1
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
2
|
Wang YL, Li L, Paudel BR, Zhao JL. Genomic Insights into High-Altitude Adaptation: A Comparative Analysis of Roscoea alpina and R. purpurea in the Himalayas. Int J Mol Sci 2024; 25:2265. [PMID: 38396942 PMCID: PMC10889555 DOI: 10.3390/ijms25042265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Environmental stress at high altitudes drives the development of distinct adaptive mechanisms in plants. However, studies exploring the genetic adaptive mechanisms of high-altitude plant species are scarce. In the present study, we explored the high-altitude adaptive mechanisms of plants in the Himalayas through whole-genome resequencing. We studied two widespread members of the Himalayan endemic alpine genus Roscoea (Zingiberaceae): R. alpina (a selfing species) and R. purpurea (an outcrossing species). These species are distributed widely in the Himalayas with distinct non-overlapping altitude distributions; R. alpina is distributed at higher elevations, and R. purpurea occurs at lower elevations. Compared to R. purpurea, R. alpina exhibited higher levels of linkage disequilibrium, Tajima's D, and inbreeding coefficient, as well as lower recombination rates and genetic diversity. Approximately 96.3% of the genes in the reference genome underwent significant genetic divergence (FST ≥ 0.25). We reported 58 completely divergent genes (FST = 1), of which only 17 genes were annotated with specific functions. The functions of these genes were primarily related to adapting to the specific characteristics of high-altitude environments. Our findings provide novel insights into how evolutionary innovations promote the adaptation of mountain alpine species to high altitudes and harsh habitats.
Collapse
Affiliation(s)
- Ya-Li Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Li Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| | - Babu Ram Paudel
- Research Centre for Applied Science and Technology, Tribhuvan University, Kirtipur 44613, Nepal
| | - Jian-Li Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Y.-L.W.); (L.L.)
| |
Collapse
|
3
|
Vidmar B, Oberlintner A, Stres B, Likozar B, Novak U. Biodegradation of polysaccharide-based biocomposites with acetylated cellulose nanocrystals, alginate and chitosan in aqueous environment. Int J Biol Macromol 2023; 252:126433. [PMID: 37604416 DOI: 10.1016/j.ijbiomac.2023.126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Biocomposite films from renewable sources are seen to be viable candidates as sustainable, zero-waste packaging materials. In this study, biocomposites films using chitosan and alginate as matrices, and pristine or acetylated cellulose nanocrystals (CNCs) as reinforcement agents, were fabricated, thoroughly characterized in terms of structure (with ATR-FTIR and XRD), morphology (SEM), thermal stability (TGA coupled with FTIR), water content and solubility and mechanical properties and subjected to controlled biological degradation in aqueous environment with added activated sludge. Biodegradation activity was followed through respirometry by measurement of change in partial O2 pressure using OxiTop® system. While the initial rate of biodegradation is higher in chitosan-based films with incorporated CNCs (both pristine and modified) compared to any other tested biocomposites, it was observed that chitosan-based films are not completely degradable in activated sludge medium, whereas alginate-based films reached complete biodegradation in 107 h to 112 h. Additional study of the aqueous medium with in situ FTIR during biodegradation offered an insight into biodegradation mechanisms. Use of advanced statistical methods indicated that selection of material (ALG vs CH) has the highest influence on biodegradability, followed by solubility of the material and its thermal stability.
Collapse
Affiliation(s)
- Beti Vidmar
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Ana Oberlintner
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Blaž Stres
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; Jožef Stefan Institute, Department of Automation, Biocybernetics and Robotics, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Faculty of Civil and Geodetic Engineering, Institute of Sanitary Engineering, Jamova 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Blaž Likozar
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Uroš Novak
- National Institute of Chemistry, Department of Catalysis and Chemical Reaction Engineering, Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Shyaula M, Regmi S, Khadka D, Poudel RC, Dhakal A, Koirala D, Sijapati J, Singh A, Maharjan J. Characterization of Thermostable Cellulase from Bacillus licheniformis PANG L Isolated from the Himalayan Soil. Int J Microbiol 2023; 2023:3615757. [PMID: 37692921 PMCID: PMC10484656 DOI: 10.1155/2023/3615757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
This study aimed to isolate, purify, and characterize a potential thermophilic cellulase-producing bacterium from the Himalayan soil. Eleven thermophilic bacteria were isolated, and the strain PANG L was found to be the most potent cellulolytic producer. Morphological, physiological, biochemical, and molecular characterization identified PANG L as Bacillus licheniformis. This is the first study on the isolation of thermostable cellulase-producing Bacillus licheniformis from the Himalayan soil. This bacterium was processed for the production of cellulase enzyme. The optimum conditions for cellulase production were achieved at 45°C after 48 h of incubation at pH 6.5 in media-containing carboxymethyl cellulose (CMC) and yeast extract as carbon and nitrogen sources, respectively, in a thermo-shaker at 100 rpm. The enzyme was partially purified by 80% ammonium sulphate precipitation followed by dialysis, resulting in a 1.52-fold purification. The optimal activity of partially purified cellulase was observed at a temperature of 60°C and pH 5. The cellulase enzyme was stable within the pH ranges of 3-5 and retained 67% of activity even at 55°C. Cellulase activity was found to be enhanced in the presence of metal ions such as Cd2+, Pb2+, and Ba2+. The enzyme showed the highest activity when CMC was used as a substrate, followed by cellobiose. The Km and Vmax values of the enzyme were 1.8 mg/ml and 10.92 μg/ml/min, respectively. The cellulase enzyme obtained from Bacillus licheniformis PANG L had suitable catalytic properties for use in industrial applications.
