1
|
Zheng L, Yang Y, Liu J, Zhao T, Zhang X, Chen L. Identification of Key Immune Infiltration Related Genes Involved in Aortic Dissection Using Bioinformatic Analyses and Experimental Verification. J Inflamm Res 2024; 17:2119-2135. [PMID: 38595338 PMCID: PMC11003470 DOI: 10.2147/jir.s434993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
Purpose Immune microenvironment plays an important role in aortic dissection (AD). Therefore, novel immune biomarkers may facilitate AD prevention, diagnosis, and treatment. This study aimed at mining key immune-related genes and relevant mechanisms involved in AD pathogenesis. Patients and Methods Key immune cells in AD were identified by ssGESA algorithm. Next, genes associated with key immune cells were screened by weighted gene coexpression network analysis (WGCNA). Then hub immune genes were picked from protein-protein interaction network of overlapped genes from differential expression and WGCNA analyses by cytohubba plug-in. Their diagnostic potential was evaluated in two independent cohorts from GEO database. In addition, the expressions of hub immune genes were determined by quantitative RT-PCR, immunohistochemistry, and Western blotting in dissected and normal aortic tissues. Results Activated B cells, CD56dim natural killer cells, eosinophils, gamma delta T cells, immature B cells, natural killer cells and type 17 T helper cells were identified as key immune cells in AD. Thereafter, a gene module significantly correlated with key immune cells were found by WGCNA method. Subsequently, KDR, IGF1, NOS3, PECAM1, GAPDH, FLT1, DLL4, CDH5, VWF, and TEK were identified as hub immune cell related genes by PPI network analysis, which may be potential diagnostic markers for AD, as evidenced by ROC curves. Moreover, the decreased expression of VWF in AD was validated at both mRNA and protein levels, and its expression was significantly positive correlated with the marker of smooth muscle cells, ACTA2, in AD. Further immunofluorescent results showed that VWF was colocalized with ACTA2 in aortic tissues. Conclusion We identified key immune cells and hub immune cell-related genes involved in AD. Moreover, we found that VWF was co-expressed with the smooth muscle cell marker ACTA2, indicating the important role of VWF in smooth muscle cell loss in AD pathogenesis.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Vascular Surgery, the Second Hospital, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yusi Yang
- Department of Cardiology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, 030032, People’s Republic of China
| | - Jie Liu
- Department of Cardiac Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Tianliang Zhao
- Department of Cardiac Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xin Zhang
- Department of Cardiac Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lihua Chen
- Department of Cardiac Surgery, the Second Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
2
|
A midposition NOTCH3 truncation in inherited cerebral small vessel disease may affect the protein interactome. J Biol Chem 2022; 299:102772. [PMID: 36470429 PMCID: PMC9808000 DOI: 10.1016/j.jbc.2022.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/07/2022] Open
Abstract
Mutations in NOTCH3 underlie cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common inherited cerebral small vessel disease. Two cleavages of NOTCH3 protein, at Asp80 and Asp121, were previously described in CADASIL pathological samples. Using monoclonal antibodies developed against a NOTCH3 neoepitope, we identified a third cleavage at Asp964 between an Asp-Pro sequence. We characterized the structural requirements for proteolysis at Asp964 and the vascular distribution of the cleavage event. A proteome-wide analysis was performed to find proteins that interact with the cleavage product. Finally, we investigated the biochemical determinants of this third cleavage event. Cleavage at Asp964 was critically dependent on the proline adjacent to the aspartate residue. In addition, the cleavage product was highly enriched in CADASIL brain tissue and localized to the media of degenerating arteries, where it deposited with the two additional NOTCH3 cleavage products. Recombinant NOTCH3 terminating at Asp964 was used to probe protein microarrays. We identified multiple molecules that bound to the cleaved NOTCH3 more than to uncleaved protein, suggesting that cleavage may alter the local protein interactome within disease-affected blood vessels. The cleavage of purified NOTCH3 protein at Asp964 in vitro was activated by reducing agents and NOTCH3 protein; cleavage was inhibited by specific dicarboxylic acids, as seen with cleavage at Asp80 and Asp121. Overall, we propose homologous redox-driven Asp-Pro cleavages and alterations in protein interactions as potential mechanisms in inherited small vessel disease; similarities in protein cleavage characteristics may indicate common biochemical modulators of pathological NOTCH3 processing.
