1
|
Martinez CM, Mazon RMM, Stiassny MLJ. Suction Feeding Turned on Its Head: A Functional Novelty Facilitates Lower Jaw Protrusion. Integr Comp Biol 2024; 64:729-741. [PMID: 38964850 DOI: 10.1093/icb/icae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Functional novelties play important roles in creating new ways for organisms to access resources. In fishes, jaw protrusion has been attributed to the massive diversity of suction-based feeding systems, facilitating the dominant mode of prey capture in this group. Nearly all fishes that feed by suction use upper jaw protrusion, achieved by rotation of the mandible at its base, which then transmits forward motion to independently mobile upper jaw bones. In this study, by contrast, we explore an unusual form of lower jaw protrusion in the freshwater invertivore, Nannocharax fasciatus, enabled by a novel intramandibular joint (IMJ). We combine morphological, kinematic, and biomechanical data to show that the added mobility created by the IMJ influences the pattern of suction-based prey capture movements and contributes to lower jaw protrusion (increasing it by 25%, based on biomechanical modeling). Interestingly, the upper jaw bones are fused in N. fasciatus and rotate about a single fixed joint, like the lower jaws of most other suction feeding fishes. We suggest that this vertical inversion of the jaw protrusion mechanism for ventrally directed suction-feeding on benthic prey is a likely exaptation, as the IMJ is used for biting in related taxa. This work highlights the ability of novelties to facilitate ecological specialization by enabling new functional capabilities.
Collapse
Affiliation(s)
- Christopher M Martinez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Rizelle Mae M Mazon
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, 200 Central Park West, New York, NY 10024, USA
| |
Collapse
|
2
|
Mejia E, Reis RE. Molecular and morphometric data provide evidence of intraspecific variation in shape and pigmentation pattern in Otocinclus cocama (Siluriformes: Loricariidae) across major river drainages. JOURNAL OF FISH BIOLOGY 2024; 104:1042-1053. [PMID: 38149310 DOI: 10.1111/jfb.15639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]
Abstract
Otocinclus cocama, a uniquely colored species of the loricariid catfish genus Otocinclus described solely from the type locality in the lower Ucayali River in northern Peru, is reported occurring in the Tigre River, a tributary to the Marañón River that drains a different section of the Andean Mountain range in the western Amazon. Both populations differ in the number of dark bars spanning the flanks of the body, and we investigated whether these morphotypes constitute distinct species. The body shapes of populations from the Tigre and Ucayali rivers were compared using geometric morphometrics. Although principal component analysis detected a broad overlap between populations, multivariate analysis of variance and linear driscriminat analysis revealed a subtle differentiation between the populations of the two hydrographic basins. Average body shape of the Ucayali River population tend to be slightly higher than that of the Tigre River, with the caudal peduncle stretched vertically in the Ucayali population. Multivariate regression of shape and centroid size revealed an allometric effect of 10.7% (p < 0.001), suggesting that the variation between Tigre and Ucayali populations was purely shape variation. Molecular data of coI, cytb, nd2, and 16S mitochondrial genes indicated a nucleotide diversity range from 0.001 to 0.003, and haplotypic diversity range from 0.600 ± 0.11 to 0.79 ± 0.07. The median-joining haplotype network for the concatenated matrix exhibited two divergent haplogroups related to the geographic area and separated by <10 mutational steps. The molecular species delimitation methods based on distance (automatic barcode gap discovery and assemble species by automatic partitioning) recovered two molecular lineages evolving independently, being one of the lineages formed by individuals from both populations. Tree-based methods (generalized mixed Yule coalescent and Bayesian implementation of the Poisson tree process) recovered similar topologies and supported single lineage recognition. Methods of molecular delimitation of species disclosed the high similarity between the two populations of Otocinclus cocama, further supported by the presence of old haplotypes common to both groups which could indicate that the populations still maintain gene flow. Although the morphological data reveal a subtle variation between both river basins, the molecular data suggest a weak population structuration based on hydrographic areas, but not different species lineages, therefore Otocinclus cocama is composed of a single lineage with two distinct morphotypes.