Collapse
Affiliation(s)
- Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Sunil Regmi
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Deegendra Khadka
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | | | - Agni Dhakal
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Devesh Koirala
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | | | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Jyoti Maharjan
- Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| |
Collapse
|
5
|
Li Z, Fu C, Li P, Ba W, Ma S, Tang X, Yang X, Hao Z, A K. The prevalence and influencing factors of the oropharyngeal carriage of Haemophilus influenzae in healthy children in a high-altitude area of China: A cross-sectional study. Medicine (Baltimore) 2022; 101:e30363. [PMID: 36086673 PMCID: PMC10980498 DOI: 10.1097/md.0000000000030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Haemophilus influenzae is a common commensal organism of the human upper respiratory tract and an important cause of human disease. No data on H influenzae carriage rate has been carried out on the Qinghai-Tibet Plateau of China. This study aims to present the H influenzae carriage rate and influencing factors of H influenzae in healthy children <15 years of age in Qinghai Province, an area located on the Qinghai-Tibet Plateau in China. Oropharyngeal swabs for the detection of H influenzae DNA were collected between September and October 2019. Taqman real-time polymerase chain reaction was used to detect the nucleic acids from the oropharyngeal swabs. Self-designed questionnaires were used to investigate the related information among this group of children. A number of 284 children were enrolled in this study. The carriage rate of H influenzae was 44.7%. The carriage rate in cities was 47.5%, in rural areas was 21.9%, and in pastoral areas was 52.8%. The carriage rate was found to be higher among children of minority ethnic groups than those of Han ethnicity (55.6% vs 38.1%). H influenzae carriage rate was influenced by tobacco smoke exposure (adjusted odds ratio [aOR] = 2.31, 95% CI [confidence interval]: 1.14-4.70), having siblings <5 years of age (aOR = 2.36, 95% CI: 1.21-4.59), respiratory infections during the last 30 days (aOR = 2.37, 95% CI: 1.11-5.06), and parent/guardian education level (aOR = 0.08, 95% CI: 0.02-0.27). H influenzae was highly prevalent in healthy children in Qinghai Province, especially among children of minority ethnicities and those living in pastoral areas. Tobacco smoke exposure, having siblings <5 years of age, and respiratory infections during the last 30 days were risk factors for H influenzae carriage. Parents or guardians having education levels of college or higher was a protective factor for H influenzae carriage. It is of critical importance that the government take effective measures to reduce the carriage rate and the occurrence of H influenzae related diseases in susceptible populations.
Collapse
Affiliation(s)
- Zhen Li
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Chang Fu
- Department of Health Service and Management, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Department of Health Psychology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Puren Li
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - WenSheng Ba
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Shaohui Ma
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Xiaolei Tang
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Xueqin Yang
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Zengping Hao
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Kezhong A
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| |
Collapse
|
6
|
Kumar S, Kumar V, Nag D, Kumar V, Darnal S, Thakur V, Patial V, Singh D. Microbial pigments: Learning from Himalayan perspective to industrial applications. J Ind Microbiol Biotechnol 2022; 49:kuac017. [PMID: 35933162 PMCID: PMC9559291 DOI: 10.1093/jimb/kuac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/21/2022] [Indexed: 11/19/2022]
Abstract
Pigments are an essential part of life on earth, ranging from microbes to plants and humans. The physiological and environmental cues induce microbes to produce a broad spectrum of pigments, giving them adaptation and survival advantages. Microbial pigments are of great interest due to their natural origin, diverse biological activities, and wide applications in the food, pharmaceutical, cosmetics, and textile industries. Despite noticeable research on pigment-producing microbes, commercial successes are scarce, primarily from higher, remote, and inaccessible Himalayan niches. Therefore, substantial bioprospection integrated with advanced biotechnological strategies is required to commercialize microbial pigments successfully. The current review elaborates on pigment-producing microbes from a Himalayan perspective, offering tremendous opportunities for industrial applications. Additionally, it illustrates the ecological significance of microbial pigments and emphasizes the current status and prospects of microbial pigments production above the test tube scale.
Collapse
Affiliation(s)
- Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Deepika Nag
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Virender Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanyukta Darnal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vijeta Patial
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
7
|
Kumar V, Kashyap P, Kumar S, Thakur V, Kumar S, Singh D. Multiple Adaptive Strategies of Himalayan Iodobacter sp. PCH194 to High-Altitude Stresses. Front Microbiol 2022; 13:881873. [PMID: 35875582 PMCID: PMC9298515 DOI: 10.3389/fmicb.2022.881873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial adaption to the multiple stressed environments of high-altitude niches in the Himalayas is intriguing and is of considerable interest to biotechnologists. Previously, we studied the culturable and unculturable metagenome microbial diversity from glacial and kettle lakes in the Western Himalayas. In this study, we explored the adaptive strategies of a unique Himalayan eurypsychrophile Iodobacter sp. PCH194, which can synthesize polyhydroxybutyrate (PHB) and violacein pigment. Whole-genome sequencing and analysis of Iodobacter sp. PCH194 (4.58 Mb chromosome and three plasmids) revealed genetic traits associated with adaptive strategies for cold/freeze, nutritional fluctuation, defense against UV, acidic pH, and the kettle lake's competitive environment. Differential proteome analysis suggested the adaptive role of chaperones, ribonucleases, secretion systems, and antifreeze proteins under cold stress. Antifreeze activity inhibiting the ice recrystallization at −9°C demonstrated the bacterium's survival at subzero temperature. The bacterium stores carbon in the form of PHB under stress conditions responding to nutritional fluctuations. However, violacein pigment protects the cells from UV radiation. Concisely, genomic, proteomic, and physiological studies revealed the multiple adaptive strategies of Himalayan Iodobacter to survive the high-altitude stresses.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Prakriti Kashyap
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, India
| |
Collapse
|
8
|
Deutsch L, Debevec T, Millet GP, Osredkar D, Opara S, Šket R, Murovec B, Mramor M, Plavec J, Stres B. Urine and Fecal 1H-NMR Metabolomes Differ Significantly between Pre-Term and Full-Term Born Physically Fit Healthy Adult Males. Metabolites 2022; 12:metabo12060536. [PMID: 35736470 PMCID: PMC9228004 DOI: 10.3390/metabo12060536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Preterm birth (before 37 weeks gestation) accounts for ~10% of births worldwide and remains one of the leading causes of death in children under 5 years of age. Preterm born adults have been consistently shown to be at an increased risk for chronic disorders including cardiovascular, endocrine/metabolic, respiratory, renal, neurologic, and psychiatric disorders that result in increased death risk. Oxidative stress was shown to be an important risk factor for hypertension, metabolic syndrome and lung disease (reduced pulmonary function, long-term obstructive pulmonary disease, respiratory infections, and sleep disturbances). The aim of this study was to explore the differences between preterm and full-term male participants' levels of urine and fecal proton nuclear magnetic resonance (1H-NMR) metabolomes, during rest and exercise in normoxia and hypoxia and to assess general differences in human gut-microbiomes through metagenomics at the level of taxonomy, diversity, functional genes, enzymatic reactions, metabolic pathways and predicted gut metabolites. Significant differences existed between the two groups based on the analysis of 1H-NMR urine and fecal metabolomes and their respective metabolic pathways, enabling the elucidation of a complex set of microbiome related metabolic biomarkers, supporting the idea of distinct host-microbiome interactions between the two groups and enabling the efficient classification of samples; however, this could not be directed to specific taxonomic characteristics.
