1
|
Resnik-Docampo M, Cunningham KM, Ruvalcaba SM, Choi C, Sauer V, Jones DL. Neuroglian regulates Drosophila intestinal stem cell proliferation through enhanced signaling via the epidermal growth factor receptor. Stem Cell Reports 2021; 16:1584-1597. [PMID: 33961791 PMCID: PMC8190597 DOI: 10.1016/j.stemcr.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022] Open
Abstract
The Drosophila intestine is an excellent system for elucidating mechanisms regulating stem cell behavior. Here we show that the septate junction (SJ) protein Neuroglian (Nrg) is expressed in intestinal stem cells (ISCs) and enteroblasts (EBs) within the fly intestine. SJs are not present between ISCs and EBs, suggesting Nrg plays a different role in this tissue. We reveal that Nrg is required for ISC proliferation in young flies, and depletion of Nrg from ISCs and EBs suppresses increased ISC proliferation in aged flies. Conversely, overexpression of Nrg in ISC and EBs promotes ISC proliferation, leading to an increase in cells expressing ISC/EB markers; in addition, we observe an increase in epidermal growth factor receptor (Egfr) activation. Genetic epistasis experiments reveal that Nrg acts upstream of Egfr to regulate ISC proliferation. As Nrg function is highly conserved in mammalian systems, our work characterizing the role of Nrg in the intestine has implications for the treatment of intestinal disorders that arise due to altered ISC behavior.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen M Cunningham
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Mateo Ruvalcaba
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Charles Choi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Vivien Sauer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Hemizygous mutations in L1CAM in two unrelated male probands with childhood onset psychosis. Psychiatr Genet 2021; 30:73-82. [PMID: 32404617 DOI: 10.1097/ypg.0000000000000253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To identify genes underlying childhood onset psychosis. METHODS Patients with onset of psychosis at age 13 or younger were identified from clinics across England, and they and their parents were exome sequenced and analysed for possible highly penetrant genetic contributors. RESULTS We report two male childhood onset psychosis patients of different ancestries carrying hemizygous very rare possibly damaging missense variants (p.Arg846His and p.Pro145Ser) in the L1CAM gene. L1CAM is an X-linked Mendelian disease gene in which both missense and loss of function variants are associated with syndromic forms of intellectual disability and developmental disorder. CONCLUSIONS This is the first study reporting a possible extension of the phenotype of L1CAM variant carriers to childhood onset psychosis. The family history and presence of other significant rare genetic variants in the patients suggest that there may be genetic interactions modulating the presentation.
Collapse
|
3
|
Sonnenberg SB, Rauer J, Göhr C, Gorinski N, Schade SK, Abdel Galil D, Naumenko V, Zeug A, Bischoff SC, Ponimaskin E, Guseva D. The 5-HT 4 receptor interacts with adhesion molecule L1 to modulate morphogenic signaling in neurons. J Cell Sci 2021; 134:jcs.249193. [PMID: 33536244 DOI: 10.1242/jcs.249193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/19/2021] [Indexed: 11/20/2022] Open
Abstract
Morphological remodeling of dendritic spines is critically involved in memory formation and depends on adhesion molecules. Serotonin receptors are also implicated in this remodeling, though the underlying mechanisms remain enigmatic. Here, we uncovered a signaling pathway involving the adhesion molecule L1CAM (L1) and serotonin receptor 5-HT4 (5-HT4R, encoded by HTR4). Using Förster resonance energy transfer (FRET) imaging, we demonstrated a physical interaction between 5-HT4R and L1, and found that 5-HT4R-L1 heterodimerization facilitates mitogen-activated protein kinase activation in a Gs-dependent manner. We also found that 5-HT4R-L1-mediated signaling is involved in G13-dependent modulation of cofilin-1 activity. In hippocampal neurons in vitro, the 5-HT4R-L1 pathway triggers maturation of dendritic spines. Thus, the 5-HT4R-L1 signaling module represents a previously unknown molecular pathway regulating synaptic remodeling.