Collapse
Affiliation(s)
- Eduardo Mejia
- Laboratory of Vertebrate Systematics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Vertebrados, Programa de Pós-graduação em Ciências Biológicas (Zoologia), Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro, Brazil
| | - Roberto E Reis
- Laboratory of Vertebrate Systematics, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Simanovsky SA, Medvedev DA, Tefera F, Golubtsov AS. Divergent karyotypes in five genera of the African endemic fish family Distichodontidae (Cithariniformes, Osteichthyes). COMPARATIVE CYTOGENETICS 2023; 17:251-262. [PMID: 37953853 PMCID: PMC10636602 DOI: 10.3897/compcytogen.17.107744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
The African family Distichodontidae comprises 109 species in 16 genera. Up-to-date cytogenetic information was available for the only distichodontid species Distichodusaffinis Günther, 1873. Here we report chromosome number and morphology in: Distichodusengycephalus Günther, 1864 (2n = 52, FN = 104), Ichthyborusbesse (Joannis, 1835) (2n = 46, FN = 92), Nannocharaxniloticus (Joannis, 1835) (2n = 54, FN = 106) and three taxa, Nannaethiopsbleheri Géry et Zarske, 2003, Nannaethiops sp., and Neolebiasunifasciatus Steindachner, 1894, that exhibit the same karyotypes (2n = 50, FN = 98). To confirm the Nannaethiops Günther, 1872 and Neolebias Steindachner, 1894 species identification, mt-DNA sequences of the two markers (COI and 16S rRNA) were obtained from karyotyped specimens and compared with the relevant sequences accessible from GenBank. The great prevalence of biarmed chromosomes (the karyotypes of most species contain exclusively biarmed chromosomes) is a distinctive characteristic of Distichodontidae and Cithariniformes as a whole.
Collapse
Affiliation(s)
- Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Dmitry A. Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, Sebeta, P.O. Box 64, EthiopiaNational Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander S. Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071 RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
4
|
Katemo Manda B, Snoeks J, Decru E, Brecko J, Vreven EJWMN. Revision of Nannocharax luapulae Boulenger, 1915 (Characiformes: Distichodontidae) from the Upper Congo basin: Evidence for a species pair. JOURNAL OF FISH BIOLOGY 2023; 103:557-573. [PMID: 37026429 DOI: 10.1111/jfb.15400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
For many decades, Nannocharax luapulae has been considered to be widespread in the southern part of the Upper Congo basin. However, meristic, morphometric and cytochrome c oxidase subunit I (COI) barcoding evidence revealed that its geographical distribution is restricted to the Luapula-Moero basin. The populations of the Upper Lualaba are assigned to a new species, N. chochamandai. This new species, though highly similar to N. luapulae, can readily be distinguished from it by its lower number of lateral line scales, 41-46 (vs. 49-55), its pectoral fin reaching the pelvic-fin insertion (vs. not reaching the pelvic-fin insertion) and its pelvic fin reaching the base of the anal fin (vs. not reaching the base of the anal fin). Specimens of N. chochamandai display thickened pads on the first three pelvic-fin rays that exhibit intraspecific variation in development, which appears to be related to the flow-strength of the river in which these Nannocharax specimens occur. Nannocharax luapulae is redescribed and an updated identification key to the Nannocharax species of the Congo basin sensu lato is provided as well. Some fish conservation issues related to N. luapulae and N. chochamandai are also highlighted.
Collapse
Affiliation(s)
- Bauchet Katemo Manda
- Unité de Recherche en Biodiversité et Exploitation durable des Zones Humides, Faculty of Agricultural Sciences, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Jos Snoeks
- Ichthyology, Section Vertebrates, Royal Museum for Central Africa, Tervuren, Belgium
- Biology Department, Fish Diversity and Conservation, KU Leuven, Leuven, Belgium
| | - Eva Decru
- Biology Department, Fish Diversity and Conservation, KU Leuven, Leuven, Belgium
| | - Jonathan Brecko
- Biological Collection and Data Management, Section Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Scientific Service of Heritage, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Emmanuel J W M N Vreven
- Ichthyology, Section Vertebrates, Royal Museum for Central Africa, Tervuren, Belgium
- Biology Department, Fish Diversity and Conservation, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Parmentier L, Vila R, Lukhtanov V. Integrative analysis reveals cryptic speciation linked to habitat differentiation within Albanian populations of the anomalous blues (Lepidoptera, Lycaenidae, Polyommatus Latreille, 1804). COMPARATIVE CYTOGENETICS 2022; 16:211-242. [PMID: 36760486 PMCID: PMC9836409 DOI: 10.3897/compcytogen.v16.i4.90558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/19/2022] [Indexed: 06/18/2023]