Collapse
Affiliation(s)
- Leon Deutsch
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Tadej Debevec
- Faculty of Sports, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland;
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Simona Opara
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boštjan Murovec
- Faculty of Electrical Engineering, University of Ljubljana, Jamova 2, SI-1000 Ljubljana, Slovenia;
| | - Minca Mramor
- Department of Infectious Diseases, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Janez Plavec
- National Institute of Chemistry, NMR Center, SI-1000 Ljubljana, Slovenia;
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.D.); (S.O.)
- Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-4156-7633
| |
Collapse
|
9
|
Metagenomic insights into Himalayan glacial and kettle lake sediments revealed microbial community structure, function, and stress adaptation strategies. Extremophiles 2021; 26:3. [PMID: 34878610 DOI: 10.1007/s00792-021-01252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022]
Abstract
Glacial and kettle lakes in the high-altitude Himalayas are unique habitats with significant scope for microbial ecology. The present study provides insights into bacterial community structure and function of the sediments of two high-altitude lakes using 16S amplicon and whole-genome shotgun (WGS) metagenomics. Microbial communities in the sediments of Parvati kund (glacial lake) and Bhoot ground (kettle lake) majorly consist of bacteria and a small fraction of archaea and eukaryota. The bacterial population has an abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, and Verrucomicrobia. Despite the common phyla, the sediments from each lake have a distinct distribution of bacterial and archaeal taxa. The analysis of the WGS metagenomes at the functional level provides a broad picture of microbial community metabolism of key elements and suggested chemotrophs as the major primary producers. In addition, the findings also revealed that polyhydroxyalkanoates (PHA) are a crucial stress adaptation molecule. The abundance of PHA metabolism in Alpha- and Betaproteobacteria and less representation in other bacterial and archaeal classes in both metagenomes was disclosed. The metagenomic insights provided an incisive view of the microbiome from Himalayan lake's sediments. It has also opened the scope for further bioprospection from virgin Himalayan niches.
Collapse
|
10
|
Sajjad W, Ali B, Bahadur A, Ghimire PS, Kang S. Bacterial Diversity and Communities Structural Dynamics in Soil and Meltwater Runoff at the Frontier of Baishui Glacier No.1, China. MICROBIAL ECOLOGY 2021; 81:370-384. [PMID: 32918153 DOI: 10.1007/s00248-020-01600-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Comprehensive knowledge of bacterial ecology mainly in supraglacial habitats is pivotal particularly at the frontier of accelerated glacier retreat. In this study, bacterial diversity and community composition in glacial soil and meltwater runoff at the frontier of Baishui Glacier No.1 were evaluated using high throughput sequencing. Significant variations in the physiochemical parameters formed an ecological gradient between soil and meltwater runoff. Based on the richness and evenness indexes, the bacterial diversity was relatively higher in soil compared with meltwater runoff. Hierarchical clustering and bi-plot ordination revealed that the taxonomic composition of soil samples was highly similar and significantly influenced by the ecological parameters than the meltwater runoff. The overall relative abundance trend of bacterial phyla and genera were greatly varied in soil and water samples. The relative abundance of Proteobacteria was higher in water runoff samples (40.5-87%) compared with soil samples (32-52.7%). Proteobacteria, Firmicutes, and a little part of Cyanobacteria occupied a major portion of water runoff while the soil was dominated by Acidobacteria (6-16.2%), Actinobacteria (5-16%), Bacteroidetes (0.5-8.8%), and Cyanobacteria (0.1-8.3%) besides Proteobacteria and Firmicutes. Higher numbers of biomarkers were found in soil group compared with the water group. The study area is diverse in terms of richness, while community structures are not evenly distributed. This study provides a preliminary understanding of the bacterial diversity and shifts in community structure in soil and meltwater runoff at the frontier of the glacial. The findings revealed that the environmental factors are a significantly strong determinant of bacterial community structures in such a closely linked ecosystem.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China
| | - Prakriti Sharma Ghimire
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
11
|
Waters SM, Purdue SK, Armstrong R, Detrés Y. Metagenomic investigation of African dust events in the Caribbean. FEMS Microbiol Lett 2020; 367:5809963. [PMID: 32189002 DOI: 10.1093/femsle/fnaa051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
African dust from the Sahara and Sahel regions of Northern Africa is blown intercontinental distances and is the highest portion of atmospheric dust generated each year. During the Northern Hemisphere summer months (boreal summer), these dust events travel into the Caribbean and southern United States. While viability assays, microscopy and bacterial amplicon analyses have shown that dust-associated microbes may be diverse, the specific microbial taxa that are transported intercontinental distances with these dust events remain poorly characterized. To provide new insights into these issues, five metagenomes of Saharan dust events occurring in the Caribbean, collected in the summer months of 2002 and 2008, were analyzed. The data revealed that similar microbial composition existed between three out of the five of the distinct dust events and that fungi were a prominent feature of the metagenomes compared to other environmental samples. These results have implications for better understanding of microbial transport through the atmosphere and may implicate that the dust-associated microbial load transiting the Atlantic with Saharan dust is similar from year to year.