Collapse
Affiliation(s)
| | - Jonah Rauer
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Christoph Göhr
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Nataliya Gorinski
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Sophie Kristin Schade
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Dalia Abdel Galil
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Vladimir Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - André Zeug
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany
| | - Stephan C Bischoff
- Department of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany .,Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russian Federation
| | - Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover 30625, Germany .,Department of Nutritional Medicine, University of Hohenheim, Stuttgart 70599, Germany
| |
Collapse
|
4
|
Kakad PP, Penserga T, Davis BP, Henry B, Boerner J, Riso A, Pielage J, Godenschwege TA. An ankyrin-binding motif regulates nuclear levels of L1-type neuroglian and expression of the oncogene Myc in Drosophila neurons. J Biol Chem 2018; 293:17442-17453. [PMID: 30257867 DOI: 10.1074/jbc.ra118.004240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is well-known for its importance in nervous system development and cancer progression. In addition to its role as a plasma membrane protein in cytoskeletal organization, recent in vitro studies have revealed that both transmembrane and cytosolic fragments of proteolytically cleaved vertebrate L1CAM translocate to the nucleus. In vitro studies indicate that nuclear L1CAM affects genes with functions in DNA post-replication repair, cell cycle control, and cell migration and differentiation, but its in vivo role and how its nuclear levels are regulated is less well-understood. Here, we report that mutations in the conserved ankyrin-binding domain affect nuclear levels of the sole Drosophila homolog neuroglian (Nrg) and that it also has a noncanonical role in regulating transcript levels of the oncogene Myc in the adult nervous system. We further show that altered nuclear levels of Nrg correlate with altered transcript levels of Myc in neurons, similar to what has been reported for human glioblastoma stem cells. However, whereas previous in vitro studies suggest that increased nuclear levels of L1CAM promote tumor cell survival, we found here that elevated levels of nuclear Nrg in neurons are associated with increased sensitivity to oxidative stress and reduced life span of adult animals. We therefore conclude that these findings are of potential relevance to the management of neurodegenerative diseases associated with oxidative stress and cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Riso
- the Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458 and
| | - Jan Pielage
- the Department of Biology, Division of Zoology/Neurobiology, University of Kaiserslautern, Kaiserslautern 67653, Germany
| | | |
Collapse
|
5
|
Aflorei ED, Klapholz B, Chen C, Radian S, Dragu AN, Moderau N, Prodromou C, Ribeiro PS, Stanewsky R, Korbonits M. In vivo bioassay to test the pathogenicity of missense human AIP variants. J Med Genet 2018; 55:522-529. [PMID: 29632148 PMCID: PMC6073908 DOI: 10.1136/jmedgenet-2017-105191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
Background Heterozygous germline loss-of-function mutations in the aryl hydrocarbon receptor-interacting protein gene (AIP) predispose to childhood-onset pituitary tumours. The pathogenicity of missense variants may pose difficulties for genetic counselling and family follow-up. Objective To develop an in vivo system to test the pathogenicity of human AIP mutations using the fruit fly Drosophila melanogaster. Methods We generated a null mutant of the Drosophila AIP orthologue, CG1847, a gene located on the Xchromosome, which displayed lethality at larval stage in hemizygous knockout male mutants (CG1847exon1_3). We tested human missense variants of ‘unknown significance’, with ‘pathogenic’ variants as positive control. Results We found that human AIP can functionally substitute for CG1847, as heterologous overexpression of human AIP rescued male CG1847exon1_3 lethality, while a truncated version of AIP did not restore viability. Flies harbouring patient-specific missense AIP variants (p.C238Y, p.I13N, p.W73R and p.G272D) failed to rescue CG1847exon1_3 mutants, while seven variants (p.R16H, p.Q164R, p.E293V, p.A299V, p.R304Q, p.R314W and p.R325Q) showed rescue, supporting a non-pathogenic role for these latter variants corresponding to prevalence and clinical data. Conclusion Our in vivo model represents a valuable tool to characterise putative disease-causing human AIP variants and assist the genetic counselling and management of families carrying AIP variants.
Collapse
Affiliation(s)
- Elena Daniela Aflorei
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Chenghao Chen
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Serban Radian
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Neluta Dragu
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK.,Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK
| | - Nina Moderau
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Paulo S Ribeiro
- Protein Dynamics and Cell Signalling Laboratory, Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ralf Stanewsky
- Department of Cell and Developmental Biology, Division of Biosciences, Faculty of Life Sciences, University College London, London, UK.,Institute of Neuro- and Behavioural Biology, Westfälische Wilhelms University, Münster, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Sears JC, Broadie K. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling. Front Mol Neurosci 2018; 10:440. [PMID: 29375303 PMCID: PMC5770364 DOI: 10.3389/fnmol.2017.00440] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.
