1
|
Soto DC, Uribe-Salazar JM, Kaya G, Valdarrago R, Sekar A, Haghani NK, Hino K, La GN, Mariano NAF, Ingamells C, Baraban AE, Turner TN, Green ED, Simó S, Quon G, Andrés AM, Dennis MY. Gene expansions contributing to human brain evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615256. [PMID: 39386494 PMCID: PMC11463660 DOI: 10.1101/2024.09.26.615256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genomic drivers of human-specific neurological traits remain largely undiscovered. Duplicated genes expanded uniquely in the human lineage likely contributed to brain evolution, including the increased complexity of synaptic connections between neurons and the dramatic expansion of the neocortex. Discovering duplicate genes is challenging because the similarity of paralogs makes them prone to sequence-assembly errors. To mitigate this issue, we analyzed a complete telomere-to-telomere human genome sequence (T2T-CHM13) and identified 213 duplicated gene families likely containing human-specific paralogs (>98% identity). Positing that genes important in universal human brain features should exist with at least one copy in all modern humans and exhibit expression in the brain, we narrowed in on 362 paralogs with at least one copy across thousands of ancestrally diverse genomes and present in human brain transcriptomes. Of these, 38 paralogs co-express in gene modules enriched for autism-associated genes and potentially contribute to human language and cognition. We narrowed in on 13 duplicate gene families with human-specific paralogs that are fixed among modern humans and show convincing brain expression patterns. Using long-read DNA sequencing revealed hidden variation across 200 modern humans of diverse ancestries, uncovering signatures of selection not previously identified, including possible balancing selection of CD8B. To understand the roles of duplicated genes in brain development, we generated zebrafish CRISPR "knockout" models of nine orthologs and transiently introduced mRNA-encoding paralogs, effectively "humanizing" the larvae. Morphometric, behavioral, and single-cell RNA-seq screening highlighted, for the first time, a possible role for GPR89B in dosage-mediated brain expansion and FRMPD2B function in altered synaptic signaling, both hallmark features of the human brain. Our holistic approach provides important insights into human brain evolution as well as a resource to the community for studying additional gene expansion drivers of human brain evolution.
Collapse
Affiliation(s)
- Daniela C. Soto
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - José M. Uribe-Salazar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Gulhan Kaya
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Ricardo Valdarrago
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aarthi Sekar
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Nicholas K. Haghani
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gabriana N. La
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Natasha Ann F. Mariano
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
- Postbaccalaureate Research Education Program, University of California, Davis, CA 95616, USA
| | - Cole Ingamells
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Aidan E. Baraban
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St Louis, MS, 63110, USA
| | - Eric D. Green
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD,20892, USA
| | - Sergi Simó
- Department of Cell Biology & Human Anatomy, University of California, Davis, CA 95616, USA
| | - Gerald Quon
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Aida M. Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College, London, WC1E 6BT, UK
| | - Megan Y. Dennis
- Department of Biochemistry & Molecular Medicine, MIND Institute, University of California,Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Laurent S, Gehrig C, Nouspikel T, Amr SS, Oza A, Murphy E, Vannier A, Béna FS, Carminho-Rodrigues MT, Blouin JL, Cao Van H, Abramowicz M, Paoloni-Giacobino A, Guipponi M. Molecular characterization of pathogenic OTOA gene conversions in hearing loss patients. Hum Mutat 2021; 42:373-377. [PMID: 33492714 DOI: 10.1002/humu.24167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Abstract
Bi-allelic loss-of-function variants of OTOA are a well-known cause of moderate-to-severe hearing loss. Whereas non-allelic homologous recombination-mediated deletions of the gene are well known, gene conversions to pseudogene OTOAP1 have been reported in the literature but never fully described nor their pathogenicity assessed. Here, we report two unrelated patients with moderate hearing-loss, who were compound heterozygotes for a converted allele and a deletion of OTOA. The conversions were initially detected through sequencing depths anomalies at the OTOA locus after exome sequencing, then confirmed with long range polymerase chain reactions. Both conversions lead to loss-of-function by introducing a premature stop codon in exon 22 (p.Glu787*). Using genomic alignments and long read nanopore sequencing, we found that the two probands carry stretches of converted DNA of widely different lengths (at least 9 kbp and around 900 bp, respectively).