Collapse
|
3
|
Laboyrie SL, de Vries MR, de Jong A, de Boer HC, Lalai RA, Martinez L, Vazquez-Padron RI, Rotmans JI. von Willebrand Factor: A Central Regulator of Arteriovenous Fistula Maturation Through Smooth Muscle Cell Proliferation and Outward Remodeling. J Am Heart Assoc 2022; 11:e024581. [PMID: 35929448 PMCID: PMC9496319 DOI: 10.1161/jaha.121.024581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Arteriovenous fistula (AVF) maturation failure is a main limitation of vascular access. Maturation is determined by the intricate balance between outward remodeling and intimal hyperplasia, whereby endothelial cell dysfunction, platelet aggregation, and vascular smooth muscle cell (VSMC) proliferation play a crucial role. von Willebrand Factor (vWF) is an endothelial cell-derived protein involved in platelet aggregation and VSMC proliferation. We investigated AVF vascular remodeling in vWF-deficient mice and vWF expression in failed and matured human AVFs. Methods and Results Jugular-carotid AVFs were created in wild-type and vWF-/- mice. AVF flow was determined longitudinally using ultrasonography, whereupon AVFs were harvested 14 days after surgery. VSMCs were isolated from vena cavae to study the effect of vWF on VSMC proliferation. Patient-matched samples of the basilic vein were obtained before brachio-basilic AVF construction and during superficialization or salvage procedure 6 weeks after AVF creation. vWF deficiency reduced VSMC proliferation and macrophage infiltration in the intimal hyperplasia. vWF-/- mice showed reduced outward remodeling (1.5-fold, P=0.002) and intimal hyperplasia (10.2-fold, P<0.0001). AVF flow in wild-type mice was incremental over 2 weeks, whereas flow in vWF-/- mice did not increase, resulting in a two-fold lower flow at 14 days compared with wild-type mice (P=0.016). Outward remodeling in matured patient AVFs coincided with increased local vWF expression in the media of the venous outflow tract. Absence of vWF in the intimal layer correlated with an increase in the intima-media ratio. Conclusions vWF enhances AVF maturation because its positive effect on outward remodeling outweighs its stimulating effect on intimal hyperplasia.
Collapse
Affiliation(s)
- Suzanne L Laboyrie
- Internal Medicine Leiden University Medical Centre Leiden The Netherlands
| | | | - Alwin de Jong
- Surgery Leiden University Medical Centre Leiden The Netherlands
| | - Hetty C de Boer
- Internal Medicine Leiden University Medical Centre Leiden The Netherlands
| | - Reshma A Lalai
- Internal Medicine Leiden University Medical Centre Leiden The Netherlands
| | | | | | - Joris I Rotmans
- Internal Medicine Leiden University Medical Centre Leiden The Netherlands
| |
Collapse
|
4
|
Lagrange J, Worou ME, Michel JB, Raoul A, Didelot M, Muczynski V, Legendre P, Plénat F, Gauchotte G, Lourenco-Rodrigues MD, Christophe OD, Lenting PJ, Lacolley P, Denis CV, Regnault V. The VWF/LRP4/αVβ3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells. Cardiovasc Res 2022; 118:622-637. [PMID: 33576766 DOI: 10.1093/cvr/cvab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 01/22/2023] Open
Abstract
AIMS Von Willebrand factor (VWF) is a plasma glycoprotein involved in primary haemostasis, while also having additional roles beyond haemostasis namely in cancer, inflammation, angiogenesis, and potentially in vascular smooth muscle cell (VSMC) proliferation. Here, we addressed how VWF modulates VSMC proliferation and investigated the underlying molecular pathways and the in vivo pathophysiological relevance. METHODS AND RESULTS VWF induced proliferation of human aortic VSMCs and also promoted VSMC migration. Treatment of cells with a siRNA against αv integrin or the RGT-peptide blocking αvβ3 signalling abolished proliferation. However, VWF did not bind to αvβ3 on VSMCs through its RGD-motif. Rather, we identified the VWF A2 domain as the region mediating binding to the cells. We hypothesized the involvement of a member of the LDL-related receptor protein (LRP) family due to their known ability to act as co-receptors. Using the universal LRP-inhibitor receptor-associated protein, we confirmed LRP-mediated VSMC proliferation. siRNA experiments and confocal fluorescence microscopy identified LRP4 as the VWF-counterreceptor on VSMCs. Also co-localization between αvβ3 and LRP4 was observed via proximity ligation analysis and immuno-precipitation experiments. The pathophysiological relevance of our data was supported by VWF-deficient mice having significantly reduced hyperplasia in carotid artery ligation and artery femoral denudation models. In wild-type mice, infiltration of VWF in intimal regions enriched in proliferating VSMCs was found. Interestingly, also analysis of human atherosclerotic lesions showed abundant VWF accumulation in VSMC-proliferating rich intimal areas. CONCLUSION VWF mediates VSMC proliferation through a mechanism involving A2 domain binding to the LRP4 receptor and integrin αvβ3 signalling. Our findings provide new insights into the mechanisms that drive physiological repair and pathological hyperplasia of the arterial vessel wall. In addition, the VWF/LRP4-axis may represent a novel therapeutic target to modulate VSMC proliferation.