Collapse
Affiliation(s)
- James C. Sears
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Kennedy T, Broadie K. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons. J Neurosci 2017; 37:9844-9858. [PMID: 28887386 PMCID: PMC5637114 DOI: 10.1523/jneurosci.0723-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 01/29/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function.SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural circuit, we discovered that neurons lacking FMRP take up dramatically more current-injected small dye. After examining many neuronal properties, we determined that this dye defect is cytoplasmic and occurs due to a highly elevated dye iontophoresis rate. We also report several new factors affecting neuron dye uptake. Understanding how FMRP regulates iontophoresis should reveal new molecular factors underpinning FXS dysfunction.
Collapse
Affiliation(s)
| | - Kendal Broadie
- Department of Biological Sciences,
- Department of Cell and Developmental Biology, and
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
8
|
Kudumala SR, Penserga T, Börner J, Slipchuk O, Kakad P, Lee LH, Qureshi A, Pielage J, Godenschwege TA. Lissencephaly-1 dependent axonal retrograde transport of L1-type CAM Neuroglian in the adult drosophila central nervous system. PLoS One 2017; 12:e0183605. [PMID: 28837701 PMCID: PMC5570280 DOI: 10.1371/journal.pone.0183605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Here, we established the Drosophila Giant Fiber neurons (GF) as a novel model to study axonal trafficking of L1-type Cell Adhesion Molecules (CAM) Neuroglian (Nrg) in the adult CNS using live imaging. L1-type CAMs are well known for their importance in nervous system development and we previously demonstrated a role for Nrg in GF synapse formation. However, in the adult they have also been implicated in synaptic plasticity and regeneration. In addition, to its canonical role in organizing cytoskeletal elements at the plasma membrane, vertebrate L1CAM has also been shown to regulate transcription indirectly as well as directly via its import to the nucleus. Here, we intend to determine if the sole L1CAM homolog Nrg is retrogradley transported and thus has the potential to relay signals from the synapse to the soma. Live imaging of c-terminally tagged Nrg in the GF revealed that there are at least two populations of retrograde vesicles that differ in speed, and either move with consistent or varying velocity. To determine if endogenous Nrg is retrogradely transported, we inhibited two key regulators, Lissencephaly-1 (Lis1) and Dynactin, of the retrograde motor protein Dynein. Similar to previously described phenotypes for expression of poisonous subunits of Dynactin, we found that developmental knock down of Lis1 disrupted GF synaptic terminal growth and that Nrg vesicles accumulated inside the stunted terminals in both mutant backgrounds. Moreover, post mitotic Lis1 knock down in mature GFs by either RNAi or Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) induced mutations, resulted in normal length terminals with fully functional GF synapses which also exhibited severe accumulation of endogenous Nrg vesicles. Thus, our data suggests that accumulation of Nrg vesicles is due to failure of retrograde transport rather than a failure of terminal development. Together with the finding that post mitotic knock down of Lis1 also disrupted retrograde transport of tagged Nrg vesicles in GF axons, it demonstrates that endogenous Nrg protein is transported from the synapse to the soma in the adult central nervous system in a Lis1-dependent manner.
Collapse
Affiliation(s)
- Sirisha R. Kudumala
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Tyrone Penserga
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jana Börner
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Olesya Slipchuk
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Priyanka Kakad
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - LaTasha H. Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Aater Qureshi
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Jan Pielage
- Department of Biology, Division of Zoology/Neurobiology, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Tanja A. Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci 2017; 40:295-308. [PMID: 28359630 DOI: 10.1016/j.tins.2017.03.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/05/2023]
Abstract
Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders.
Collapse
|
10
|
Towards a molecular characterization of autism spectrum disorders: an exome sequencing and systems approach. Transl Psychiatry 2014; 4:e394. [PMID: 24893065 PMCID: PMC4080319 DOI: 10.1038/tp.2014.38] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
The hypothetical 'AXAS' gene network model that profiles functional patterns of heterogeneous DNA variants overrepresented in autism spectrum disorder (ASD), X-linked intellectual disability, attention deficit and hyperactivity disorder and schizophrenia was used in this current study to analyze whole exome sequencing data from an Australian ASD cohort. An optimized DNA variant filtering pipeline was used to identify loss-of-function DNA variations. Inherited variants from parents with a broader autism phenotype and de novo variants were found to be significantly associated with ASD. Gene ontology analysis revealed that putative rare causal variants cluster in key neurobiological processes and are overrepresented in functions involving neuronal development, signal transduction and synapse development including the neurexin trans-synaptic complex. We also show how a complex gene network model can be used to fine map combinations of inherited and de novo variations in families with ASD that converge in the L1CAM pathway. Our results provide an important step forward in the molecular characterization of ASD with potential for developing a tool to analyze the pathogenesis of individual affected families.
Collapse
|