Collapse
Affiliation(s)
- Samantha Marie Waters
- Universities Space Research Association, Space Biosciences Division, Ames Research Center, Moffett Field, CA 94035, USA
| | - S K Purdue
- Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - R Armstrong
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| | - Y Detrés
- NOAA Center for Atmospheric Sciences (NCAS), Department of Marine Sciences, University of Puerto Rico-Mayaguez, Puerto Rico 00682, USA
| |
Collapse
|
12
|
Zheng Y, Wang CM, Sakai Y, Abe K, Yokota A, Yabe S. Dictyobacter vulcani sp. nov., belonging to the class Ktedonobacteria, isolated from soil of the Mt Zao volcano. Int J Syst Evol Microbiol 2020; 70:1805-1813. [DOI: 10.1099/ijsem.0.003975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-positive, mesophilic
Ktedonobacteria
strain, W12T, was isolated from soil of the Mt Zao volcano in Miyagi, Japan. Cells were filamentous, non-motile, and grew at 20–37 °C (optimally at 30 °C), at pH 5.0–7.0 (optimally at pH 6.0) and with <2 % (w/v) NaCl on 10-fold diluted Reasoner’s 2A (R2A) medium. Oval-shaped spores were formed on aerial mycelia. Strain W12T hydrolysed microcrystalline cellulose and xylan very weakly, and used d-glucose as its sole carbon source. The major menaquinone was MK-9, and the major cellular fatty acids were C16 : 1 2-OH, iso-C17 : 0, summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c) and anteiso-C17 : 0. Cell-wall sugars were mannose and xylose, and cell-wall amino acids were d-glutamic acid, glycine, l-serine, d-alanine, l-alanine, β-alanine and l-ornithine. Polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. Strain W12T has a genome of 7.42 Mb with 49.7 mol% G+C content. Nine copies of 16S rRNA genes with a maximum dissimilarity of 1.02 % and 13 biosynthetic gene clusters mainly coding for peptide products were predicted in the genome. Phylogenetic analysis based on both 16S rRNA gene and whole genome sequences indicated that strain W12T represents a novel species in the genus
Dictyobacter
. The most closely related
Dictyobacter
type strain was
Dictyobacter alpinus
Uno16T, with 16S rRNA gene sequence similarity and genomic average nucleotide identity of 98.37 % and 80.00 %, respectively. Herein, we propose the name Dictyobacter vulcani sp. nov. for the type strain W12T (=NBRC 113551T=BCRC 81169T) in the bacterial class
Ktedonobacteria
.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Chiung-mei Wang
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Yasuteru Sakai
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co. Ltd, Miyagi 989-1311, Japan
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Keietsu Abe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Akira Yokota
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
| | - Shuhei Yabe
- Department of Microbial Resources, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co. Ltd, Miyagi 989-1311, Japan
| |
Collapse
|
13
|
Dhakar K, Pandey A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020; 8:microorganisms8020257. [PMID: 32075196 PMCID: PMC7074745 DOI: 10.3390/microorganisms8020257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cold-adapted microorganisms represent a large fraction of biomass on Earth because of the dominance of low-temperature environments. Extreme cold environments are mainly dependent on microbial activities because this climate restricts higher plants and animals. Himalaya is one of the most important cold environments on Earth as it shares climatic similarities with the polar regions. It includes a wide range of ecosystems, from temperate to extreme cold, distributed along the higher altitudes. These regions are characterized as stressful environments because of the heavy exposure to harmful rays, scarcity of nutrition, and freezing conditions. The microorganisms that colonize these regions are recognized as cold-tolerant (psychrotolerants) or/and cold-loving (psychrophiles) microorganisms. These microorganisms possess several structural and functional adaptations in order to perform normal life processes under the stressful low-temperature environments. Their biological activities maintain the nutrient flux in the environment and contribute to the global biogeochemical cycles. Limited culture-dependent and culture-independent studies have revealed their diversity in community structure and functional potential. Apart from the ecological importance, these microorganisms have been recognized as source of cold-active enzymes and novel bioactive compounds of industrial and biotechnological importance. Being an important part of the cryosphere, Himalaya needs to be explored at different dimensions related to the life of the inhabiting extremophiles. The present review discusses the distinct facts associated with microbial ecology from the Himalayan cryosphere perspective.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, India
- Correspondence:
| |
Collapse
|
14
|
Kumar V, Thakur V, Ambika, Kumar V, Kumar R, Singh D. Genomic insights revealed physiological diversity and industrial potential for Glaciimonas sp. PCH181 isolated from Satrundi glacier in Pangi-Chamba Himalaya. Genomics 2020; 112:637-646. [DOI: 10.1016/j.ygeno.2019.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
|
15
|
Optimized chromogenic dyes-based identification and quantitative evaluation of bacterial l-asparaginase with low/no glutaminase activity bioprospected from pristine niches in Indian trans-Himalaya. 3 Biotech 2019; 9:275. [PMID: 31245239 DOI: 10.1007/s13205-019-1810-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/13/2019] [Indexed: 02/03/2023] Open
Abstract
Here, we report on the isolation of bacterial isolates from Himalayan niches, which produced extracellular l-asparaginase with low/no glutaminase activity. From the 235 isolates, 85 asparaginase positive bacterial isolates were identified by qualitative screening using optimized chromogenic dyes assay. Optimized concentration of different dyes revealed maximum color visualization in phenol red (0.003%). The diversity analysis of asparaginase positive isolates revealed that Proteobacteria (83%) are the most dominant, followed by Actinobacteria (12%), Firmicutes (3%), and Bacteriodetes (2%). Eleven isolates, which represented seven Pseudomonas species, one species each of the genus Arthrobacter, Janthinobacterium, Lelliottia, and Rahnella, were selected for further studies based on highest zone ratio and novel aspects for l-asparaginase production. Of these, five isolates, namely, Pseudomonas sp. PCH133, Pseudomonas sp. PCH146, Pseudomonas sp. PCH182, Rahnella sp. PCH162, and Arthrobacter sp. PCH138, produced l-asparaginase without glutaminase activity after 55 h of growth with the former isolate showing the highest l-asparaginase activity (1.67 U/ml). Interestingly, this is the first report of l-asparaginase production by members of the genera Janthinobacterium, Rahnella, and Lelliottia.