Collapse
Affiliation(s)
- Sacha Laurent
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Corinne Gehrig
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Thierry Nouspikel
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Sami S Amr
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, Massachusetts, USA
| | - Andrea Oza
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, Massachusetts, USA
| | - Elissa Murphy
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, Massachusetts, USA
| | - Anne Vannier
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Frédérique Sloan Béna
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | - Jean-Louis Blouin
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Hélène Cao Van
- Department of Otorhinolaryngology, Head and Neck Surgery, Pediatric Otolaryngology Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - Marc Abramowicz
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ariane Paoloni-Giacobino
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Michel Guipponi
- Department of Diagnostic, Genetic Medicine Unit, University Hospitals of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
3
|
Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6127-6139. [PMID: 31498865 PMCID: PMC6859733 DOI: 10.1093/jxb/erz363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.
Collapse
Affiliation(s)
- Kana Yamada
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Iakov I Davydov
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB UMR5174), CNRS-UPS-IRD, University of Toulouse III, Toulouse Cedex, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Shi W, Massaia A, Louzada S, Banerjee R, Hallast P, Chen Y, Bergström A, Gu Y, Leonard S, Quail MA, Ayub Q, Yang F, Tyler-Smith C, Xue Y. Copy number variation arising from gene conversion on the human Y chromosome. Hum Genet 2017; 137:73-83. [PMID: 29209947 DOI: 10.1007/s00439-017-1857-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/28/2017] [Indexed: 11/27/2022]
Abstract
We describe the variation in copy number of a ~ 10 kb region overlapping the long intergenic noncoding RNA (lincRNA) gene, TTTY22, within the IR3 inverted repeat on the short arm of the human Y chromosome, leading to individuals with 0-3 copies of this region in the general population. Variation of this CNV is common, with 266 individuals having 0 copies, 943 (including the reference sequence) having 1, 23 having 2 copies, and two having 3 copies, and was validated by breakpoint PCR, fibre-FISH, and 10× Genomics Chromium linked-read sequencing in subsets of 1234 individuals from the 1000 Genomes Project. Mapping the changes in copy number to the phylogeny of these Y chromosomes previously established by the Project identified at least 20 mutational events, and investigation of flanking paralogous sequence variants showed that the mutations involved flanking sequences in 18 of these, and could extend over > 30 kb of DNA. While either gene conversion or double crossover between misaligned sister chromatids could formally explain the 0-2 copy events, gene conversion is the more likely mechanism, and these events include the longest non-allelic gene conversion reported thus far. Chromosomes with three copies of this CNV have arisen just once in our data set via another mechanism: duplication of 420 kb that places the third copy 230 kb proximal to the existing proximal copy. Our results establish gene conversion as a previously under-appreciated mechanism of generating copy number changes in humans and reveal the exceptionally large size of the conversion events that can occur.
Collapse
Affiliation(s)
- Wentao Shi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 30070, China
| | - Andrea Massaia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Sandra Louzada
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ruby Banerjee
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pille Hallast
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia
| | - Yuan Chen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anders Bergström
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Yong Gu
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven Leonard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Michael A Quail
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Qasim Ayub
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Science, Monash University Malaysia, Jalan Lagoon Selantan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Yali Xue
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
5
|
Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates. Proc Natl Acad Sci U S A 2017; 114:12779-12784. [PMID: 29138319 DOI: 10.1073/pnas.1708151114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene conversion is the copying of a genetic sequence from a "donor" region to an "acceptor." In nonallelic gene conversion (NAGC), the donor and the acceptor are at distinct genetic loci. Despite the role NAGC plays in various genetic diseases and the concerted evolution of gene families, the parameters that govern NAGC are not well characterized. Here, we survey duplicate gene families and identify converted tracts in 46% of them. These conversions reflect a large GC bias of NAGC. We develop a sequence evolution model that leverages substantially more information in duplicate sequences than used by previous methods and use it to estimate the parameters that govern NAGC in humans: a mean converted tract length of 250 bp and a probability of [Formula: see text] per generation for a nucleotide to be converted (an order of magnitude higher than the point mutation rate). Despite this high baseline rate, we show that NAGC slows down as duplicate sequences diverge-until an eventual "escape" of the sequences from its influence. As a result, NAGC has a small average effect on the sequence divergence of duplicates. This work improves our understanding of the NAGC mechanism and the role that it plays in the evolution of gene duplicates.
