-88. [PMID: 26462157 PMCID: PMC4741459 DOI: 10.18632/oncotarget.6045] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023] Open
Abstract
Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.
Collapse
Affiliation(s)
- Subrahmanya D Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Víctor M Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mahaboob K Sulaiman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Swarajya Lakshmi Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Zhengtao Chu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Divison of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert S Franco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Divison of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Davis HW, Hussain N, Qi X. Detection of cancer cells using SapC-DOPS nanovesicles. Mol Cancer 2016; 15:33. [PMID: 27160923 PMCID: PMC4862232 DOI: 10.1186/s12943-016-0519-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022] Open
Abstract
Unlike normal cells, cancer cells express high levels of phosphatidylserine on the extracellular leaflet of their cell membrane. Exploiting this characteristic, our lab developed a therapeutic agent that consists of the fusogenic protein, saposin C (SapC) which is embedded in dioleoylphosphatidylserine (DOPS) vesicles. These nanovesicles selectively target cancer cells and induce apoptosis. Here we review the data supporting use of SapC-DOPS to locate tumors for surgical resection or for treatment. In addition, there is important evidence suggesting that SapC-DOPS may also prove to be an effective novel cancer therapeutic reagent. Given that SapC-DOPS is easily labeled with lipophilic dyes, it has been combined with the far-red fluorescent dye, CellVue Maroon (CVM), for tumor targeting studies. We also have used contrast agents incorporated in the SapC-DOPS nanovesicles for computed tomography and magnetic resonance imaging, and review that data here. Administered intravenously, the fluorescently labeled SapC-DOPS traversed the blood–brain tumor barrier enabling identification of brain tumors. SapC-DOPS-CVM also detected a variety of other mouse tumors in vivo, rendering them observable by optical imaging using IVIS and multi-angle rotational optical imaging. Dye is detected within 30 min and remains within tumor for at least 7 days, whereas non-tumor tissues were unstained (some dye observed in the liver was transient, likely representing degradation products). Additionally, labeled SapC-DOPS ex vivo delineated tumors in human histological specimens. SapC-DOPS can also be labeled with contrast reagents for computed tomography or magnetic resonance imaging. In conclusion, labeled SapC-DOPS provides a convenient, specific, and nontoxic method for detecting tumors while concurrently offering a therapeutic benefit.
Collapse
Affiliation(s)
- Harold W Davis
- Division of Hematology/Oncology, Translational Medicine Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH, 45267-0508, USA
| | - Nida Hussain
- Division of Hematology/Oncology, Translational Medicine Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH, 45267-0508, USA
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Translational Medicine Laboratory, Department of Internal Medicine, University of Cincinnati College of Medicine, and Brain Tumor Center at UC Neuroscience Institute, 3512 Eden Avenue, Cincinnati, OH, 45267-0508, USA. .,Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. "Eat me" imaging and therapy. Adv Drug Deliv Rev 2016; 99:2-11. [PMID: 26826436 PMCID: PMC4865253 DOI: 10.1016/j.addr.2016.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Clearance of apoptotic debris is a vital role of the innate immune system. Drawing upon principles of apoptotic clearance, convenient delivery vehicles including intrinsic anti-inflammatory characteristics and specificity to immune cells can be engineered to aid in drug delivery. In this article, we examine the use of phosphatidylserine (PtdSer), the well-known "eat-me" signal, in nanoparticle-based therapeutics making them highly desirable "meals" for phagocytic immune cells. Use of PtdSer facilitates engulfment of nanoparticles allowing for imaging and therapy in various pathologies and may result in immunomodulation. Furthermore, we discuss the targeting of the macrophages and other cells at sites of inflammation in disease. A thorough understanding of the immunobiology of "eat-me" signals is requisite for the successful application of "eat-me"-bearing materials in biomedical applications.
