1
|
Abstract
Apolipoprotein A-I binding protein (AIBP) is a recently identified innate anti-inflammatory factor. Here, we show that AIBP inhibited HIV replication by targeting lipid rafts and reducing virus-cell fusion. Importantly, AIBP selectively reduced levels of rafts on cells stimulated by an inflammatory stimulus or treated with extracellular vesicles containing HIV-1 protein Nef without affecting rafts on nonactivated cells. Accordingly, fusion of monocyte-derived macrophages with HIV was sensitive to AIBP only in the presence of Nef. Silencing of endogenous AIBP significantly upregulated HIV-1 replication. Interestingly, HIV-1 replication in cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, was not inhibited by AIBP. These results suggest that AIBP is an innate anti-HIV factor that targets virus-cell fusion. Apolipoprotein A-I binding protein (AIBP) is a protein involved in regulation of lipid rafts and cholesterol efflux. AIBP has been suggested to function as a protective factor under several sets of pathological conditions associated with increased abundance of lipid rafts, such as atherosclerosis and acute lung injury. Here, we show that exogenously added AIBP reduced the abundance of lipid rafts and inhibited HIV replication in vitro as well as in HIV-infected humanized mice, whereas knockdown of endogenous AIBP increased HIV replication. Endogenous AIBP was much more abundant in activated T cells than in monocyte-derived macrophages (MDMs), and exogenous AIBP was much less effective in T cells than in MDMs. AIBP inhibited virus-cell fusion, specifically targeting cells with lipid rafts mobilized by cell activation or Nef-containing exosomes. MDM-HIV fusion was sensitive to AIBP only in the presence of Nef provided by the virus or exosomes. Peripheral blood mononuclear cells from donors with the HLA-B*35 genotype, associated with rapid progression of HIV disease, bound less AIBP than cells from donors with other HLA genotypes and were not protected by AIBP from rapid HIV-1 replication. These results provide the first evidence for the role of Nef exosomes in regulating HIV-cell fusion by modifying lipid rafts and suggest that AIBP is an innate factor that restricts HIV replication by targeting lipid rafts.
Collapse
|
2
|
Danielsen EM, Hansen GH. Probing paracellular - versus transcellular tissue barrier permeability using a gut mucosal explant culture system. Tissue Barriers 2019; 7:1601955. [PMID: 30999787 DOI: 10.1080/21688370.2019.1601955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Intestinal permeation enhancers (PEs), i.e. agents improving oral delivery of therapeutic drugs with poor bioavailability, may typically act by two principally different mechanisms: to increase either transcellular -or paracellular passage across the epithelium. With the aim to define these different modes of action in a small intestinal mucosal explant system, the transcellular-acting PE sodium dodecyl sulfate (SDS) was compared to the paracellular-acting PE ethylenediaminetetraacetic acid (EDTA), using several fluorescent polar - and lipophilic probes. Here, SDS rendered the enterocyte cell membranes leaky for the relatively small polar tracers Lucifer yellow and a 3 kD Texas red-conjugated dextran, but most conspicuously SDS blocked constitutive endocytosis from the brush border. In contrast, the main action of EDTA was to increase paracellular passage across the epithelium of both polar probes, including 10 - and 70 kDa dextrans and lipophilic probes, visualized by distinct stripy lateral staining of enterocytes and/or accumulation in the lamina propria. In addition, EDTA caused a loss of epithelial cell polarity by opening tight junctions for diffusion of domain-specific basolateral/apical cell membrane protein markers into the opposite domains. By transmission electron microscopy, SDS caused the formation of vacuoles and vesicle-like structures at the lateral cell membranes. In contrast, EDTA led to a bulging of the whole enterocyte apex, resulting in a "cobblestone" appearance of the epithelium, probably caused by an extreme contraction of the perijunctional actomyosin ring. We conclude that the mucosal explant system is a convenient model for predicting transcellular/paracellular modes of action of novel prospective PEs.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, the Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
3
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
4
|
Danielsen EM, Hansen GH. Intestinal surfactant permeation enhancers and their interaction with enterocyte cell membranes in a mucosal explant system. Tissue Barriers 2018; 5:e1361900. [PMID: 28837408 DOI: 10.1080/21688370.2017.1361900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular passage can be achieved by cell membrane permeabilization and/or by endocytic uptake and subsequent transcytosis. One broad class of PEs is surfactants which act by inserting into the cell membrane, thereby perturbing its integrity, but little is known about how the dynamics of the membrane are affected. In the present work, the interaction of the surfactants lauroyl-L-carnitine, 1-decanoyl-rac-glycerol, and nonaethylene glycol monododecyl ether with the intestinal epithelium was studied in organ cultured pig jejunal mucosal explants. As expected, at 2 mM, these agents rapidly permeabilized the enterocytes for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border microvilli. Such a membrane fusogenic activity could also explain the observed formation of vesicle-like structures and large vacuoles along the lateral cell membranes of the enterocytes induced by the PEs. We conclude that the surfactant action of the PEs selected in this study not only permeabilized the enterocytes, but profoundly changed the dynamic properties of their constituent cell membranes.