Collapse
|
6
|
Morgan AP, Holt JM, McMullan RC, Bell TA, Clayshulte AMF, Didion JP, Yadgary L, Thybert D, Odom DT, Flicek P, McMillan L, de Villena FPM. The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics 2016; 204:267-85. [PMID: 27371833 PMCID: PMC5012392 DOI: 10.1534/genetics.116.191007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Gene duplication and loss are major sources of genetic polymorphism in populations, and are important forces shaping the evolution of genome content and organization. We have reconstructed the origin and history of a 127-kbp segmental duplication, R2d, in the house mouse (Mus musculus). R2d contains a single protein-coding gene, Cwc22 De novo assembly of both the ancestral (R2d1) and the derived (R2d2) copies reveals that they have been subject to nonallelic gene conversion events spanning tens of kilobases. R2d2 is also a hotspot for structural variation: its diploid copy number ranges from zero in the mouse reference genome to >80 in wild mice sampled from around the globe. Hemizygosity for high copy-number alleles of R2d2 is associated in cis with meiotic drive; suppression of meiotic crossovers; and copy-number instability, with a mutation rate in excess of 1 per 100 transmissions in some laboratory populations. Our results provide a striking example of allelic diversity generated by duplication and demonstrate the value of de novo assembly in a phylogenetic context for understanding the mutational processes affecting duplicate genes.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - J Matthew Holt
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Rachel C McMullan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Timothy A Bell
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Amelia M-F Clayshulte
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Liran Yadgary
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - David Thybert
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom
| | - Duncan T Odom
- Cancer Research United Kingdom Cambridge Institute, University of Cambridge, CB2 0RE, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, CB10 1SD, United Kingdom Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Leonard McMillan
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Jones K, Ballesteros A, Mentink-Kane M, Warren J, Rattila S, Malech H, Kang E, Dveksler G. PSG9 Stimulates Increase in FoxP3+ Regulatory T-Cells through the TGF-β1 Pathway. PLoS One 2016; 11:e0158050. [PMID: 27389696 PMCID: PMC4936685 DOI: 10.1371/journal.pone.0158050] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
The pregnancy-specific glycoproteins (PSGs) are a family of proteins secreted by the syncytiotrophoblast of the placenta and are the most abundant trophoblastic proteins in maternal blood during the third trimester. The human PSG family consists of 10 protein-coding genes, some of which have a possible role in maintaining maternal immune tolerance to the fetus. PSG9 was reported as a potential predictive biomarker of pre-eclampsia, a serious complication of pregnancy that has been related to immunological dysfunction at the fetal-maternal interface. Therefore, we hypothesized that PSG9 may have an immunoregulatory role during pregnancy. We found that PSG9 binds to LAP and activates the latent form of TGF-β1. In addition, PSG9 induces the secretion of TGF-β1 from macrophages but not from CD4+ T-cells. TGF-β1 is required for the ex vivo differentiation of regulatory T-cells and, consistent with the ability of PSG9 to activate this cytokine, we observed that PSG9 induces the differentiation of FoxP3+ regulatory T-cells from naïve murine and human T-cells. Cytokines that are associated with inflammatory responses were also reduced in the supernatants of T-cells treated with PSG9, suggesting that PSG9, through its activation of TGFβ-1, could be a potent inducer of immune tolerance.