Collapse
Affiliation(s)
- Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jeffrey A Deiuliis
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
27
|
Zhao S, Chu Z, Blanco VM, Nie Y, Hou Y, Qi X. SapC-DOPS nanovesicles as targeted therapy for lung cancer. Mol Cancer Ther 2015; 14:491-8. [PMID: 25670331 DOI: 10.1158/1535-7163.mct-14-0661] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is the deadliest type of cancer for both men and women. In this study, we evaluate the in vitro and in vivo efficacy of a biotherapeutic agent composed of a lysosomal protein (Saposin C, SapC) and a phospholipid (dioleoylphosphatidylserine, DOPS), which can be assembled into nanovesicles (SapC-DOPS) with selective antitumor activity. SapC-DOPS targets phosphatidylserine, an anionic phospholipid preferentially exposed in the surface of cancer cells and tumor-associated vasculature. Because binding of SapC to phosphatidylserine is favored at acidic pHs, and the latter characterizes the milieu of many solid tumors, we tested the effect of pH on the binding capacity of SapC-DOPS to lung tumor cells. Results showed that SapC-DOPS binding to cancer cells was more pronounced at low pH. Viability assays on a panel of human lung tumor cells showed that SapC-DOPS cytotoxicity was positively correlated with cell surface phosphatidylserine levels, whereas mitochondrial membrane potential measurements were consistent with apoptosis-related cell death. Using a fluorescence tracking method in live mice, we show that SapC-DOPS specifically targets human lung cancer xenografts, and that systemic therapy with SapC-DOPS induces tumor apoptosis and significantly inhibits tumor growth. These results suggest that SapC-DOPS nanovesicles are a promising treatment option for lung cancer.
Collapse
Affiliation(s)
- Shuli Zhao
- State Key Laboratory of Reproductive Medicine, Central Laboratory of Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengtao Chu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio. Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Victor M Blanco
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yunzhong Nie
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Yayi Hou
- Immunology and Reproductive Biology Laboratory, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio. Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
28
|
Abstract
OBJECTIVES The bleak prognosis associated with pancreatic cancer (PDAC) drives the need for the development of novel treatment methodologies. Here, we evaluate the applicability of 3 enzyme prodrug therapies for PDAC, which are simultaneously targeted to the tumor, tumor vasculature, and metastases via annexin V. In these therapies, annexin V is fused to an enzyme, creating a fusion protein that converts nontoxic drug precursors, prodrugs, into anticancer compounds while bound to the tumor, therefore mitigating the risk of side effects. METHODS The binding strength of fusion proteins to the human PDAC cell lines Panc-1 and Capan-1 was measured via streptavidin-horseradish peroxidase binding to biotinylated fusion proteins. Cytotoxic efficacy was evaluated by treatment with saturating concentrations of fusion protein followed by varying concentrations of the corresponding prodrug plus docetaxel. RESULTS All fusion proteins exhibited strong binding to PDAC cells, with dissociation constants between 0.02 and 1.15 nM. Cytotoxic efficacy was determined to be very good for 2 of the systems, both of which achieved complete cell death on at least 1 cell line at physiologically attainable prodrug concentrations. CONCLUSIONS Strong binding of fusion proteins to PDAC cells and effective cytotoxicity demonstrate the potential applicability of enzyme prodrug therapy to the treatment of PDAC.
Collapse
|
29
|
Wojton J, Meisen WH, Jacob NK, Thorne AH, Hardcastle J, Denton N, Chu Z, Dmitrieva N, Marsh R, Van Meir EG, Kwon CH, Chakravarti A, Qi X, Kaur B. SapC-DOPS-induced lysosomal cell death synergizes with TMZ in glioblastoma. Oncotarget 2015; 5:9703-9. [PMID: 25210852 PMCID: PMC4259431 DOI: 10.18632/oncotarget.2232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
SapC-DOPS is a novel nanotherapeutic that has been shown to target and induce cell death in a variety of cancers, including glioblastoma (GBM). GBM is a primary brain tumor known to frequently demonstrate resistance to apoptosis-inducing therapeutics. Here we explore the mode of action for SapC-DOPS in GBM, a treatment being developed by Bexion Pharmaceuticals for clinical testing in patients. SapC-DOPS treatment was observed to induce lysosomal dysfunction of GBM cells characterized by decreased glycosylation of LAMP1 and altered proteolytic processing of cathepsin D independent of apoptosis and autophagic cell death. We observed that SapC-DOPS induced lysosomal membrane permeability (LMP) as shown by LysoTracker Red and Acridine Orange staining along with an increase of sphingosine, a known inducer of LMP. Additionally, SapC-DOPS displayed strong synergistic interactions with the apoptosis-inducing agent TMZ. Collectively our data suggest that SapC-DOPS induces lysosomal cell death in GBM cells, providing a new approach for treating tumors resistant to traditional apoptosis-inducing agents.
