1
|
Cao XD, Jien SH, Yang CW, Lin YH, Liao CS. Innovative Microbial Immobilization Strategy for Di- n-Butyl Phthalate Biodegradation Using Biochar-Calcium Alginate-Waterborne Polyurethane Composites. Microorganisms 2024; 12:1265. [PMID: 39065034 PMCID: PMC11278806 DOI: 10.3390/microorganisms12071265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Di-n-butyl phthalate (DBP) is a prevalent phthalate ester widely used as a plasticizer, leading to its widespread presence in various environmental matrices. This study presents an innovative microbial immobilization strategy utilizing biochar, calcium alginate (alginate-Ca, (C12H14CaO12)n), and waterborne polyurethane (WPU) composites to enhance the biodegradation efficiency of DBP. The results revealed that rice husk biochar, pyrolyzed at 300 °C, exhibits relatively safer and more stable physical and chemical properties, making it an effective immobilization matrix. Additionally, the optimal cultural conditions for Bacillus aquimaris in DBP biodegradation were identified as incubation at 30 °C and pH 7, with the supplementation of 0.15 g of yeast extract, 0.0625 g of glucose, and 1 CMC of Triton X-100. Algal biotoxicity results indicated a significant decrease in biotoxicity, as evidenced by an increase in chlorophyll a content in Chlorella vulgaris following DBP removal from the culture medium. Finally, microbial community analysis demonstrated that encapsulating B. aquimaris within alginate-Ca and WPU layers not only enhanced DBP degradation, but also prevented ecological competition from indigenous microorganisms. This novel approach showcases the potential of agricultural waste utilization and microbial immobilization techniques for the remediation of DBP-contaminated environments.
Collapse
Affiliation(s)
- Xuan-Di Cao
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 840203, Taiwan;
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei 111002, Taiwan;
| | - Yi-Hsuan Lin
- Environmental Engineering Research Center, Sinotech Engineering Consultants Inc., Taipei 114065, Taiwan;
| | - Chien-Sen Liao
- Department of Medical Science and Biotechnology, I-Shou University, Kaohsiung 824005, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| |
Collapse
|
2
|
Luo S, Huang C, Hua J, Jing S, Teng L, Tang T, Liu Y, Li S. Defensive Specialized Metabolites from the Latex of Euphorbia jolkinii. J Chem Ecol 2023; 49:287-298. [PMID: 36847993 DOI: 10.1007/s10886-023-01413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Plant latex is sequestered in laticiferous structures and exuded immediately from damaged plant tissues. The primary function of plant latex is related to defense responses to their natural enemies. Euphorbia jolkinii Boiss. is a perennial herbaceous plant that greatly threaten the biodiversity and ecological integrity of northwest Yunnan, China. Nine triterpenes (1-9), four non-protein amino acids (10-13) and three glycosides (14-16) including a new isopentenyl disaccharide (14), were isolated and identified from the latex of E. jolkinii. Their structures were established on the basis of comprehensive spectroscopic data analyses. Bioassay revealed that meta-tyrosine (10) showed significant phytotoxic activity, inhibiting root and shoot growth of Zea mays, Medicago sativa, Brassica campestris, and Arabidopsis thaliana, with EC50 values ranging from 4.41 ± 1.08 to 37.60 ± 3.59 µg/mL. Interestingly, meta-tyrosine inhibited the root growth of Oryza sativa, but promoted their shoot growth at the concentrations below 20 µg/mL. meta-Tyrosine was found to be the predominant constituent in polar part of the latex extract from both stems and roots of E. jolkinii, but undetectable in the rhizosphere soil. In addition, some triterpenes showed antibacterial and nematicidal effects. The results suggested that meta-tyrosine and triterpenes in the latex might function as defensive substances for E. jolkinii against other organisms.