Collapse
Affiliation(s)
- Karlie Jones
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Angela Ballesteros
- National Institute on Deafness and other Communication Disorders, NIH, Bethesda, Maryland, United States of America
| | | | - James Warren
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Shemona Rattila
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
| | - Harry Malech
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Elizabeth Kang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Gabriela Dveksler
- Department of Pathology, USUHS, Bethesda, Maryland, 20814, United States of America
- * E-mail:
| |
Collapse
|
8
|
De novo intrachromosomal gene conversion from OPN1MW to OPN1LW in the male germline results in Blue Cone Monochromacy. Sci Rep 2016; 6:28253. [PMID: 27339364 PMCID: PMC4919619 DOI: 10.1038/srep28253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022] Open
Abstract
X-linked cone dysfunction disorders such as Blue Cone Monochromacy and X-linked Cone Dystrophy are characterized by complete loss (of) or reduced L- and M- cone function due to defects in the OPN1LW/OPN1MW gene cluster. Here we investigated 24 affected males from 16 families with either a structurally intact gene cluster or at least one intact single (hybrid) gene but harbouring rare combinations of common SNPs in exon 3 in single or multiple OPN1LW and OPN1MW gene copies. We assessed twelve different OPN1LW/MW exon 3 haplotypes by semi-quantitative minigene splicing assay. Nine haplotypes resulted in aberrant splicing of ≥20% of transcripts including the known pathogenic haplotypes (i.e. ‘LIAVA’, ‘LVAVA’) with absent or minute amounts of correctly spliced transcripts, respectively. De novo formation of the ‘LIAVA’ haplotype derived from an ancestral less deleterious ‘LIAVS’ haplotype was observed in one family with strikingly different phenotypes among affected family members. We could establish intrachromosomal gene conversion in the male germline as underlying mechanism. Gene conversion in the OPN1LW/OPN1MW genes has been postulated, however, we are first to demonstrate a de novo gene conversion within the lineage of a pedigree.
Collapse
|
9
|
Ji X, Griffing A, Thorne JL. A Phylogenetic Approach Finds Abundant Interlocus Gene Conversion in Yeast. Mol Biol Evol 2016; 33:2469-76. [PMID: 27297467 DOI: 10.1093/molbev/msw114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interlocus gene conversion (IGC) homogenizes repeats. While genomes can be repeat-rich, the evolutionary importance of IGC is poorly understood. Additional statistical tools for characterizing it are needed. We propose a composite likelihood strategy for incorporating IGC into widely-used probabilistic models for sequence changes that originate with point mutation. We estimated the percentage of nucleotide substitutions that originate with an IGC event rather than a point mutation in 14 groups of yeast ribosomal protein-coding genes, and found values ranging from 20% to 38%. We designed and applied a procedure to determine whether these percentages are inflated due to artifacts arising from model misspecification. The results of this procedure are consistent with IGC having had an important role in the evolution of each of these 14 gene families. We further investigate the properties of our IGC approach via simulation. In contrast to usual practice, our findings suggest that the IGC should and can be considered when multigene family evolution is investigated.
Collapse
Affiliation(s)
- Xiang Ji
- Bioinformatics Research Center, North Carolina State University Department of Statistics, North Carolina State University
| | - Alexander Griffing
- Bioinformatics Research Center, North Carolina State University Department of Biological Sciences, North Carolina State University
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University Department of Statistics, North Carolina State University Department of Biological Sciences, North Carolina State University
| |
Collapse
|
10
|
Bu L, Katju V. Early evolutionary history and genomic features of gene duplicates in the human genome. BMC Genomics 2015; 16:621. [PMID: 26290067 PMCID: PMC4546093 DOI: 10.1186/s12864-015-1827-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human gene duplicates have been the focus of intense research since the development of array-based and targeted next-generation sequencing approaches in the last decade. These studies have primarily concentrated on determining the extant copy-number variation from a population-genomic perspective but lack a robust evolutionary framework to elucidate the early structural and genomic characteristics of gene duplicates at emergence and their subsequent evolution with increasing age. RESULTS We analyzed 184 gene duplicate pairs comprising small gene families in the draft human genome with 10% or less synonymous sequence divergence. Human gene duplicates primarily originate from DNA-mediated events, taking up genomic residence as intrachromosomal copies in direct or inverse orientation. The distribution of paralogs on autosomes follows random expectations in contrast to their significant enrichment on the sex chromosomes. Furthermore, human gene duplicates exhibit a skewed gradient of distribution along the chromosomal length with significant clustering in pericentromeric regions. Surprisingly, despite the large average length of human genes, the majority of extant duplicates (83%) are complete duplicates, wherein the entire ORF of the ancestral copy was duplicated. The