Collapse
Affiliation(s)
- E Michael Danielsen
- a Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Gert H Hansen
- a Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
5
|
Glycol chitosan: A stabilizer of lipid rafts in the intestinal brush border. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:360-367. [PMID: 28034633 DOI: 10.1016/j.bbamem.2016.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 01/09/2023]
Abstract
Chitosan is a polycationic polysaccharide consisting of β-(1-4)-linked glucosamine units and due to its mucoadhesive properties, chemical derivatives of chitosan are potential candidates as enhancers for transmucosal drug delivery. Recently, glycol chitosan (GC), a soluble derivative of chitosan, was shown to bind specifically to lipid raft domains in model bilayers. The small intestinal brush border membrane has a unique lipid raft composition with high amounts of glycolipids cross-linked by lectins, and the aim of the present work therefore was to study the interaction of FITC-conjugated GC (FITC-GC) with the small intestinal epithelium. Using organ culture of pig jejunal mucosal explants as a model system, we observed widespread binding of luminal FITC-GC to the brush border. Only little uptake via constitutive endocytosis into apical early endosomes occurred, unless endocytosis was induced by the simultaneous presence of cholera toxin B subunit (CTB). Biochemically, GC bound to microvillus membrane vesicles and caused a change in the density profile of detergent resistant membranes (DRMs). Collectively, the results showed that FITC-GC binds passively to lipid raft domains in the brush border, i.e. without inducing endocytosis like CTB. Instead, and unlike CTB, FITC-GC seems to exert a stabilizing, detergent-protective effect on the lipid raft organization of the brush border.
Collapse
|
6
|
IgG trafficking in the adult pig small intestine: one- or bidirectional transfer across the enterocyte brush border? Histochem Cell Biol 2016; 147:399-411. [PMID: 27646280 DOI: 10.1007/s00418-016-1492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Immunoglobulin G (IgG) transfer in opposite directions across the small intestinal brush border serves different purposes in early life and in adulthood. In the neonate, maternal IgG is taken up from the gut lumen into the blood, conferring passive immunity to the offspring, whereas in the adult immunoglobulins, including IgG made by plasma cells in the lamina propria, are secreted via the brush border to the lumen as part of the mucosal defense. Here, IgG has been proposed to perform a luminal immune surveillance which eventually includes a reuptake through the brush border as pathogen-containing immune complexes. In the present work, we studied luminal uptake of FITC-conjugated and gold-conjugated IgG in cultured pig jejunal mucosal explants. After 1 h, binding to the brush border was seen in upper crypts and lower parts of the villi. However, no endocytotic uptake into EEA-1-positive compartments was detected, neither at neutral nor acidic pH, despite an ongoing constitutive endocytosis from the brush border, visualized by the polar tracer CF594. The 40-kDa neonatal Fc receptor, FcRn, was present in the microvillus fraction, but noteworthy, a 37 kDa band, most likely a proteolytic cleavage product, bound IgG in a pH-dependent manner more efficiently than did the full-length FcRn. In conclusion, our work does not support the theory that bidirectional transfer of IgG across the intestinal brush border is part of the luminal immune surveillance in the adult.