Collapse
MESH Headings
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Hyperplasia
- Integrin alphaVbeta3/genetics
- Integrin alphaVbeta3/metabolism
- LDL-Receptor Related Proteins/genetics
- LDL-Receptor Related Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Plaque, Atherosclerotic
- Signal Transduction
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- von Willebrand Factor/genetics
- von Willebrand Factor/metabolism
- Mice
Collapse
Affiliation(s)
- Jérémy Lagrange
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Morel E Worou
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | | | - Alexandre Raoul
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Mélusine Didelot
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Vincent Muczynski
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Paulette Legendre
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | | | | | - Marc-Damien Lourenco-Rodrigues
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| | - Cécile V Denis
- HITh, UMR_S1176, INSERM, Université Paris-Saclay, Inserm U1176, 80 rue du Général Leclerc,94276 Le Kremlin-Bicêtre, France
| | - Véronique Regnault
- INSERM, UMR_S 1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, DCAC, Nancy, France
| |
Collapse
|
5
|
Goh CY, Patmore S, Smolenski A, Howard J, Evans S, O'Sullivan J, McCann A. The role of von Willebrand factor in breast cancer metastasis. Transl Oncol 2021; 14:101033. [PMID: 33571850 PMCID: PMC7876567 DOI: 10.1016/j.tranon.2021.101033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023] Open
Abstract
VWF plays an important role in breast tumour progression and metastasis. Patients with metastatic breast cancer have significantly elevated plasma VWF. Increased levels of highly adhesive VWF may regulate platelet-tumour interactions. VWF may protect disseminated tumour cells from chemotherapy.
Breast cancer is the most common female cancer globally, with approximately 12% of patients eventually developing metastatic disease. Critically, limited effective treatment options exist for metastatic breast cancer. Recently, von Willebrand factor (VWF), a haemostatic plasma glycoprotein, has been shown to play an important role in tumour progression and metastasis. In breast cancer, a significant rise in the plasma levels of VWF has been reported in patients with malignant disease compared to benign conditions and healthy controls, with an even greater increase seen in patients with disseminated disease. Direct interactions between VWF, tumour cells, platelets and endothelial cells may promote haematogenous dissemination and thus the formation of metastatic foci. Intriguingly, patients with metastatic disease have unusually large VWF multimers. This observation has been proposed to be a result of a dysfunctional or deficiency of VWF-cleaving protease activity, ADAMTS-13 activity, which may then regulate the platelet-tumour adhesive interactions in the metastatic process. In this review, we provide an overview of VWF in orchestrating the pathological process of breast cancer dissemination, and provide supporting evidence of the role of VWF in mediating metastatic breast cancer.
