1
|
Yin G, Zeng W, Li R, Zeng M, Chen R, Liu Y, Jiang R, Wang Y. Glia Maturation Factor-β Supports Liver Regeneration by Remodeling Actin Network to Enhance STAT3 Proliferative Signals. Cell Mol Gastroenterol Hepatol 2022; 14:1123-1145. [PMID: 35953024 PMCID: PMC9606832 DOI: 10.1016/j.jcmgh.2022.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Glia maturation factor-β (GMFB) is a bona fide member of the actin depolymerizing factor homology family. Recently, emerging evidence suggested its implication in liver diseases, but data on its role in liver remain limited. METHODS Assessment of GMFB in liver histology, impact on liver regeneration and hepatocyte proliferation, and the underlying molecular pathways were conducted using mouse models with acute liver injury. RESULTS GMFB is widely distributed in normal liver. Its expression increases within 24 hours after partial hepatectomy (PHx). Adult Gmfb knockout mice and wild-type littermates are similar in gross appearance, body weight, liver function, and histology. However, compared with wild-type control, Gmfb knockout mice post-PHx develop more serious liver damage and steatosis and have delayed liver regeneration; the dominant change in liver transcriptome at 24 hours after PHx is the significantly suppressed acute inflammation pathways; the top down-regulated gene sets relate to interleukin (IL)6/Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling. Another mouse model intoxicated with carbon tetrachloride replicated these findings. Furthermore, Gmfb knockout and wild-type groups have the similar numbers of Kupffer cells, but Gmfb knockout Kupffer cells once stimulated produce less IL6, tumor necrosis factor, and IL1β. In hepatocytes treated with IL6, GMFB associates positively with cell proliferation and STAT3/cyclin D1 activation, but without any direct interaction with STAT3. In Gmfb knockout hepatocytes, cytoskeleton-related gene expression was changed significantly, with an abnormal-appearing morphology of actin networks. In hepatocyte modeling, actin-filament turnover, STAT3 activation, and metabolite excretion show a strong reliance on the status of actin-filament organization. CONCLUSIONS GMFB plays a significant role in liver regeneration by promoting acute inflammatory response in Kupffer cells and by intracellularly coordinating the responsive hepatocyte proliferation.
Collapse
Affiliation(s)
- Guo Yin
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Weilan Zeng
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Manman Zeng
- Department of Gynecology, Women and Children's Hospital of Guangdong, Guangzhou, China
| | - Ronghua Chen
- Medical Research Center of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaxue Liu
- Biomedical Research Center, Southern Medical University, Guangzhou, China,School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Ronglong Jiang
- Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Biomedical Research Center, Southern Medical University, Guangzhou, China,Department of Hepatology, Southern Medical University Affiliated Shenzhen Hospital, Shenzhen, China,Correspondence Address correspondence to: Yan Wang, MD, PhD, Biomedical Research Center, Southern Medical University, No 1023 Sha Tai Nan Avenue, Guangzhou 510515, China. fax: (86) 20-6164-7396.
| |
Collapse
|
2
|
Reed JR, Guidry JJ, Backes WL. Proteomic and bioinformatics analysis of membrane lipid domains after Brij 98 solubilization of uninduced and phenobarbital-induced rat liver microsomes: Defining the membrane localization of the P450 enzyme system. Drug Metab Dispos 2022; 50:374-385. [DOI: 10.1124/dmd.121.000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
|
3
|
Cang X, Wang Y, Zeng J, Gao J, Yu Q, Lu C, Xu F, Lin J, Zhu J, Wang X. C9orf72 knockdown alleviates hepatic insulin resistance by promoting lipophagy. Biochem Biophys Res Commun 2022; 588:15-22. [PMID: 34942529 DOI: 10.1016/j.bbrc.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
Insulin resistance (IR) attributed by the deficiency of lipophagy, is an abnormal state of downregulation of insulin-mediated glucose uptake and use into the liver. Chromosome 9 open reading frame 72 (C9orf72) variously modulates autophagy. We investigated the role and the downstream pathway of C9orf72 in hepatic IR. We found that C9orf72 knockdown alleviated hepatic IR by lipophagy promotion in T2DM mice and in IR-challenged hepatocytes in vitro. C9orf72 interacted with and activated cell division cycle 42 (Cdc42) protein in IR-challenged hepatocytes, Which in turn, inhibits lipophagy by promoting neural Wiskott-Aldrich syndrome protein (N-WASP) expression and activation. C9orf72 inhibited lipophagy by activating the Cdc42/N-WASP axis to facilitate hepatic IR; therefore, the knockdown of C9orf72 may be potentially therapeutic for the treatment of IR.