Abstract
The Balkan Peninsula is one of the greatest hotspots for biodiversity in Europe. While the region has been investigated thoroughly, some parts remain understudied and may still harbour undiscovered diversity, even in well-studied organisms such as Lepidoptera. Here we investigated the group of the so-called anomalous blue butterflies, also known as 'brown complex' of the subgenus Agrodiaetus Hübner, 1822 including the taxa of the entire Polyommatusaroaniensis (Brown, 1976) species complex. This species complex is distributed in the southern part of the Balkan Peninsula and known to be represented by three closely related allopatric species, differentiated by their chromosome numbers (n) and mitochondrial (mt) DNA. These are P.aroaniensis sensu stricto (Southern Greece, Peloponnese, n=47-48; mt haplogroup aroa1), P.timfristos Lukhtanov, Vishnevskaya et Shapoval, 2016 (Central Greece, Attika, n=38, aroa2) and P.orphicus Kolev, 2005 (North-Eastern Greece, Southern Bulgaria, n=41-42, orph1). Based on an analysis of chromosomal, molecular and morphological markers, we demonstrate that a fourth taxon of this species complex exists in Albania. This taxon possesses the mt haplogroup aroa3, which is the most differentiated within the entire P.aroaniensis species complex, and the karyotype (n=42-43), which differs by one fixed chromosome fission from P.orphicus. The Albanian taxon seems to be ecologically specialised (habitat on dark-coloured, ophiolitic substrate soils) and differs in colouration (wing reflectance) from the others taxa of the P.aroaniensis species group. Based on the evidence here presented and following the current view of the taxonomy of the group, we propose considering the Albanian taxon as a new species, here described as Polyommatuslurae sp. nov. At the contact zone between the new species and P.orphicus, in addition to typical ones, we detected specimens with haplogroup orph2, karyotype n=43 and intermediate morphology, which seem to represent P.lurae × P.orphicus hybrids.
Collapse
Affiliation(s)
- Laurian Parmentier
- Department of Plants & Crops, Lab Agrozoology, Ghent University, Coupure Links 653, 9000, Ghent, BelgiumGhent UniversityGhentBelgium
- Flemish Entomological Society, Workgroup Butterflies, Moerbeekstraat 29, 9870, Zulte, BelgiumFlemish Entomological Society, Workgroup ButterfliesZulteBelgium
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003, Barcelona, SpainCSIC-Universitat Pompeu FabraBarcelonaSpain
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, RussiaZoological Institute of Russian Academy of SciencesSaint PetersburgRussia
| |
Collapse
|
6
|
Melo BF, de Pinna MCC, Rapp Py-Daniel LH, Zuanon J, Conde-Saldaña CC, Roxo FF, Oliveira C. Paleogene emergence and evolutionary history of the Amazonian fossorial fish genus Tarumania (Teleostei: Tarumaniidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.924860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tarumania walkerae is a rare fossorial freshwater fish species from the lower Rio Negro, Central Amazonia, composing the monotypic and recently described family Tarumaniidae. The family has been proposed as the sister group of Erythrinidae by both morphological and molecular studies despite distinct arrangements of the superfamily Erythrinoidea within Characiformes. Recent phylogenomic studies and time-calibrated analyses of characoid fishes have not included specimens of Tarumania in their analyses. We obtained genomic data for T. walkerae and constructed a phylogeny based on 1795 nuclear loci with 488,434 characters of ultraconserved elements (UCEs) for 108 terminals including specimens of all 22 characiform families. The phylogeny confirms the placement of Tarumaniidae as sister to Erythrinidae but differs from the morphological hypothesis in the placement of the two latter families as sister to the clade with Hemiodontidae, Cynodontidae, Serrasalmidae, Parodontidae, Anostomidae, Prochilodontidae, Chilodontidae, and Curimatidae. The phylogeny calibrated with five characoid fossils indicates that Erythrinoidea diverged from their relatives during the Late Cretaceous circa 90 Ma (108–72 Ma), and that Tarumania diverged from the most recent common ancestor of Erythrinidae during the Paleogene circa 48 Ma (66–32 Ma). The occurrence of the erythrinoid-like †Tiupampichthys in the Late Cretaceous–Paleogene formations of the El Molino Basin of Bolivia supports our hypothesis for the emergence of the modern Erythrinidae and Tarumaniidae during the Paleogene.