Collapse
Affiliation(s)
- Chia Yin Goh
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin, Dublin 4, Ireland.
| | - Sean Patmore
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Dublin 2, Ireland
| | - Albert Smolenski
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| | - Jane Howard
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| | - Shane Evans
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| | - Jamie O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Dublin 2, Ireland
| | - Amanda McCann
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Dublin 4, Ireland; UCD School of Medicine, College of Health and Agricultural Sciences (CHAS), University College Dublin, Belfield, Dublin, Dublin 4, Ireland
| |
Collapse
|
6
|
Chen W, Wu X, Yan X, Xu A, Yang A, You H. Multitranscriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am J Physiol Gastrointest Liver Physiol 2019; 316:G744-G754. [PMID: 30920297 DOI: 10.1152/ajpgi.00339.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elimination or suppression of causative factors can raise the possibility of liver fibrosis regression. However, different injurious stimuli will give fibrosis from somewhat different etiologies, which, in turn, may hamper the discovery of liver fibrosis-specific therapeutic drugs. Therefore, the analogical cellular and molecular events shared by various etiology-evoked liver fibrosis should be clarified. Our present study systematically integrated five publicly available transcriptomic data sets regarding liver fibrosis with different etiologies from the Gene Expression Omnibus database and performed a series of bioinformatics analyses and experimental verifications. A total of 111 significantly upregulated and 16 downregulated genes were identified specific to liver fibrosis independent of any etiology. These genes were predominately enriched in some Kyoto Encyclopedia of Genes and Genomes pathways, including the "PI3K-AKT signaling pathway," "Focal adhesion," and "ECM-receptor interaction." Subsequently, five prioritized liver fibrosis-specific genes, including COL4A2, THBS2, ITGAV, LAMB1, and PDGFRA, were screened. These genes were positively associated with each other and liver fibrosis progression. In addition, they could robustly separate all stages of samples in both training and validation data sets with diverse etiologies when they were regarded as observed variables applied to principal component analysis plots. Expressions of all five genes were confirmed in activated primary mouse hepatic stellate cells (HSCs) and transforming growth factor β1-treated LX-2 cells. Moreover, THBS2 protein was enhanced in liver fibrosis rodent models, which could promote HSC activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs. Overall, our current study may provide potential targets for liver fibrosis therapy and aid to a deeper understanding of the molecular underpinnings of liver fibrosis. NEW & NOTEWORTHY Prioritized liver fibrosis-specific genes THBS2, COL4A2, ITGAV, LAMB1, and PDGFRA were identified and significantly associated with liver fibrosis progression and could be combined to discriminate liver fibrosis stages regardless of any etiology. Among the identified prioritized liver fibrosis-specific targets, THBS2 protein was confirmed to be enhanced in liver fibrosis rodent models, which could promote hepatic stellate cell (HSC) activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| |
Collapse
|
7
|
Expression of periaxin (PRX) specifically in the human cerebrovascular system: PDZ domain-mediated strengthening of endothelial barrier function. Sci Rep 2018; 8:10042. [PMID: 29968755 PMCID: PMC6030167 DOI: 10.1038/s41598-018-28190-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 06/13/2018] [Indexed: 01/01/2023] Open
Abstract
Regulation of cerebral endothelial cell function plays an essential role in changes in blood-brain barrier permeability. Proteins that are important for establishment of endothelial tight junctions have emerged as critical molecules, and PDZ domain containing-molecules are among the most important. We have discovered that the PDZ-domain containing protein periaxin (PRX) is expressed in human cerebral endothelial cells. Surprisingly, PRX protein is not detected in brain endothelium in other mammalian species, suggesting that it could confer human-specific vascular properties. In endothelial cells, PRX is predominantly localized to the nucleus and not tight junctions. Transcriptome analysis shows that PRX expression suppresses, by at least 50%, a panel of inflammatory markers, of which 70% are Type I interferon response genes; only four genes were significantly activated by PRX expression. When expressed in mouse endothelial cells, PRX strengthens barrier function, significantly increases transendothelial electrical resistance (~35%; p < 0.05), and reduces the permeability of a wide range of molecules. The PDZ domain of PRX is necessary and sufficient for its barrier enhancing properties, since a splice variant (S-PRX) that contains only the PDZ domain, also increases barrier function. PRX also attenuates the permeability enhancing effects of lipopolysaccharide. Collectively, these studies suggest that PRX could potentially regulate endothelial homeostasis in human cerebral endothelial cells by modulating inflammatory gene programs.