preponderance of complete duplicates is in accord with an extremely large median duplication span of 36 kb, which enhances the probability of capturing ancestral ORFs in their entirety. With increasing evolutionary age, human paralogs exhibit declines in (i) the frequency of intrachromosomal paralogs, and (ii) the proportion of complete duplicates. These changes may reflect lower survival rates of certain classes of duplicates and/or the role of purifying selection. Duplications arising from RNA-mediated events comprise a small fraction (11.4%) of all human paralogs and are more numerous in older evolutionary cohorts of duplicates. CONCLUSIONS The degree of structural resemblance, genomic location and duplication span appear to influence the long-term maintenance of paralogs in the human genome. The median duplication span in the human genome far exceeds that in C. elegans and yeast and likely contributes to the high prevalence of complete duplicates relative to structurally heterogeneous duplicates (partial and chimeric). The relative roles of regulatory sequence versus exon-intron structure changes in the acquisition of novel function by human paralogs remains to be determined.
Collapse
Affiliation(s)
- Lijing Bu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Vaishali Katju
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, TX, 77843-4458, USA.
| |
Collapse
|
11
|
Tessereau C, Léoné M, Buisson M, Duret L, Sinilnikova OM, Mazoyer S. Occurrence of a non deleterious gene conversion event in the BRCA1 gene. Genes Chromosomes Cancer 2015; 54:646-52. [PMID: 26171949 DOI: 10.1002/gcc.22278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
The duplication in the primate lineage of a portion of the breast and ovarian cancer susceptibility gene BRCA1 has created a BRCA1 pseudogene 45 kb away. Non-allelic homologous recombination (NAHR) between BRCA1 and BRCA1P1 has generated recurrent deleterious germ-line 37-kb deletions encompassing the first two exons of BRCA1, accounting for several breast and ovarian cancer families in various populations. In principle, NAHR intermediates resolution could also lead through a non-crossover configuration to interlocus gene conversion (IGC), but none had been described as yet. Here, we report for the first time an IGC event identified in a breast and ovarian cancer family involving exactly the same segment as that involved in the 37-kb deletions. Close examination of the consequences of this IGC event showed that it does not impact BRCA1 expression. Detailed analysis of the regions of homology between BRCA1 and its pseudogene revealed the specificity of the segment where recombination systematically occurs.
Collapse
Affiliation(s)
- Chloé Tessereau
- "Genetics of Breast Cancer" Team, Cancer Research Centre of Lyon, CNRS UMR5286/Inserm U1052/Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Mélanie Léoné
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Monique Buisson
- "Genetics of Breast Cancer" Team, Cancer Research Centre of Lyon, CNRS UMR5286/Inserm U1052/Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Lyon 1, Lyon, France
| | - Olga M Sinilnikova
- "Genetics of Breast Cancer" Team, Cancer Research Centre of Lyon, CNRS UMR5286/Inserm U1052/Université Lyon 1, Centre Léon Bérard, Lyon, France.,Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Sylvie Mazoyer
- "Genetics of Breast Cancer" Team, Cancer Research Centre of Lyon, CNRS UMR5286/Inserm U1052/Université Lyon 1, Centre Léon Bérard, Lyon, France
| |
Collapse
|
12
|
Dumont BL. Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications. BMC Genomics 2015; 16:456. [PMID: 26077037 PMCID: PMC4467073 DOI: 10.1186/s12864-015-1681-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background Interlocus gene conversion (IGC) is a recombination-based mechanism that results in the unidirectional transfer of short stretches of sequence between paralogous loci. Although IGC is a well-established mechanism of human disease, the extent to which this mutagenic process has shaped overall patterns of segregating variation in multi-copy regions of the human genome remains unknown. One expected manifestation of IGC in population genomic data is the presence of one-to-one paralogous SNPs that segregate identical alleles. Results Here, I use SNP genotype calls from the low-coverage phase 3 release of the 1000 Genomes Project to identify 15,790 parallel, shared SNPs in duplicated regions of the human genome. My approach for identifying these sites accounts for the potential redundancy of short read mapping in multi-copy genomic regions, thereby effectively eliminating false positive SNP calls arising from paralogous sequence variation. I demonstrate that independent mutation events to identical nucleotides at paralogous sites are not a significant source of shared polymorphisms in the human genome, consistent with the interpretation that these sites are the outcome of historical IGC events. These putative signals of IGC are enriched in genomic contexts previously associated with non-allelic homologous recombination, including clear signals in gene families that form tandem intra-chromosomal clusters. Conclusions Taken together, my analyses implicate IGC, not point mutation, as the mechanism generating at least 2.7 % of single nucleotide variants in duplicated regions of the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1681-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, 112 Derieux Place, 3510 Thomas Hall, Campus Box 7614, Raleigh, NC, 27695-7614, USA.