Collapse
|
7
|
Simanovsky SA, Medvedev DA, Tefera F, Golubtsov AS. First cytogenetic data on Afrotropical lutefishes (Citharinidae) in the light of karyotype evolution in Characiformes. COMPARATIVE CYTOGENETICS 2022; 16:143-150. [PMID: 36761810 PMCID: PMC9849050 DOI: 10.3897/compcytogen.v16.i2.79133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 06/18/2023]
Abstract
The Afrotropical lutefish family Citharinidae (Citharinoidei, Characiformes) comprises three genera with eight species in total. Although Citharinidae have been studied in terms of taxonomy and systematics, no cytogenetic information was available for any representative of the family. Furthermore, only one species out of 116 in Citharinoidei (Distichodusaffinis Günther, 1873) has been studied cytogenetically. Here, we report the karyotypes of Citharinuscitharus (Geoffroy St. Hilaire, 1809) from West Africa and Citharinuslatus Müller et Troschel, 1844 from Northeast Africa. The former has the diploid chromosome number 2n = 40 and the fundamental number FN = 80, while the latter has 2n = 44 and FN = 88. Hence, these karyotypes consist exclusively of bi-armed chromosomes. Such karyotypes were previously found in D.affinis and in many lineages of Neotropical species of another suborder of Characiformes, Characoidei. In contrast, the karyotypes dominated by uni-armed elements are typical for a number of phylogenetically basal lineages of Afrotropical and Neotropical Characoidei. We discuss the importance of our data on Citharinidae for the understanding of the karyotype evolution within the order Characiformes.
Collapse
Affiliation(s)
- Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Dmitry A. Medvedev
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| | - Fekadu Tefera
- National Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural Research, P.O. Box 64, Sebeta, EthiopiaNational Fishery and Aquatic Life Research Center, Ethiopian Institute of Agricultural ResearchSebetaEthiopia
| | - Alexander S. Golubtsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninskij prosp., 119071 Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
8
|
Martinez CM, Tovar AJ, Wainwright PC. A novel intramandibular joint facilitates feeding versatility in the sixbar distichodus. J Exp Biol 2022; 225:273910. [PMID: 34989395 DOI: 10.1242/jeb.243621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
The intramandibular joint (IMJ) is a secondary point of movement between the two major bones of the lower jaw. It has independently evolved in several groups of teleost fishes, each time representing a departure from related species in which the mandible functions as a single structure rotating only at the quadratomandibular joint (QMJ). In this study, we examine kinematic consequences of the IMJ novelty in a freshwater characiform fish, the herbivorous Distichodus sexfasciatus. We combine traditional kinematic approaches with trajectory-based analysis of motion shapes to compare patterns of prey capture movements during substrate biting, the fish's native feeding mode, and suction of prey from the water column. We find that the IMJ enables complex jaw motions and contributes to feeding versatility by allowing the fish to modulate its kinematics in response to different prey and to various scenarios of jaw-substrate interaction. Implications of the IMJ include context-dependent movements of lower versus upper jaws, enhanced lower jaw protrusion, and the ability to maintain contact between the teeth and substrate throughout the jaw closing or biting phase of the motion. The IMJ in D. sexfasciatus appears to be an adaptation for removing attached benthic prey, consistent with its function in other groups that have evolved the joint. This study builds on our understanding of the role of the IMJ during prey capture and provides insights into broader implications of the innovative trait.
Collapse
Affiliation(s)
- Christopher M Martinez
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.,Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Angelly J Tovar
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Peter C Wainwright
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Cucalón RV, Tan M. Divergence times of the Rhoadsia clade (Characiformes: Characidae). NEOTROPICAL ICHTHYOLOGY 2022. [DOI: 10.1590/1982-0224-2022-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract The family Characidae is the most diverse group of fishes in the Neotropics with challenging systematics. The three genera Carlana, Parastremma, and Rhoadsia, formerly considered the subfamily Rhoadsiinae, are now included in the subfamily Stethaprioninae. Previous phylogenetic analyses did not include all genera of Rhoadsiinae, specifically Parastremma. Here, we estimated the phylogenetic relationships and divergence times of the genera of Rhoadsiinae (the Rhoadsia clade) relative to the most representative genera of the Characidae. We used six molecular markers from the mitochondrial and nuclear genome to estimate the phylogeny and divergence times. We confirmed the monophyly of the Rhoadsia clade. Furthermore, we estimated that the Central American genus Carlana and the western Colombian genus Parastremma diverged approximately 13 Mya (95% HPD 8.36–18.11), consistent with the early-closure estimates of the Isthmus of Panama (~15 Mya). The genus Rhoadsia, endemic to Western Ecuador and Northern Peru, was estimated to originate at around 20 Mya (95% HPD 14.35–25.43), consistent with the Andean uplift (~20 Mya).