Collapse
Affiliation(s)
- Xiaomin Cang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Jia Zeng
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, Jiangsu, China
| | - Jingwen Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qianqian Yu
- Department of Radiotherapy, Jintan Affiliated Hospital of Jiangsu University, Changzhou, China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, Jiangsu, China
| | - Jiaxi Lin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinzhou Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xueqin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Yamauchi H, Andou T, Watanabe T, Gotou M, Anayama H. Quantitative protein profiling of phenobarbital-induced drug metabolizing enzymes in rat liver by liquid chromatography mass spectrometry using formalin-fixed paraffin-embedded samples. J Pharmacol Toxicol Methods 2021; 112:107107. [PMID: 34363961 DOI: 10.1016/j.vascn.2021.107107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Administration of a compound can induce drug-metabolizing enzymes (DMEs) in the liver. DME induction can affect various parameters in toxicology studies. Therefore, evaluation of DME induction is important for interpreting test compound-induced biological responses. Several methods such as measurement of hepatic microsomal DME activity using substrates, electron microscopy, or immunohistochemistry have been used; however, these methods are limited in throughput and specificity or are not quantitative. Liquid chromatography mass spectrometry (LC/MS)-based protein analysis can detect and quantify multiple proteins simultaneously per assay. Studies have shown that formalin-fixed paraffin-embedded (FFPE) samples, which are routinely collected in toxicology studies, can be used for LC/MS-based protein analysis. To validate the utility of LC/MS using FFPE samples for quantitative evaluation of DME induction, we treated rats with a DME inducer, phenobarbital, and compared the protein expression levels of 13 phase-I and 11 phase-II DMEs between FFPE and fresh frozen hepatic samples using LC/MS. A good correlation between data from FFPE and frozen samples was obtained after analysis. In FFPE and frozen samples, the expression of 6 phase-I and 8 phase-II DMEs showed a similar significant increase and a prominent rise in Cyp2b2 and Cyp3a1 levels. In addition, LC/MS data were consistent with the measurement of microsomal DME activities. These results suggest that LC/MS-based protein expression analysis using FFPE samples is as effective as that using frozen samples for detecting DME induction.
Collapse
Affiliation(s)
- Hirofumi Yamauchi
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tomohiro Andou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takeshi Watanabe
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masamitsu Gotou
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hisashi Anayama
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
5
|
Ottka C, Weber C, Müller E, Lohi H. Serum NMR metabolomics uncovers multiple metabolic changes in phenobarbital-treated dogs. Metabolomics 2021; 17:54. [PMID: 34076758 PMCID: PMC8172515 DOI: 10.1007/s11306-021-01803-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Phenobarbital is a commonly used anticonvulsant for the treatment of canine epileptic seizures. In addition to its central nervous system (CNS) depressing effects, long-term phenobarbital administration affects liver function. However, broader metabolic consequences of phenobarbital treatment are poorly characterized. OBJECTIVES To identify metabolic changes in the sera of phenobarbital-treated dogs and to investigate the relationship between serum phenobarbital concentration and metabolite levels. METHODS Leftovers of clinical samples were used: 58 cases with phenobarbital concentrations ranging from 7.8 µg/mL to 50.8 µg/mL, and 25 controls. The study design was cross-sectional. The samples were analyzed by a canine-specific 1H NMR metabolomics platform. Differences between the case and control groups were evaluated by logistic regression. The linear relationship between metabolite and phenobarbital concentrations was evaluated using linear regression. RESULTS Increasing concentrations of glycoprotein acetyls, LDL particle size, palmitic acid, and saturated fatty acids, and decreasing concentrations of albumin, glutamine, histidine, LDL particle concentration, multiple HDL measures, and polyunsaturated fatty acids increased the odds of the sample belonging to the phenobarbital-treated group, having a p-value < .0033, and area under the curve (AUC) > .7. Albumin and glycoprotein acetyls had the best discriminative ability between the groups (AUC: .94). No linear associations between phenobarbital and metabolite concentrations were observed. CONCLUSION The identified metabolites are known to associate with, for example, liver and CNS function, inflammatory processes and drug binding. The lack of a linear association to phenobarbital concentration suggests that other factors than the blood phenobarbital concentration contribute to the magnitude of metabolic changes.
Collapse
Affiliation(s)
- Claudia Ottka
- PetBiomics Ltd., Helsinki, Finland.