| |
Collapse
|
13
|
Ebert G, Steininger A, Weißmann R, Boldt V, Lind-Thomsen A, Grune J, Badelt S, Heßler M, Peiser M, Hitzler M, Jensen LR, Müller I, Hu H, Arndt PF, Kuss AW, Tebel K, Ullmann R. Distribution of segmental duplications in the context of higher order chromatin organisation of human chromosome 7. BMC Genomics 2014; 15:537. [PMID: 24973960 PMCID: PMC4092221 DOI: 10.1186/1471-2164-15-537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Segmental duplications (SDs) are not evenly distributed along chromosomes. The reasons for this biased susceptibility to SD insertion are poorly understood. Accumulation of SDs is associated with increased genomic instability, which can lead to structural variants and genomic disorders such as the Williams-Beuren syndrome. Despite these adverse effects, SDs have become fixed in the human genome. Focusing on chromosome 7, which is particularly rich in interstitial SDs, we have investigated the distribution of SDs in the context of evolution and the three dimensional organisation of the chromosome in order to gain insights into the mutual relationship of SDs and chromatin topology. RESULTS Intrachromosomal SDs preferentially accumulate in those segments of chromosome 7 that are homologous to marmoset chromosome 2. Although this formerly compact segment has been re-distributed to three different sites during primate evolution, we can show by means of public data on long distance chromatin interactions that these three intervals, and consequently the paralogous SDs mapping to them, have retained their spatial proximity in the nucleus. Focusing on SD clusters implicated in the aetiology of the Williams-Beuren syndrome locus we demonstrate by cross-species comparison that these SDs have inserted at the borders of a topological domain and that they flank regions with distinct DNA conformation. CONCLUSIONS Our study suggests a link of nuclear architecture and the propagation of SDs across chromosome 7, either by promoting regional SD insertion or by contributing to the establishment of higher order chromatin organisation themselves. The latter could compensate for the high risk of structural rearrangements and thus may have contributed to their evolutionary fixation in the human genome.