Collapse
Affiliation(s)
- Jeffrey Wojton
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Walter Hans Meisen
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Naduparambil K Jacob
- Department of Radiation-Oncology, The Ohio State University Medical Center, Columbus, OH
| | - Amy Haseley Thorne
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California
| | - Jayson Hardcastle
- Departments of Medical Oncology and Molecular Medicine, Mayo Clinic, Rochester, MN
| | - Nicholas Denton
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Zhengtao Chu
- The Vontz Center for Molecular Studies, Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nina Dmitrieva
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Rachel Marsh
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| | - Erwin G Van Meir
- Departments of Neurosurgery and Hematology and Medical Oncology, Winship Cancer, Winship Cancer Institute and School of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Chang-Hyuk Kwon
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH. Solid-Tumor Program at the James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, OH
| | - Arnab Chakravarti
- Department of Radiation-Oncology, The Ohio State University Medical Center, Columbus, OH
| | - Xiaoyang Qi
- The Vontz Center for Molecular Studies, Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Balveen Kaur
- Department of Neurosurgery, The Ohio State University Medical Center, Columbus, OH
| |
Collapse
|
30
|
Imaging and Therapy of Pancreatic Cancer with Phosphatidylserine-Targeted Nanovesicles. Transl Oncol 2015; 8:196-203. [PMID: 26055177 PMCID: PMC4486738 DOI: 10.1016/j.tranon.2015.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains one of the most intractable cancers, with a dismal prognosis reflected by a 5-year survival of ~6%. Since early disease symptoms are undefined and specific biomarkers are lacking, about 80% of patients present with advanced, inoperable tumors that represent a daunting challenge. Despite many clinical trials, no single chemotherapy agent has been reliably associated with objective response rates above 10% or median survival longer than 5 to 7 months. Although combination chemotherapy regimens have in recent years provided some improvement, overall survival (8-11 months) remains very poor. There is therefore a critical need for novel therapies that can improve outcomes for pancreatic cancer patients. Here, we present a summary of the current therapies used in the management of advanced pancreatic cancer and review novel therapeutic strategies that target tumor biomarkers. We also describe our recent research using phosphatidylserine-targeted saposin C-coupled dioleoylphosphatidylserine nanovesicles for imaging and therapy of pancreatic cancer.
Collapse
|
31
|
Blanco VM, Chu Z, Vallabhapurapu SD, Sulaiman MK, Kendler A, Rixe O, Warnick RE, Franco RS, Qi X. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors. Oncotarget 2015; 5:7105-18. [PMID: 25051370 PMCID: PMC4196187 DOI: 10.18632/oncotarget.2214] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS nanovesicles have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Víctor M Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Zhengtao Chu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mahaboob K Sulaiman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ady Kendler
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Olivier Rixe
- Division of Hematology/Oncology, Georgia Regents University, GRU Cancer Center, Augusta, Georgia
| | - Ronald E Warnick
- Department of Neurosurgery, University of Cincinnati Brain Tumor Center, and Mayfield Clinic, Cincinnati, Ohio
| | - Robert S Franco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
32
|
Adams B, Herold M, Ferstl E, Choi J, Zhu S. Anticancer effects of monocarbonyl analogs of curcumin: oxidative stress, nuclear translocation and modulation of AP-1 and NF-κB. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2015. [DOI: 10.14319/ijcto.32.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
33
|
Sulaiman MK, Chu Z, Blanco VM, Vallabhapurapu SD, Franco RS, Qi X. SapC-DOPS nanovesicles induce Smac- and Bax-dependent apoptosis through mitochondrial activation in neuroblastomas. Mol Cancer 2015; 14:78. [PMID: 25889084 PMCID: PMC4397704 DOI: 10.1186/s12943-015-0336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High toxicity, morbidity and secondary malignancy render chemotherapy of neuroblastoma inefficient, prompting the search for novel compounds. Nanovesicles offer great promise in imaging and treatment of cancer. SapC-DOPS, a stable nanovesicle formed from the lysosomal protein saposin C and dioleoylphosphatidylserine possess strong affinity for abundantly exposed surface phosphatidylserine on cancer cells. Here, we show that SapC-DOPS effectively targets and suppresses neuroblastoma growth and elucidate the molecular mechanism of SapC-DOPS action in neuroblastoma in vitro. METHODS In vivo targeting of neuroblastoma was assessed in xenograft mice injected intravenously with fluorescently-labeled SapC-DOPS. Xenografted tumors were also used to demonstrate its therapeutic efficacy. Apoptosis induction in vivo was evaluated in tumor sections using the TUNEL assay. The mechanisms underlying the induction of apoptosis by SapC-DOPS were addressed through measurements of