Collapse
|
16
|
Metagenomic survey of the bacterial communities in the rhizosphere of three Andean tuber crops. Symbiosis 2019. [DOI: 10.1007/s13199-019-00631-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Saleem F, Azim MK, Mustafa A, Kori JA, Hussain MS. Metagenomic profiling of fresh water lakes at different altitudes in Pakistan. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S. Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria. Front Microbiol 2019; 10:893. [PMID: 31080444 PMCID: PMC6497799 DOI: 10.3389/fmicb.2019.00893] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022] Open
Abstract
The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative "megaplasmid," multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.
Collapse
Affiliation(s)
- Yu Zheng
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayana Saitou
- Faculty of Agriculture, Tohoku University, Sendai, Japan
| | - Chiung-Mei Wang
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yohei Minakuchi
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yasuteru Sakai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yokota
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shuhei Yabe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Hazaka Plant Research Center, Kennan Eisei Kogyo Co., Ltd., Miyagi, Japan
| |
Collapse
|
19
|
Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol 2018; 64:798-808. [DOI: 10.1139/cjm-2017-0754] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Pangi–Chamba Himalaya (PCH) region is very pristine, unique, and virgin niche for bioresource exploration. In the current study, for the first time, the bacterial diversity of this region was investigated for potential cellulose degraders. A total of 454 pure bacterial isolates were obtained from diverse sites in the PCH region, and 111 isolates were further selected for 16S rDNA characterization based on ARDRA grouping. The identified bacteria belonged to 28 genera representing four phyla: Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Pseudomonas was most abundant genus, followed by Bacillus, Geobacillus, Arthrobacter, Paenibacillus, and Flavobacterium. In addition, six putative novel bacteria (based on 16S rDNA sequence similarity) and thermophiles from non-thermogenic sites were also reported for the first time. Screening for cellulose degradation ability on carboxymethyl cellulose plates revealed that 70.92% of bacteria were cellulolytic. The current study reports diverse bacterial genera (Arthrobacter, Paenibacillus, Chryseobacterium, Pedobacter, Streptomyces, Agromyces, Flavobacterium, and Pseudomonas) with high capacity for cellulose hydrolysis and cellulolytic functionality at wide pH and temperature not previously reported in the literature. Diverse bacterial genera with high cellulolytic activity in broad pH and temperature range provide opportunity to develop a bioprocess for efficient pretreatment of lignocellulosic biomass, which is currently being investigated.
Collapse
Affiliation(s)
- Vikas Thakur
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR – Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vijay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| |
Collapse
|
20
|
Effect of Freeze-Thaw on a Midtemperate Soil Bacterial Community and the Correlation Network of Its Members. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8412429. [PMID: 30050943 PMCID: PMC6040300 DOI: 10.1155/2018/8412429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022]
Abstract
Freeze-thaw (FT) events can influence soil functions. However, the overall impact of FTs on soil bacterial communities, especially in temperate regions, remains unclear. In this study, soil samples were collected from a midtemperate region in the northeast of China, and three incubation tests were then designed with varied FT amplitudes (i.e., at a freezing temperature of −15, −9, and −3°C, respectively), frequencies of FT cycles (i.e., under one, six, and 15 FT cycles, respectively) and soil water content (SWC) values (i.e., at 10 and 30% SWC, respectively). High-throughput sequencing of 16S rRNA gene amplicons was performed and the functional profile was further predicted based on these data, in addition to examinations of bulk microbial properties. Data analyses suggested that, first of all, the FT amplitude significantly influenced the bulk microbial properties and bacterial community (composition and function); certain taxa showed a nonlinear response to the three amplitudes. Next, compared to a single FTC, multiple FT cycles had only minor effects on the bacterial functional capabilities, although the bulk microbial properties changed significantly after multiple FT cycles. In addition, the bacterial response to FTs was influenced by the SWC, characterized by the significantly different bacterial community structures (composition and function) and the opposite trends of enzyme activities. Finally, RDA plots and a correlation network assembled data from all soil samples across the three tests and suggested that bacterial response trajectories changed because some species were influenced mainly by other species (i.e., biotic environment) during FT processes.
Collapse
|
21
|
Kumar V, Thakur V, Ambika, Kumar S, Singh D. Bioplastic reservoir of diverse bacterial communities revealed along altitude gradient of Pangi-Chamba trans-Himalayan region. FEMS Microbiol Lett 2018; 365:5037922. [DOI: 10.1093/femsle/fny144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Vikas Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Ambika
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh -176 061, India
| |
Collapse
|
22
|
Repinc SK, Šket R, Zavec D, Mikuš KV, Fermoso FG, Stres B. Full-scale agricultural biogas plant metal content and process parameters in relation to bacterial and archaeal microbial communities over 2.5 year span. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:566-574. [PMID: 29477353 DOI: 10.1016/j.jenvman.2018.02.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
A start-up of 4 MW agricultural biogas plant in Vučja vas, Slovenia, was monitored from 2011 to 2014. The start-up was carried out in 3 weeks with the intake of biomass from three operating full-scale 1-2 MW donor agricultural biogas plants. The samples were taken from donor digesters and from two serial digesters during the start-up over the course of 2.5 years. Bacterial and Archaeal microbial communities progressively diverged from the composition of donor digesters during the start-up phase. The rate of change of Bacterial community decreased exponentially over the first 2.5 years as dynamics within the first 70 days was comparable to that of the next 1.5 years, whereas approximately constant rate was observed for Archaea. Despite rearrangements, the microbial communities remained functionally stable and produced biogas throughout the whole 2.5 years of observation. All systems parameters measured were ordered according to their Kernel density (Gaussian function) ranging from the most dispersed (substrate categories used as cosubstrates, quantities of each cosubstrate, substate dry and volatile matter, process parameters) towards progressively least dispersed (trace metal and ion profiles, aromatic-polyphenolic compounds, biogas plant functional output (energy)). No deficiency was detected in trace metal content as the distribution of metals and elements fluctuated within the suggested limits for biogas over 2.5 year observation. In contrast to the recorded process variables, Bacterial and Archaeal microbial communities exhibited directed changes oriented in time. Variation partitioning showed that a large fraction of variability in the Bacterial and Archaeal microbial communities (55% and 61%, respectively) remained unexplained despite numerous measured variables (n = 44) and stable biogas production. Our results show that the observed reorganization of microbial communities was not directly associated with impact on the full-scale biogas reactor performance. Novel parameters need to be determined to elucidate the variables directly associated with the reorganization of microbial communities and those relevant for sustained function such as the more in-depth interaction between TSOC, trace metal profiles, aromatic-polyphenolic compounds and ionic strength (e.g. electrical conductivity).