Collapse
Affiliation(s)
- Grit Ebert
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Anne Steininger
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Robert Weißmann
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Vivien Boldt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Allan Lind-Thomsen
- />Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Jana Grune
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Stefan Badelt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
- />Institute for Theoretical Chemistry, University of Vienna, Waehringer Straße 17, A-1090 Vienna, Austria
| | - Melanie Heßler
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Matthias Peiser
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Manuel Hitzler
- />Unit Experimental Research, Department of Product Safety, Federal Institute for Bundeswehr Institute of Radiobiology affiliated, the University of Ulm, Neuherbergstraße 11, 80937 Munich, Germany
| | - Lars R Jensen
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Ines Müller
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Hao Hu
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Peter F Arndt
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Andreas W Kuss
- />Department of Human Genetics, University Medicine Greifswald, and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Fleischmannstraße 42-44, 17475 Greifswald, Germany
| | - Katrin Tebel
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Reinhard Ullmann
- />Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| |
Collapse
|
14
|
Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario. G3-GENES GENOMES GENETICS 2014; 4:1479-89. [PMID: 24906640 PMCID: PMC4132178 DOI: 10.1534/g3.114.012435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interlocus gene conversion is a major evolutionary force that drives the concerted evolution of duplicated genomic regions. Theoretical models successfully have addressed the effects of interlocus gene conversion and the importance of crossover in the evolutionary fate of gene families and duplications but have not considered complex recombination scenarios, such as the presence of hotspots. To study the interplay between interlocus gene conversion and crossover, we have developed a forward-time simulator that allows the exploration of a wide range of interlocus gene conversion rates under different crossover models. Using it, we have analyzed patterns of nucleotide variation and linkage disequilibrium within and between duplicate regions, focusing on a neutral scenario with constant population size and validating our results with the existing theoretical models. We show that the interaction of gene conversion and crossover is nontrivial and that the location of crossover junctions is a fundamental determinant of levels of variation and linkage disequilibrium in duplicated regions. We also show that if crossover activity between duplications is strong enough, recurrent interlocus gene conversion events can break linkage disequilibrium within duplicates. Given the complex nature of interlocus gene conversion and crossover, we provide a framework to explore their interplay to help increase knowledge on molecular evolution within segmental duplications under more complex scenarios, such as demographic changes or natural selection.
Collapse
|
15
|
Good RT, Gramzow L, Battlay P, Sztal T, Batterham P, Robin C. The molecular evolution of cytochrome P450 genes within and between drosophila species. Genome Biol Evol 2014; 6:1118-34. [PMID: 24751979 PMCID: PMC4040991 DOI: 10.1093/gbe/evu083] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change.
Collapse
Affiliation(s)
- Robert T Good
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Lydia Gramzow
- Present address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, Germany
| | - Paul Battlay
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Tamar Sztal
- Present address: School of Biological Sciences, Monash University, Australia
| | - Philip Batterham
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| | - Charles Robin
- Department of Genetics, University of Melbourne, AustraliaPresent address: Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, Jena, GermanyPresent address: School of Biological Sciences, Monash University, Australia
| |
Collapse
|
16
|
Mussotter T, Bengesser K, Högel J, Cooper DN, Kehrer-Sawatzki H. Population-specific differences in gene conversion patterns between human SUZ12 and SUZ12P are indicative of the dynamic nature of interparalog gene conversion. Hum Genet 2014; 133:383-401. [PMID: 24385046 DOI: 10.1007/s00439-013-1410-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/08/2013] [Indexed: 11/29/2022]
Abstract
Nonallelic homologous gene conversion (NAHGC) resulting from interparalog recombination without crossover represents an important influence on the evolution of duplicated sequences in the human genome. In 17q11.2, different paralogous sequences mediate large NF1 deletions by nonallelic homologous recombination with crossover (NAHR). Among these paralogs are SUZ12 and its pseudogene SUZ12P which harbour the breakpoints of type-2 (1.2-Mb) NF1 deletions. Such deletions are caused predominantly by mitotic NAHR since somatic mosaicism with normal cells is evident in most patients. Investigating whether SUZ12 and SUZ12P have also been involved in NAHGC, we observed gene conversion tracts between these paralogs in both Africans (AFR) and Europeans (EUR). Since germline type-2 NF1 deletions resulting from meiotic NAHR are very rare, the vast majority of the gene conversion tracts in SUZ12 and SUZ12P are likely to have resulted from mitotic recombination during premeiotic cell divisions of germ cells. A higher number of gene conversion tracts were noted within SUZ12 and SUZ12P in AFR as compared to EUR. Further, the distinctive signature of NAHGC (a high number of SNPs per paralog and a high number of shared SNPs between paralogs), a characteristic of many actively recombining paralogs, was observed in both SUZ12 and SUZ12P but only in AFR and not in EUR. A novel polymorphic 2.3-kb deletion in SUZ12P was identified which exhibited a high allele frequency in EUR. We postulate that this interparalog structural difference, together with low allelic recombination rates, could have caused a reduction in NAHGC between SUZ12 and SUZ12P during human evolution.
Collapse
Affiliation(s)
- Tanja Mussotter
- Institute of Human Genetics, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | | | | | |
Collapse
|