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Folkhälsan Research Center, Helsinki, Finland.
| | | | | | - Hannes Lohi
- PetBiomics Ltd., Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
6
|
Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1911. [PMID: 32992722 PMCID: PMC7601632 DOI: 10.3390/nano10101911] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Changes in the genetic material can lead to serious human health defects, as mutations in somatic cells may cause cancer and can contribute to other chronic diseases. Genotoxic events can appear at both the DNA, chromosomal or (during mitosis) whole genome level. The study of mechanisms leading to genotoxicity is crucially important, as well as the detection of potentially genotoxic compounds. We consider the current state of the art and describe here the main endpoints applied in standard human in vitro models as well as new advanced 3D models that are closer to the in vivo situation. We performed a literature review of in vitro studies published from 2000-2020 (August) dedicated to the genotoxicity of nanomaterials (NMs) in new models. Methods suitable for detection of genotoxicity of NMs will be presented with a focus on advances in miniaturization, organ-on-a-chip and high throughput methods.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Espen Mariussen
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| |
Collapse
|
7
|
Boldarine VT, Pedroso AP, Brandão-Teles C, LoTurco EG, Nascimento CMO, Oyama LM, Bueno AA, Martins-de-Souza D, Ribeiro EB. Ovariectomy modifies lipid metabolism of retroperitoneal white fat in rats: a proteomic approach. Am J Physiol Endocrinol Metab 2020; 319:E427-E437. [PMID: 32663100 DOI: 10.1152/ajpendo.00094.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Menopause is often accompanied by visceral obesity. With the aim of exploring the consequences of ovarian failure on visceral fat, we evaluated the effects of ovariectomy and estrogen replacement on the proteome/phosphoproteome and on the fatty acid profile of the retroperitoneal adipose depot (RAT) of rats. Eighteen 3-mo-old female Wistar rats were either ovariectomized or sham operated and fed with standard chow for 3 mo. A subgroup of ovariectomized rats received estradiol replacement. RAT samples were analyzed with data-independent acquisitions LC-MS/MS, and pathway analysis was performed with the differentially expressed/phosphorylated proteins. RAT lipid profile was analyzed by gas chromatography. Ovariectomy induced high adiposity and insulin resistance and promoted alterations in protein expression and phosphorylation. Pathway analysis showed that five pathways were significantly affected by ovariectomy, namely, metabolism of lipids (including fatty acid metabolism and mitochondrial fatty acid β-oxidation), fatty acyl-CoA biosynthesis, innate immune system (including neutrophil degranulation), metabolism of vitamins and cofactors, and integration of energy metabolism (including ChREBP activates metabolic gene expression). Lipid profile analysis showed increased palmitic and palmitoleic acid content. The analysis of the data indicated that ovariectomy favored lipogenesis whereas it impaired fatty acid oxidation and induced a proinflammatory state in the visceral adipose tissue. These effects are consistent with the findings of high adiposity, hyperleptinemia, and impaired insulin sensitivity. The observed alterations were partially attenuated by estradiol replacement. The data point to a role of disrupted lipid metabolism in adipose tissue in the genesis of obesity after menopause.
Collapse
Affiliation(s)
- Valter T Boldarine
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda P Pedroso
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Edson G LoTurco
- Divisão de Urologia e Reprodução Humana, Departamento de Cirurgia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Cláudia M O Nascimento
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lila M Oyama
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Allain A Bueno
- Department of Biological Sciences, College of Health, Life and Environmental Sciences, University of Worcester, Worcester, United Kingdom
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Eliane B Ribeiro
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Riegler T, Nejabat M, Eichner J, Stiebellehner M, Subosits S, Bilban M, Zell A, Huber WW, Schulte-Hermann R, Grasl-Kraupp B. Proinflammatory mesenchymal effects of the non-genotoxic hepatocarcinogen phenobarbital: a novel mechanism of antiapoptosis and tumor promotion. Carcinogenesis 2015; 36:1521-30. [PMID: 26378027 DOI: 10.1093/carcin/bgv135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023] Open
Abstract
Many environmental pollutants and drugs, including steroid hormones, hypolipidemics and antiepileptics, are non-genotoxic carcinogens (NGC) in rodent liver. The mechanism of action and the risk for human health are still insufficiently known. Here, we study the effects of phenobarbital (PB), a widely used model NGC, on hepatic epithelial-mesenchymal crosstalk and the impact on hepatic apoptosis. Mesenchymal cells (MC) and hepatocytes (HC) were isolated from control and PB-treated rat livers. PB induced extensive changes in gene expression in MC and much less in HC as shown by transcriptomics with oligoarrays. In MC only, transcript levels of numerous proinflammatory cytokines were elevated. Correspondingly, ELISA on the supernatant of MC from PB-treated rats revealed enhanced release of various cytokines. In cultured HC, this supernatant caused (i) nuclear translocation and activation of nuclear factor-κB (shown by immunoblots of nuclear extracts and reporter gene assays), (ii) elevated expression of proinflammatory genes and (iii) protection from the proapoptotic action of transforming growth factor beta 1 (TGFß1). PB treatment in vivo or in vitro elevated the production and release of tumor necrosis factor alpha from MC, which was identified as mainly responsible for the inhibition of apoptosis in HC. In conclusion, our findings reveal profound proinflammatory effects of PB on hepatic mesenchyme and mesenchymal-epithelial interactions. The resulting release of cytokines acts antiapoptotic in HC, an effect crucial for tumor promotion and carcinogenesis by NGC.