Collapse
|
8
|
Peritoneal pre-conditioning reduces macrophage marker expression in collagen-containing engineered vascular grafts. Acta Biomater 2017; 64:80-93. [PMID: 28987784 DOI: 10.1016/j.actbio.2017.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Engineered vascular grafts have shown promise as arteriovenous shunts, but they have not yet progressed to clinical trials for coronary arteries <4 mm in diameter such as the coronary arteries. Control over initial biomaterial properties and remodeling are necessary to generate viable grafts. In this study, we blended collagen with a synthetic material, poly(ε-caprolactone), to modulate the post-grafting inflammatory response while avoiding aneurysmal-like dilation and failure that can occur with pure collagen grafts. We also used pre-implantation in an "in vivo bioreactor" to recruit autologous cells and improve patency after grafting. Electrospun conduits were pre-implanted within rat peritoneal cavities and then grafted autologously into abdominal aortae. Conduit collagen percentages and pre-implantation were tested for their impact on graft remodeling and patency. Burst pressures >2000 mmHg, reproducible expansion with systole/diastole, and maintenance of mechanical integrity were observed. More importantly, peritoneal pre-implantation reduced overall lipid oxidation, intimal layer thickness, and expression of an M1 macrophage marker. The condition with the most collagen, 25%, exhibited the lowest expression of macrophage markers but also resulted in a thicker intimal layer. Overall, the 10% collagen/PCL with peritoneal pre-implantation condition appeared to exhibit the best combination of responses, and may result in improved clinical graft viability. STATEMENT OF SIGNIFICANCE This manuscript describes a rodent study to systematically determine the benefits of both pre-implantation in the peritoneal cavity and specific ratios of collagen on engineered vascular graft viability. We show that pre-implantation had a significant benefit, including decreasing the expression of macrophage markers and reducing lipid oxidation after grafting. This study is the first time that the benefits of peritoneal pre-implantation have been compared to an "off the shelf," directly grafted control condition. We also demonstrated the importance of specific collagen ratio on the response after grafting. Overall, we feel that this article will be of interest to the field and it has the potential to address a significant clinical need: a graft for coronary arteries <4 mm in diameter.
Collapse
|
9
|
Agostini S, Lionetti V. New insights into the non-hemostatic role of von Willebrand factor in endothelial protection. Can J Physiol Pharmacol 2017; 95:1183-1189. [PMID: 28715643 DOI: 10.1139/cjpp-2017-0126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During exposure to ischemia-reperfusion (I/R) insult, angiotensin II (AngII)-induced endothelin-1 (ET-1) upregulation in endothelial cells progressively impairs nitric oxide (NO) bioavailability while increasing levels of superoxide anion (O2-) and leading to the onset of endothelial dysfunction. Moreover, the overexpression of ET-1 increases the endothelial and circulating levels of von Willebrand factor (vWF), a glycoprotein with a crucial role in arterial thrombus formation. Nowadays, the non-hemostatic role of endothelial vWF is emerging, although we do not yet know whether its increased expression is cause or consequence of endothelial dysfunction. Notably, the vWF blockade or depletion leads to endothelial protection in cultured cells, animal models of vascular injury, and patients as well. Despite the recent efforts to develop an effective pharmacological strategy, the onset of endothelial dysfunction is still difficult to prevent and remains closely related to adverse clinical outcome. Unraveling the non-hemostatic role of endothelial vWF in the onset of endothelial dysfunction could provide new avenues for protection against vascular injury mediated by AngII.
Collapse
Affiliation(s)
- Silvia Agostini
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- a Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,b UOS Anesthesiology, Fondazione Toscana "G. Monasterio", Pisa, Italy
| |
Collapse
|
10
|
Baeten JT, Lilly B. Notch Signaling in Vascular Smooth Muscle Cells. ADVANCES IN PHARMACOLOGY 2016; 78:351-382. [PMID: 28212801 DOI: 10.1016/bs.apha.2016.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.