Collapse
Affiliation(s)
- Shihong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Chunshuai Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, People's Republic of China
| | - Shuxi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
| | - Linlin Teng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
| | - Ting Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| | - Shenghong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, People's Republic of China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
3
|
Zer H, Mizrahi H, Malchenko N, Avin-Wittenberg T, Klipcan L, Ostersetzer-Biran O. The Phytotoxicity of Meta-Tyrosine Is Associated With Altered Phenylalanine Metabolism and Misincorporation of This Non-Proteinogenic Phe-Analog to the Plant's Proteome. FRONTIERS IN PLANT SCIENCE 2020; 11:140. [PMID: 32210982 PMCID: PMC7069529 DOI: 10.3389/fpls.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 05/10/2023]
Abstract
Plants produce a myriad of specialized (secondary) metabolites that are highly diverse chemically, and exhibit distinct biological functions. Here, we focus on meta-tyrosine (m-tyrosine), a non-proteinogenic byproduct that is often formed by a direct oxidation of phenylalanine (Phe). Some plant species (e.g., Euphorbia myrsinites and Festuca rubra) produce and accumulate high levels of m-tyrosine in their root-tips via enzymatic pathways. Upon its release to soil, the Phe-analog, m-tyrosine, affects early post-germination development (i.e., altered root development, cotyledon or leaf chlorosis, and retarded growth) of nearby plant life. However, the molecular basis of m-tyrosine-mediated (phyto)toxicity remains, to date, insufficiently understood and are still awaiting their functional characterization. It is anticipated that upon its uptake, m-tyrosine impairs key metabolic processes, or affects essential cellular activities in the plant. Here, we provide evidences that the phytotoxic effects of m-tyrosine involve two distinct molecular pathways. These include reduced steady state levels of several amino acids, and in particularly altered biosynthesis of the phenylalanine (Phe), an essential α-amino acid, which is also required for the folding and activities of proteins. In addition, proteomic studies indicate that m-tyrosine is misincorporated in place of Phe, mainly into the plant organellar proteomes. These data are supported by analyses of adt mutants, which are affected in Phe-metabolism, as well as of var2 mutants, which lack FtsH2, a major component of the chloroplast FtsH proteolytic machinery, which show higher sensitivity to m-tyrosine. Plants treated with m-tyrosine show organellar biogenesis defects, reduced respiration and photosynthetic activities and growth and developmental defect phenotypes.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Mizrahi
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikol Malchenko
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Klipcan
- Institute of Plant Sciences, the Gilat Research Center, Agricultural Research Organization (ARO), Negev, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Liron Klipcan, ; Oren Ostersetzer-Biran,
| |
Collapse
|
4
|
Fang C, Li Y, Li C, Li B, Ren Y, Zheng H, Zeng X, Shen L, Lin W. Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crus-galli) in response to rice allelopathy. PLANT, CELL & ENVIRONMENT 2015; 38:1368-1381. [PMID: 25438645 DOI: 10.1111/pce.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 11/16/2014] [Indexed: 06/04/2023]
Abstract
Rice allelopathy is a hot topic in the field of allelopathy, and behaviour of donor allelopathic rice has been well documented. However, few study addresses response of receiver barnyardgrass (BYG). We found that expression of miRNAs relevant to plant hormone signal transduction, nucleotide excision repair and the peroxisome proliferator-activated receptor and p53 signalling pathways was enhanced in BYG co-cultured with the allelopathic rice cultivar PI312777, the expression levels of these miRNAs in BYG plants were positively correlated with allelopathic potential of the co-cultured rice varieties. Treatment of BYG plants with rice-produced phenolic acids also increased miRNA expression in BYG, while treatment with rice-produced terpenoids had no obvious effect on miRNA expression. In the hydroponic system, the largest number of Myxococcus sp. was found in the growth medium containing rice with the highest allelopathic potential. The addition of phenolic acids in the hydroponic medium also increased the number of Myxococcus sp. More interestingly, inoculation with Myxococcus xanthus significantly increased miRNA expression in the treated BYG. Jointed treatments of ferulic acid and M. xanthus led to strongest growth inhibition of BYG. The results suggest that there exist involvement of Myxococcus sp. and mediation of miRNA expression in rice allelopathy against BYG.
Collapse
Affiliation(s)
- Changxun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yingzhe Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Chengxun Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Biliang Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Yongjie Ren
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Haiping Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Xiaomei Zeng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Lihua Shen
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
- Key Laboratory of Crop Ecology and Molecular Physiology of Fujian Universities, Fujian Agriculture and Forestry University, Fuzhou, 35002, China
| |
Collapse
|
5
|
Yao G, Zhang J, Huang Q. Conformational and vibrational analyses of meta-tyrosine: An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:111-123. [PMID: 26125991 DOI: 10.1016/j.saa.2015.06.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
M-tyrosine is one kind of positional isomer of tyrosine which is widely applied in agrichemical, medicinal chemistry, and food science. However, the structural and vibrational features of m-tyrosine have not been reported or systematically investigated. In this work, potential energy surface (PES) calculations were used for searching and determining the stable zwitterionic conformers of m-tyrosine, and the Raman spectra of m-tyrosine and deuterated m-tyrosine were measured and interpreted based on theoretical computation. For the spectral simulation, several DFT-based quantum chemistry (QC) methods were employed, and the M06-2X functional with SMD solvent model was found to be best in reproducing the Raman spectra and geometrical property. As such, this study has not only presented a detailed study of m-tyrosine's vibrational property which is lack in the literature, but also may shed some light on the optimal choice of QC methods for calculation of conformations and vibrational properties of zwitterionic amino acids.
Collapse
Affiliation(s)
- Guohua Yao
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China
| | - Jingjing Zhang
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China
| | - Qing Huang
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, PR China; University of Science & Technology of China, Hefei, Anhui 230026, PR China.
| |
Collapse
|
6
|
Retraction: Biodegradation of the allelopathic chemical m-Tyrosine by Bacillus aquimaris SSC5 involves the homogentisate central pathway. PLoS One 2014; 9:e102854. [PMID: 25007283 PMCID: PMC4089913 DOI: 10.1371/journal.pone.0102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|