Collapse
Affiliation(s)
| | | | - Johannes Eichner
- Center of Bioinformatics Tübingen (ZBIT), University of Tübingen, 72070 Tübingen, Germany and
| | | | | | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Zell
- Center of Bioinformatics Tübingen (ZBIT), University of Tübingen, 72070 Tübingen, Germany and
| | | | | | | |
Collapse
|
9
|
Bileck A, Ferk F, Al-Serori H, Koller VJ, Muqaku B, Haslberger A, Auwärter V, Gerner C, Knasmüller S. Impact of a synthetic cannabinoid (CP-47,497-C8) on protein expression in human cells: evidence for induction of inflammation and DNA damage. Arch Toxicol 2015; 90:1369-82. [PMID: 26194647 DOI: 10.1007/s00204-015-1569-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/06/2015] [Indexed: 01/12/2023]
Abstract
Synthetic cannabinoids (SCs) are marketed worldwide as legal surrogates for marihuana. In order to predict potential health effects in consumers and to elucidate the underlying mechanisms of action, we investigated the impact of a representative of the cyclohexylphenols, CP47,497-C8, which binds to both cannabinoid receptors, on protein expression patterns, genomic stability and on induction of inflammatory cytokines in human lymphocytes. After treatment of the cells with the drug, we found pronounced up-regulation of a variety of enzymes in nuclear extracts which are involved in lipid metabolism and inflammatory signaling; some of the identified proteins are also involved in the endogenous synthesis of endocannabinoids. The assumption that the drug causes inflammation is further supported by results obtained in additional experiments with cytosols of LPS-stimulated lymphocytes which showed that the SC induces pro-inflammatory cytokines (IL12p40 and IL-6) as well as TNF-α. Furthermore, the proteome analyses revealed that the drug causes down-regulation of proteins which are involved in DNA repair. This observation provides an explanation for the formation of comets which was seen in single-cell gel electrophoresis assays and for the induction of micronuclei (which reflect structural and numerical chromosomal aberrations) by the drug. These effects were seen in experiments with human lymphocytes which were conducted under identical conditions as the proteome analysis. Taken together, the present findings indicate that the drug (and possibly other structurally related SCs) may cause DNA damage and inflammation in directly exposed cells of consumers.
Collapse
Affiliation(s)
- Andrea Bileck
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Franziska Ferk
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Halh Al-Serori
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Verena J Koller
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria
| | - Besnik Muqaku
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Alexander Haslberger
- Department of Nutritional Sciences, University of Vienna, UZA 2/2D541, Althanstrasse 14, 1090, Vienna, Austria
| | - Volker Auwärter
- Institute of Forensic Medicine, University Medical Center Freiburg, Albertstraße 9, 79104, Freiburg, Germany
| | - Christopher Gerner
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Siegfried Knasmüller
- Department of Internal Medicine 1, Comprehensive Cancer Center, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8A, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Henderson CJ, Cameron AR, Chatham L, Stanley LA, Wolf CR. Evidence that the capacity of nongenotoxic carcinogens to induce oxidative stress is subject to marked variability. Toxicol Sci 2015; 145:138-48. [PMID: 25690736 PMCID: PMC4833039 DOI: 10.1093/toxsci/kfv039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many drugs and environmental chemicals which are not directly mutagenic have the capacity to increase the incidence of tumors in the liver and other tissues. For this reason, such compounds are known as nongenotoxic carcinogens. The mechanisms underlying their effects remain unclear; however, their capacity to induce oxidative stress is considered to be a critical step in the carcinogenic process, although the evidence that this is actually the case remains equivocal and sparse. We have exploited a novel heme oxygenase-1 reporter mouse to evaluate the capacity of nongenotoxic carcinogens with different mechanisms of action to induce oxidative stress in the liver in vivo. When these compounds were administered at doses reported to cause liver tumors, marked differences in activation of the reporter were observed. 1,4-Dichlorobenzene and nafenopin were strong inducers of oxidative stress, whereas phenobarbital, piperonyl butoxide, cyproterone acetate, and WY14,643 were, at best, only very weak inducers. In the case of phenobarbital and thioacetamide, the number of LacZ-positive hepatocytes increased with time, and for the latter also with dose. The data obtained demonstrate that although some nongenotoxic carcinogens can induce oxidative stress, it is not a dominant feature of the response to these compounds. Therefore in contrast to the current models, these data suggest that oxidative stress is not a key determinant in the mechanism of nongenotoxic carcinogenesis but may contribute to the effects in a compound-specific manner.
Collapse
Affiliation(s)
- Colin J Henderson
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Amy R Cameron
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Lynsey Chatham
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Lesley A Stanley
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Charles Roland Wolf
- Division of Cancer Research, Medical Research Institute, Jacqui Wood Cancer Centre, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|