Collapse
Affiliation(s)
- Sabina Kolbl Repinc
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, Jamova 2, Ljubljana, Slovenia
| | - Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Domen Zavec
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | - Katarina Vogel Mikuš
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia
| | | | - Blaž Stres
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, Jamova 2, Ljubljana, Slovenia; Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Sharma S, Chatterjee S. Psychrotolerant Sphingobacterium kitahiroshimense LT-2 Isolated from Dhundi Glacier, Himachal Pradesh: Origin Prediction and Future Application. Indian J Microbiol 2018; 58:234-238. [PMID: 29651184 DOI: 10.1007/s12088-018-0712-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/01/2018] [Indexed: 11/27/2022] Open
Abstract
A psychrotolerant bacterium, isolated from Dhundi Glacier, Himachal Pradesh (India) was identified as Sphingobacterium kitahiroshimense LT-2 on the basis of biochemical, molecular and phylogenetic analysis. Sphingobacterium kitahiroshimense was first reported from Japan and was isolated from the city of Kitahiroshima, Hokkaido, Japan. In this report we have discussed about the origin of our strain and predicted that air masses and dust associated microbial cells transportation phenomena may be applicable for the origin of this species in this region. Enzymes and secondary metabolites secreted by the genus Sphingobacterium have enormous potentiality regarding their biotechnological application. Preliminary study of our strain based on metabolic profiling through HPLC showed many new metabolites were secreted by the bacterium when grown in presence of different sugar medium at 28 °C. As far as our knowledge this is the first report about Sphingobacterium species isolated from this region. This preliminary finding will help to draw an idea about the bacterial population in this Himalayan Glaciers (in HP) as well as biotechnological application of this strain can be explored further.
Collapse
Affiliation(s)
- Shivika Sharma
- 1Bioremediation and Metabolomics Research Group, Department of Chemistry and Chemical Sciences, School of Physical and Material Sciences, Central University of Himachal Pradesh, TAB- Shahpur, Kangra, Himachal Pradesh 176206 India
- 2Department of Environmental Sciences, School of Earth and Environmental Sciences, Central University of Himachal Pradesh, TAB- Shahpur, Kangra, Himachal Pradesh 176206 India
| | - Subhankar Chatterjee
- 1Bioremediation and Metabolomics Research Group, Department of Chemistry and Chemical Sciences, School of Physical and Material Sciences, Central University of Himachal Pradesh, TAB- Shahpur, Kangra, Himachal Pradesh 176206 India
- 2Department of Environmental Sciences, School of Earth and Environmental Sciences, Central University of Himachal Pradesh, TAB- Shahpur, Kangra, Himachal Pradesh 176206 India
| |
Collapse
|
24
|
Zhou J, Jiang X, Wei D, Zhao B, Ma M, Chen S, Cao F, Shen D, Guan D, Li J. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci Rep 2017; 7:3267. [PMID: 28607352 PMCID: PMC5468298 DOI: 10.1038/s41598-017-03539-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023] Open
Abstract
Long-term use of inorganic nitrogen (N) fertilization has greatly influenced the bacterial community in black soil of northeast China. It is unclear how N affects the bacterial community in two successive crop seasons in the same field for this soil type. We sampled soils from a long-term fertilizer experimental field in Harbin city with three N gradients. We applied sequencing and quantitative PCR targeting at the 16S rRNA gene to examine shifts in bacterial communities and test consistent shifts and driving-factors bacterial responses to elevated N additions. N addition decreased soil pH and bacterial 16S rDNA copy numbers, and increased soil N and crop yield. N addition consistently decreased bacterial diversity and altered bacterial community composition, by increasing the relative abundance of Proteobacteria, and decreasing that of Acidobacteria and Nitrospirae in both seasons. Consistent changes in the abundant classes and genera, and the structure of the bacterial communities across both seasons were observed. Our results suggest that increases in N inputs had consistent effects on the richness, diversity and composition of soil bacterial communities across the crop seasons in two continuous years, and the N addition and the subsequent edaphic changes were important factors in shaping bacterial community structures.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.,College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China. .,Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China.
| | - Dan Wei
- The Institute of Soil Fertility and Environmental Sources, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, PR China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China
| | - Sanfeng Chen
- College of Biological Sciences, China Agricultural University, Beijing, 100094, PR China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.,Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China
| | - Delong Shen
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China. .,Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, PR China.
| |
Collapse
|
25
|
Šket R, Treichel N, Debevec T, Eiken O, Mekjavic I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevoršek Z, Stres B. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study. Front Physiol 2017; 8:250. [PMID: 28522975 PMCID: PMC5416748 DOI: 10.3389/fphys.2017.00250] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the developed symptoms of low magnitude obesity-related syndromes was primarily driven by the onset of inactivity (lack of exercise in NBR) that were exacerbated by systemic hypoxia (HBR) and significantly alleviated by exercise, despite hypoxia (HAmb). Butyrate producing community in colon exhibited apparent resilience toward short-term modifications in host exercise or hypoxia. Progressive constipation (decreased intestinal motility) and increased local inflammation marker suggest that changes in microbial colonization and metabolism were taking place at the location of small intestine.