Collapse
Affiliation(s)
- J T Baeten
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - B Lilly
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
11
|
Franzoni M, Cattaneo I, Longaretti L, Figliuzzi M, Ene-Iordache B, Remuzzi A. Endothelial cell activation by hemodynamic shear stress derived from arteriovenous fistula for hemodialysis access. Am J Physiol Heart Circ Physiol 2015; 310:H49-59. [PMID: 26497959 DOI: 10.1152/ajpheart.00098.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
Abstract
Intimal hyperplasia (IH) is the first cause of failure of an arteriovenous fistula (AVF). The aim of the present study was to investigate the effects on endothelial cells (ECs) of shear stress waveforms derived from AVF areas prone to develop IH. We used a cone-and-plate device to obtain real-time control of shear stress acting on EC cultures. We exposed human umbilical vein ECs for 48 h to different shear stimulations calculated in a side-to-end AVF model. Pulsatile unidirectional flow, representative of low-risk stenosis areas, induced alignment of ECs and actin fiber orientation with flow. Shear stress patterns of reciprocating flow, derived from high-risk stenosis areas, did not affect EC shape or cytoskeleton organization, which remained similar to static cultures. We also evaluated flow-induced EC expression of genes known to be involved in cytoskeletal remodeling and expression of cell adhesion molecules. Unidirectional flow induced a significant increase in Kruppel-like factor 2 mRNA expression, whereas it significantly reduced phospholipase D1, α4-integrin, and Ras p21 protein activator 1 mRNA expression. Reciprocating flow did not increase Kruppel-like factor 2 mRNA expression compared with static controls but significantly increased mRNA expression of phospholipase D1, α4-integrin, and Ras p21 protein activator 1. Reciprocating flow selectively increased monocyte chemoattractant protein-1 and IL-8 production. Furthermore, culture medium conditioned by ECs exposed to reciprocating flows selectively increased smooth muscle cell proliferation compared with unidirectional flow. Our results indicate that protective vascular effects induced in ECs by unidirectional pulsatile flow are not induced by reciprocating shear forces, suggesting a mechanism by which oscillating flow conditions may induce the development of IH in AVF and vascular access dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Irene Cattaneo
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Lorena Longaretti
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri, Be rgamo, Italy; and
| | - Marina Figliuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Bogdan Ene-Iordache
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Andrea Remuzzi
- Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| |
Collapse
|
12
|
Hainsworth AH, Oommen AT, Bridges LR. Endothelial cells and human cerebral small vessel disease. Brain Pathol 2015; 25:44-50. [PMID: 25521176 DOI: 10.1111/bpa.12224] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022] Open
Abstract
Brain endothelial cells have unique properties in terms of barrier function, local molecular signaling, regulation of local cerebral blood flow (CBF) and interactions with other members of the neurovascular unit. In cerebral small vessel disease (arteriolosclerosis; SVD), the endothelial cells in small arteries survive, even when mural pathology is advanced and myocytes are severely depleted. Here, we review aspects of altered endothelial functions that have been implicated in SVD: local CBF dysregulation, endothelial activation and blood-brain barrier (BBB) dysfunction. Reduced CBF is reported in the diffuse white matter lesions that are a neuroradiological signature of SVD. This may reflect an underlying deficit in local CBF regulation (possibly via the nitric oxide/cGMP signaling pathway). While many laboratories have observed an association of symptomatic SVD with serum markers of endothelial activation, it is apparent that the origin of these circulating markers need not be brain endothelium. Our own neuropathology studies did not confirm local endothelial activation in small vessels exhibiting SVD. Local BBB failure has been proposed as a cause of SVD and associated parenchymal lesions. Some groups find that computational analyses of magnetic resonance imaging (MRI) scans, following systemic injection of a gadolinium-based contrast agent, suggest that extravasation into brain parenchyma is heightened in people with SVD. Our recent histochemical studies of donated brain tissue, using immunolabeling for large plasma proteins [fibrinogen, immunoglobulin G (IgG)], do not support an association of SVD with recent plasma protein extravasation. It is possible that a trigger leakage episode, or a size-selective loosening of the BBB, participates in SVD pathology.
Collapse
Affiliation(s)
- Atticus H Hainsworth
- Molecular and Cellular Biology Research Centre, St Georges University of London, London, UK; Stroke and Dementia Research Centre, St Georges University of London, London, UK
| | | | | |
Collapse
|
13
|
Lilly B. We have contact: endothelial cell-smooth muscle cell interactions. Physiology (Bethesda) 2015; 29:234-41. [PMID: 24985327 DOI: 10.1152/physiol.00047.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Blood vessels are composed of two primary cell types, endothelial cells and smooth muscle cells, each providing a unique contribution to vessel function. Signaling between these two cell types is essential for maintaining tone in mature vessels, and their communication is critical during development, and for repair and remodeling associated with blood vessel growth. This review will highlight the pathways that endothelial cells and smooth muscle cells utilize to communicate during vessel formation and discuss how disruptions in these pathways contribute to disease.