Collapse
|
7
|
Danielsen EM, Christiansen N, Danielsen EM. Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion. Tissue Cell 2015; 48:1-9. [PMID: 26763205 DOI: 10.1016/j.tice.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022]
Abstract
Pasteurella multocida toxin (PMT), a virulence factor of the pathogenic Gram-negative bacterium P. multocida, is a 146 kDa protein belonging to the A-B class of toxins. Once inside a target cell, the A domain deamidates the α-subunit of heterotrimeric G-proteins, thereby activating downstream signaling cascades. However, little is known about how PMT selects and enters its cellular targets. We therefore studied PMT binding and uptake in porcine cultured intestinal mucosal explants to identify susceptible cells in the epithelium and underlying lamina propria. In comparison with Vibrio cholera B-subunit, a well-known enterotoxin taken up by receptor-mediated endocytosis, PMT binding to the epithelial brush border was scarce, and no uptake into enterocytes was detected by 2h, implying that none of the glycolipids in the brush border are a functional receptor for PMT. However, in the lamina propria, PMT distinctly accumulated in the secretory granules of mast cells. This also occurred at 4 °C, ruling out endocytosis, but suggestive of uptake via pores that connect the granules to the cell surface. Mast cell granules are known to secrete their contents by a "kiss-and-run" mechanism, and we propose that PMT may exploit this secretory mechanism to gain entry into this particular cell type.
Collapse
Affiliation(s)
- Elisabeth M Danielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Nina Christiansen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - E Michael Danielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
8
|
Michael Danielsen E, Hansen GH. Small molecule pinocytosis and clathrin-dependent endocytosis at the intestinal brush border: Two separate pathways into the enterocyte. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:233-43. [PMID: 26615917 DOI: 10.1016/j.bbamem.2015.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 12/30/2022]
Abstract
Pinocytosis at the small intestinal brush border was studied in postweaned porcine cultured mucosal explants, using the fluorescent polar probes Alexa hydrazide (AH, MW 570), Texas red dextran (TRD, MW ~ 3000), and Cascade blue dextran (CBD, MW ~ 10,000). Within 1 h, AH appeared in a string of subapical punctae in enterocytes, indicative of an ongoing constitutive pinocytosis. By comparison, TRD was taken up less efficiently into the same compartment, and no intracellular labeling of CBD was detectable, indicating that only small molecules are pinocytosed from the postweaned gut lumen. AH remained in the terminal web region in EEA-1-positive endosomes (“TWEEs”) for at least 2 h, implying that the pinocytic uptake does not proceed towards a transcytic pathway. Like AH, cholera toxin B subunit (CTB) was readily internalized, but the two probes appeared in completely non-overlapping subapical compartments, indicating the existence of two different uptake mechanisms operating simultaneously at the brush border. CTB is internalized by clathrin-dependent receptor mediated endocytosis, but surprisingly the toxin also caused a rapid disappearance from the apical cell surface of two major brush border enzymes, alkaline phosphatase and aminopeptidase N, demonstrating the disruptive effect of this pathway. By immunofluorescence, caveolin-1 was hardly detectable in enterocytes, arguing against a caveolae-mediated uptake of AH, whereas the pinocytosis/phagocytosis inhibitors dimethyl amiloride and cytochalasin D both arrested AH uptake. We propose that the constitutive pinocytic mechanism visualized by AH contributes to maintenance of membrane homeostasis and to enrich the contents of lipid raft constituents at the brush border.
Collapse
Affiliation(s)
- E Michael Danielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - Gert H Hansen
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Danielsen EM. Probing endocytosis from the enterocyte brush border using fluorescent lipophilic dyes: lipid sorting at the apical cell surface. Histochem Cell Biol 2014; 143:545-56. [DOI: 10.1007/s00418-014-1302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 12/31/2022]
|
10
|
Danielsen EM, Hansen GH, Severinsen MC. Okadaic acid: A rapid inducer of lamellar bodies in small intestinal enterocytes. Toxicon 2014; 88:77-87. [DOI: 10.1016/j.toxicon.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/02/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|