Collapse
Affiliation(s)
- Robert Šket
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Nicole Treichel
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental HealthNeuherberg, Germany
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan InstituteLjubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of TechnologyStockholm, Sweden
| | - Igor Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan InstituteLjubljana, Slovenia
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - German Research Center for Environmental HealthNeuherberg, Germany
| | - Marius Vital
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Jenna Chandler
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State UniversityEast Lansing, MI, USA
| | - Boštjan Murovec
- Laboratory for Artificial Sight and Automation, Faculty of Electrical Sciences, University of LjubljanaLjubljana, Slovenia
| | - Zala Prevoršek
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Blaž Stres
- Department of Animal Science, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia.,Center for Clinical Neurophysiology, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| |
Collapse
|
26
|
Bouhajja E, Agathos SN, George IF. Metagenomics: Probing pollutant fate in natural and engineered ecosystems. Biotechnol Adv 2016; 34:1413-1426. [PMID: 27825829 DOI: 10.1016/j.biotechadv.2016.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/01/2016] [Accepted: 10/12/2016] [Indexed: 12/23/2022]
Abstract
Polluted environments are a reservoir of microbial species able to degrade or to convert pollutants to harmless compounds. The proper management of microbial resources requires a comprehensive characterization of their genetic pool to assess the fate of contaminants and increase the efficiency of bioremediation processes. Metagenomics offers appropriate tools to describe microbial communities in their whole complexity without lab-based cultivation of individual strains. After a decade of use of metagenomics to study microbiomes, the scientific community has made significant progress in this field. In this review, we survey the main steps of metagenomics applied to environments contaminated with organic compounds or heavy metals. We emphasize technical solutions proposed to overcome encountered obstacles. We then compare two metagenomic approaches, i.e. library-based targeted metagenomics and direct sequencing of metagenomes. In the former, environmental DNA is cloned inside a host, and then clones of interest are selected based on (i) their expression of biodegradative functions or (ii) sequence homology with probes and primers designed from relevant, already known sequences. The highest score for the discovery of novel genes and degradation pathways has been achieved so far by functional screening of large clone libraries. On the other hand, direct sequencing of metagenomes without a cloning step has been more often applied to polluted environments for characterization of the taxonomic and functional composition of microbial communities and their dynamics. In this case, the analysis has focused on 16S rRNA genes and marker genes of biodegradation. Advances in next generation sequencing and in bioinformatic analysis of sequencing data have opened up new opportunities for assessing the potential of biodegradation by microbes, but annotation of collected genes is still hampered by a limited number of available reference sequences in databases. Although metagenomics is still facing technical and computational challenges, our review of the recent literature highlights its value as an aid to efficiently monitor the clean-up of contaminated environments and develop successful strategies to mitigate the impact of pollutants on ecosystems.
Collapse
Affiliation(s)
- Emna Bouhajja
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium
| | - Spiros N Agathos
- Laboratoire de Génie Biologique, Earth and Life Institute, Université Catholique de Louvain, Place Croix du Sud 2, boite L7.05.19, 1348 Louvain-la-Neuve, Belgium; School of Life Sciences and Biotechnology, Yachay Tech University, 100119 San Miguel de Urcuquí, Ecuador
| | - Isabelle F George
- Université Libre de Bruxelles, Laboratoire d'Ecologie des Systèmes Aquatiques, Campus de la Plaine CP 221, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
27
|
Yang GL, Hou SG, Le Baoge R, Li ZG, Xu H, Liu YP, Du WT, Liu YQ. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains. Sci Rep 2016; 6:36548. [PMID: 27811967 PMCID: PMC5109912 DOI: 10.1038/srep36548] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/18/2016] [Indexed: 11/09/2022] Open
Abstract
A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.
Collapse
Affiliation(s)
- Guang Li Yang
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Gui Hou
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ri Le Baoge
- Department of Life Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhi Guo Li
- Department of Environment and Planning, Shangqiu Normal University, Shangqiu 476000, China
| | - Hao Xu
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Ya Ping Liu
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wen Tao Du
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Qin Liu
- Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Angel R, Conrad R, Dvorsky M, Kopecky M, Kotilínek M, Hiiesalu I, Schweingruber F, Doležal J. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants. MICROBIAL ECOLOGY 2016; 72:394-406. [PMID: 27245598 PMCID: PMC4937074 DOI: 10.1007/s00248-016-0779-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/03/2016] [Indexed: 05/30/2023]
Abstract
Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.
Collapse
Affiliation(s)
- Roey Angel
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany.
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, Austria.
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg, Germany
| | - Miroslav Dvorsky
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Martin Kopecky
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Milan Kotilínek
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic
| | - Inga Hiiesalu
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
| | - Fritz Schweingruber
- Swiss Federal Research Institute WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Jiří Doležal
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Na Zlate stoce 1, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
29
|
Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. THE ISME JOURNAL 2016; 10:1625-41. [PMID: 26771926 PMCID: PMC4918445 DOI: 10.1038/ismej.2015.238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/09/2015] [Accepted: 11/08/2015] [Indexed: 11/09/2022]
Abstract
Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.
Collapse
Affiliation(s)
- Thomas Rime
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Martin Hartmann
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
30
|
Debnath R, Yadav A, Gupta VK, Singh BP, Handique PJ, Saikia R. Rhizospheric Bacterial Community of Endemic Rhododendron arboreum Sm. Ssp. delavayi along Eastern Himalayan Slope in Tawang. FRONTIERS IN PLANT SCIENCE 2016; 7:1345. [PMID: 27642287 PMCID: PMC5009118 DOI: 10.3389/fpls.2016.01345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/22/2016] [Indexed: 05/15/2023]
Abstract
Information on rhizosphere microbiome of endemic plants from high mountain ecosystems against those of cultivated plantations is inadequate. Comparative bacterial profiles of endemic medicinal plant Rhododendron arboreum Sm. subsp. delavayi rhizosphere pertaining to four altitudinal zonation Pankang Thang (PTSO), Nagula, Y-junction and Bum La (Indo-China border; in triplicates each) along cold adapted Eastern slope of Himalayan Tawang region, India is described here. Significant differences in DGGE profile between below ground bulk vs. rhizospheric community profile associated with the plant was identified. Tagged 16S amplicon sequencing from PTSO (3912 m) to Bum La (4509 m), revealed that soil pH, total nitrogen (TN), organic matter (OM) significantly influenced the underlying bacterial community structure at different altitudes. The relative abundance of Acidobacteria was inversely related to pH, as opposed to TN which was positively correlated to Acidobacteria and Proteobacteria abundance. TN was also the significant predictor for less abundant taxonomic groups Chloroflexi, Gemmatimonadetes, and Nitrospirae. Bum La soil harbored less bacterial diversity compared to other sites at lower altitudes. The most abundant phyla at 3% genetic difference were Acidobacteria, Actinobacteria, and Proteobacteria amongst others. Analysis of similarity indicated greater similarity within lower altitudinal than higher altitudinal group (ANOSIM, R = 0.287, p = 0.02). Constraining the ordination with the edaphic factor explained 83.13% of variation. Unique phylotypes of Bradyrhizobium and uncultured Rhizobiales were found in significant proportions at the four regions. With over 1% relative abundance Actinobacteria (42.6%), Acidobacteria (24.02%), Proteobacteria (16.00%), AD3 (9.23%), WPS-2 (5.1%), and Chloroflexi (1.48%) dominated the core microbiome.