cell viability, mitochondrial membrane potential (ΔΨM), flow cytometric DNA fragmentation assays and by immunoblot analysis of second mitochondria-derived activator of caspases (Smac), Bax, Cytochrome c (Cyto c) and Caspase-3 in the cytosol or in mitochondrial fractions of cultured neuroblastoma cells. RESULTS SapC-DOPS showed specific targeting and prevented the growth of human neuroblastoma xenografts in mice. In neuroblastoma cells in vitro, apoptosis occurred via a series of steps that included: (1) loss of ΔΨM and increased mitochondrial superoxide formation; (2) cytosolic release of Smac, Cyto c, AIF; and (3) mitochondrial translocation and polymerization of Bax. ShRNA-mediated Smac knockdown and V5 peptide-mediated Bax inhibition decreased cytosolic Smac and Cyto c release along with caspase activation and abrogated apoptosis, indicating that Smac and Bax are critical mediators of SapC-DOPS action. Similarly, pretreatment with the mitochondria-stabilizing agent bongkrekic acid decreased apoptosis indicating that loss of ΔΨM is critical for SapC-DOPS activity. Apoptosis induction was not critically dependent on reactive oxygen species (ROS) production and Cyclophilin D, since pretreatment with N-acetyl cysteine and cyclosporine A, respectively, did not prevent Smac or Cyto c release. CONCLUSIONS Taken together, our results indicate that SapC-DOPS acts through a mitochondria-mediated pathway accompanied by an early release of Smac and Bax. Specific tumor-targeting capacity and anticancer efficacy of SapC-DOPS supports its potential as a dual imaging and therapeutic agent in neuroblastoma therapy.
Collapse
Affiliation(s)
- Mahaboob K Sulaiman
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Zhengtao Chu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
- Divison of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| | - Victor M Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Subrahmanya D Vallabhapurapu
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Robert S Franco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
- Divison of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
34
|
Correction: Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS One 2015; 10:e0118232. [PMID: 25742653 PMCID: PMC4351072 DOI: 10.1371/journal.pone.0118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
35
|
Blanco VM, Curry R, Qi X. SapC-DOPS nanovesicles: a novel targeted agent for the imaging and treatment of glioblastoma. Oncoscience 2015; 2:102-110. [PMID: 25859553 PMCID: PMC4381703 DOI: 10.18632/oncoscience.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor. Classified by the World Health Organization (WHO) as grade IV astrocytoma, GBMs are extremely aggressive, almost always recur, and despite our best efforts, remain incurable. This review describes the traditional treatment approaches that led to moderate successes in GBM patients, discusses standard imaging modalities, and presents data supporting the use of SapC-DOPS, a novel proteoliposomal formulation with tumoricidal activity, as a promising diagnostic imaging tool and an innovative anti-cancer agent against GBM.
Collapse
Affiliation(s)
- Víctor M. Blanco
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Richard Curry
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
36
|
Winter PM, Pearce J, Chu Z, McPherson CM, Takigiku R, Lee JH, Qi X. Imaging of brain tumors with paramagnetic vesicles targeted to phosphatidylserine. J Magn Reson Imaging 2014; 41:1079-87. [PMID: 24797437 DOI: 10.1002/jmri.24654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/14/2014] [Accepted: 04/17/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. MATERIALS AND METHODS Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. RESULTS The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)(-1) relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). CONCLUSION These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS.
Collapse
Affiliation(s)
- Patrick M Winter
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Olowokure O, Qi X. Pancreatic cancer: current standards, working towards a new therapeutic approach. Expert Rev Anticancer Ther 2014; 14:495-7. [PMID: 24621210 DOI: 10.1586/14737140.2014.895937] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer deaths with a 5-year survival of 4-6%. Clinical challenges remain to be addressed, since few promising approaches to treat pancreatic cancer have been reported. Here we discuss the potential of a new biotherapeutic agent composed of a lysosomal protein (Saposin C, SapC) and an acidic phospholipid (dioleoylphosphatidylserine, DOPS) which can be assembled into stable nanovesicles (SapC-DOPS) for tackling pancreatic cancer. Phosphatidylserine (PS) is a lipid biomarker on membrane surface of pancreatic cancer cells and can be effectively targeted by SapC-DOPS nanovesicles for cancer-selective therapy. SapC-DOPS nanovesicles have shown excellent pre-clinical therapeutic and safety profiles. Safety profiles which suggests that this new approach is potentially a viable option for pancreatic cancer therapy that is worthy of further clinical development.
Collapse
Affiliation(s)
- Olugbenga Olowokure
- University of Cincinnati - Hematology-Oncology, Internal Medicine, The Vontz Center for Molecular Studies 3125 Eden Avenue, Cincinnati, OH 45267-0508, USA
| | | |
Collapse
|