Collapse
Affiliation(s)
- Brenda Lilly
- Department of Pediatrics, Nationwide Children's Hospital, The Heart Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease remains the single most serious contributor to mortality in chronic kidney disease (CKD). Although conventional risk factors are prevalent in CKD, both cardiomyopathy and vasculopathy can be caused by pathophysiologic mechanisms specific to the uremic state. CKD is a state of systemic αKlotho deficiency. Although the molecular mechanism of action of αKlotho is not well understood, the downstream targets and biologic functions of αKlotho are astonishingly pleiotropic. An emerging body of literature links αKlotho to uremic vasculopathy. RECENT FINDINGS The expression of αKlotho in the vasculature is controversial because of conflicting data. Regardless of whether αKlotho acts as a circulating or resident protein, there are good data associating changes in αKlotho levels with vascular pathology including vascular calcification and in-vitro data of the direct action of αKlotho on both the endothelium and vascular smooth muscle cells in terms of cytoprotection and prevention of mineralization. SUMMARY It is critical to understand the pathogenic role of αKlotho on the integral endothelium-vascular smooth muscle network rather than each cell type in isolation in uremic vasculopathy, as αKlotho can serve as a potential prognostic biomarker and a biological therapeutic agent.
Collapse
|
15
|
The small leucine-rich proteoglycan BGN accumulates in CADASIL and binds to NOTCH3. Transl Stroke Res 2015; 6:148-55. [PMID: 25578324 DOI: 10.1007/s12975-014-0379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/09/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited form of cerebral small vessel disease caused by mutations in conserved residues of NOTCH3. Affected arteries of CADASIL feature fibrosis and accumulation of NOTCH3. A variety of collagen subtypes (types I, III, IV, and VI) have been identified in fibrotic CADASIL vessels. Biglycan (BGN) and decorin (DCN) are class I members of the small leucine-rich proteoglycan (SLRP) family that regulate collagen fibril size. Because DCN has been shown to deposit in arteries in cerebral small vessel disease, we tested whether BGN accumulates in arteries of CADASIL brains. BGN was strongly expressed in both small penetrating and leptomeningeal arteries of CADASIL brain. BGN protein was localized to all three layers of arteries (intima, media, and adventitia). Substantially, more immunoreactivity was observed in CADASIL brains compared to controls. Immunoblotting of brain lysates showed a fourfold increase in CADASIL brains (compared to controls). Messenger RNA encoding BGN was also increased in CADASIL and was localized by in situ hybridization to all three vascular layers in CADASIL. Human cerebrovascular smooth muscle cells exposed to purified NOTCH3 ectodomain upregulated BGN, DCN, and COL4A1 through mechanisms that are sensitive to rapamycin, a potent mTOR inhibitor. In addition, BGN protein interacted directly with NOTCH3 protein in cell culture and in direct protein interaction assays. In conclusion, BGN is a CADASIL-enriched protein that potentially accumulates in vessels by mTOR-mediated transcriptional activation and/or post-translational accumulation via protein interactions with NOTCH3 and collagen.
Collapse
|
16
|
Rostama B, Peterson SM, Vary CPH, Liaw L. Notch signal integration in the vasculature during remodeling. Vascul Pharmacol 2014; 63:97-104. [PMID: 25464152 PMCID: PMC4304902 DOI: 10.1016/j.vph.2014.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023]
Abstract
Notch signaling plays many important roles in homeostasis and remodeling in the vessel wall, and serves a critical role in the communication between endothelial cells and smooth muscle cells. Within blood vessels, Notch signaling integrates with multiple pathways by mechanisms including direct protein–protein interaction, cooperative or synergistic regulation of signal cascades, and co-regulation of transcriptional targets. After establishment of the mature blood vessel, the spectrum and intensity of Notch signaling change during phases of active remodeling or disease progression. These changes can be mediated by regulation via microRNAs and protein stability or signaling, and corresponding changes in complementary signaling pathways. Notch also affects endothelial cells on a system level by regulating key metabolic components. This review will outline the most recent findings of Notch activity in blood vessels, with a focus on how Notch signals integrate with other molecular signaling pathways controlling vascular phenotype.
Collapse
Affiliation(s)
- Bahman Rostama
- Center for Molecular Medicine, Maine Medical Center Research Institute, USA
| | | | | | | |
Collapse
|