Collapse
Affiliation(s)
- Rajal Debnath
- Microbial Biotechnology Group, Biological Science and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and TechnologyJorhat, India
| | - Archana Yadav
- Microbial Biotechnology Group, Biological Science and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and TechnologyJorhat, India
| | - Vijai K. Gupta
- Molecular Glycobiotechnology Group, Discipline of Biochemistry, National University of Ireland GalwayGalway, Ireland
| | - Bhim P. Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram UniversityAizawl, India
| | | | - Ratul Saikia
- Microbial Biotechnology Group, Biological Science and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and TechnologyJorhat, India
- *Correspondence: Ratul Saikia,
| |
Collapse
|
31
|
Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic. Arch Microbiol 2015; 197:851-60. [PMID: 26055487 DOI: 10.1007/s00203-015-1121-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Drass is the coldest inhabited place in India and the second coldest, inhabited place in the world, after Siberia. Using the 16SrDNA amplicon pyrosequencing, bacterial diversity patterns were cataloged across the Drass cold desert. In order to identify the ecotype abundance across cold desert environment, bacterial diversity patterns of Drass were further compared with the bacterial diversity of two other cold deserts, i.e., Antarctic and Arctic. Acidobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Gemmatimonadetes were among the highly abundant taxonomic groups present across all the three cold deserts and were designated as the core phyla. However, Firmicutes, Nitrospirae, Armatimonadetes (former candidate division OP10), Planctomycetes, TM7, Chloroflexi, Deinococcus-Thermus, Tenericutes and candidate phyla WS3 were identified as rare phyla in Drass, Antarctic and Arctic samples. Differential abundance patterns were also computed across all the three samples, i.e., Acidobacteria (32.1 %) were dominant in Drass and Firmicutes (52.9 ± 17.6 %) and Proteobacteria (42 ± 1.3 %) were dominant in Antarctic and Arctic reference samples, respectively. Alpha diversity values Shannon's (H) and Simpson's (1-D) diversity indices were highest for Antarctic samples, whereas richness estimators (ACE and Chao1) were maximum for Drass soil suggesting greater species richness in bacterial communities in Drass than the Antarctic and Arctic samples.
Collapse
|
32
|
Sheik CS, Stevenson EI, Den Uyl PA, Arendt CA, Aciego SM, Dick GJ. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time. Front Microbiol 2015; 6:495. [PMID: 26042114 PMCID: PMC4438255 DOI: 10.3389/fmicb.2015.00495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical, and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG) in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream, and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria, and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA ; Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA
| | - Emily I Stevenson
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Paul A Den Uyl
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Carli A Arendt
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Sarah M Aciego
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA ; Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA ; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
33
|
Lynch RC, Darcy JL, Kane NC, Nemergut DR, Schmidt SK. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Front Microbiol 2014; 5:698. [PMID: 25566214 PMCID: PMC4269115 DOI: 10.3389/fmicb.2014.00698] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 11/25/2014] [Indexed: 11/26/2022] Open
Abstract
Previous surveys of very dry Atacama Desert mineral soils have consistently revealed sparse communities of non-photosynthetic microbes. The functional nature of these microorganisms remains debatable given the harshness of the environment and low levels of biomass and diversity. The aim of this study was to gain an understanding of the phylogenetic community structure and metabolic potential of a low-diversity mineral soil metagenome that was collected from a high-elevation Atacama Desert volcano debris field. We pooled DNA extractions from over 15 g of volcanic material, and using whole genome shotgun sequencing, observed only 75-78 total 16S rRNA gene OTUs3%. The phylogenetic structure of this community is significantly under dispersed, with actinobacterial lineages making up 97.9-98.6% of the 16S rRNA genes, suggesting a high degree of environmental selection. Due to this low diversity and uneven community composition, we assembled and analyzed the metabolic pathways of the most abundant genome, a Pseudonocardia sp. (56-72% of total 16S genes). Our assembly and binning efforts yielded almost 4.9 Mb of Pseudonocardia sp. contigs, which accounts for an estimated 99.3% of its non-repetitive genomic content. This genome contains a limited array of carbohydrate catabolic pathways, but encodes for CO2 fixation via the Calvin cycle. The genome also encodes complete pathways for the catabolism of various trace gases (H2, CO and several organic C1 compounds) and the assimilation of ammonia and nitrate. We compared genomic content among related Pseudonocardia spp. and estimated rates of non-synonymous and synonymous nucleic acid substitutions between protein coding homologs. Collectively, these comparative analyses suggest that the community structure and various functional genes have undergone strong selection in the nutrient poor desert mineral soils and high-elevation atmospheric conditions.
Collapse
Affiliation(s)
- Ryan C. Lynch
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - John L. Darcy
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Nolan C. Kane
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| | - Diana R. Nemergut
- Environmental Studies Program, University of ColoradoBoulder, CO, USA
- Institute of Arctic and Alpine Research, University of ColoradoBoulder, CO, USA
- Department of Biology, Duke UniversityDurham, NC, USA
| | - Steve K. Schmidt
- Department of Ecology and Evolutionary Biology, University of ColoradoBoulder, CO, USA
| |
Collapse
|
34
|
Kim HM, Jung JY, Yergeau E, Hwang CY, Hinzman L, Nam S, Hong SG, Kim OS, Chun J, Lee YK. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska. FEMS Microbiol Ecol 2014; 89:465-75. [PMID: 24893754 PMCID: PMC4143960 DOI: 10.1111/1574-6941.12362] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/26/2014] [Accepted: 05/26/2014] [Indexed: 01/23/2023] Open
Abstract
The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0–10 cm to 10–20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen ( and ). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.
Collapse
Affiliation(s)
- Hye Min Kim
- Korea Polar Research Institute, KIOST, Incheon, Korea; School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|