Collapse
Affiliation(s)
| | - Milton Tan
- University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
10
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Santos RP, Melo BF, Yazbeck GM, Oliveira RS, Hilário HO, Prosdocimi F, Carvalho DC. Diversification of
Prochilodus
in the eastern Brazilian Shield: Evidence from complete mitochondrial genomes (Teleostei, Prochilodontidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Rosiane P. Santos
- Laboratório de Genética da Conservação Programa de Pós‐Graduação em Biologia dos Vertebrados Pontifícia Universidade Católica de Minas Gerais Belo Horizonte Brazil
- Laboratório de Recursos Genéticos Programa de Pós‐Graduação em Ecologia Universidade Federal de São João del‐Rei São João del‐Rei Brazil
| | - Bruno F. Melo
- Departamento de Biologia Estrutural e Funcional Instituto de Biociências Universidade Estadual Paulista Botucatu Brazil
| | - Gabriel M. Yazbeck
- Laboratório de Recursos Genéticos Programa de Pós‐Graduação em Ecologia Universidade Federal de São João del‐Rei São João del‐Rei Brazil
| | - Rafael S. Oliveira
- Programa de Pós‐Graduação em Ciência da Computação Universidade Federal de São João del‐Rei São João del‐Rei Brazil
| | - Heron O. Hilário
- Laboratório de Genética da Conservação Programa de Pós‐Graduação em Biologia dos Vertebrados Pontifícia Universidade Católica de Minas Gerais Belo Horizonte Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade Instituto de Bioquímica Médica Leopoldo de MeisUniversidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Daniel C. Carvalho
- Laboratório de Genética da Conservação Programa de Pós‐Graduação em Biologia dos Vertebrados Pontifícia Universidade Católica de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
12
|
Londoño-Burbano A, Reis RE. A combined molecular and morphological phylogeny of the Loricariinae (Siluriformes: Loricariidae), with emphasis on the Harttiini and Farlowellini. PLoS One 2021; 16:e0247747. [PMID: 33720930 PMCID: PMC7959404 DOI: 10.1371/journal.pone.0247747] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
We present a combined molecular and morphological phylogenetic analysis of the Loricariinae, with emphasis on the Harttiini (Cteniloricaria, Harttia, and Harttiella) and Farlowellini (Aposturisoma, Farlowella, Lamontichthys, Pterosturisoma, Sturisoma, and Sturisomatichthys). Character sampling comprised seven molecular markers (the mitochondrial Cytb, nd2, 12S and 16S, and the nuclear MyH6, RAG1 and RAG2) and 196 morphological characters. A total of 1,059 specimens, and 159 tissue samples were analized, representing 100 species. A Bayesian Inference analysis was performed using the concatenated data matrix, which is comprised of 6,819 characters. The Loricariinae were found to comprise the tribes (Hartiini (Loricariini, Farlowellini)), the latter two elevated from subtribes. A Maximum Parsimony analysis was also performed using the same data matrix in order to reveal phenotypical synapomorphies to diagnose each clade. Two MP trees were found with a length of 14,704 steps, consistency index of 0.29 and retention index of 0.61, which were summarized in a strict consensus tree. Harttiini includes (Harttiella (Cteniloricaria, Harttia), and Farlowellini includes (Lamontichthys (Pterosturisoma (Sturisoma (Sturisomatichthys, Farlowella)))). Aposturisoma was recovered nested within Farlowella and is synonymyzed to the latter. Sturisoma was corroborated as strictly cis-Andean, while Sturisomatichthys encompasses, besides the valid species already included in the genus, the trans-Andean species once belonging to Sturisoma sensu lato. Identification keys and phylogenetic diagnoses of family-group taxa and genera of both the Harttiini and the Farlowellini are provided.
Collapse
Affiliation(s)
- Alejandro Londoño-Burbano
- Museu Nacional, Universidade Federal do Rio de Janeiro, Departamento de Vertebrados - Setor de Ictiologia, São Cristóvão, Rio de Janeiro, RJ, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Laboratório de Sistemática de Vertebrados, Porto Alegre, RS, Brazil
| | - Roberto E. Reis
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Laboratório de Sistemática de Vertebrados, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Exposure to pH 3.5 water has no effect on the gills of the Amazonian tambaqui (Colossoma macropomum). J Comp Physiol B 2021; 191:493-502. [DOI: 10.1007/s00360-021-01349-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
|
14
|
Braganca PHN, Smith TG, Vreven EJWMN, Chakona A. Integrative taxonomy reveals hidden diversity in the southern African darters genus Nannocharax Günther 1867 (Characiformes: Distichodontidae). JOURNAL OF FISH BIOLOGY 2020; 97:1713-1723. [PMID: 32914416 DOI: 10.1111/jfb.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The present study explored the diversity of Nannocharax within southern Africa by implementing three species delimitation methods for a data set consisting of 37 mitochondrial cytochrome oxidase subunit I sequences. Two unilocus coalescent methods, the General Mixed Yule Coalescent (GMYC) and the Bayesian implementation of the Poisson Tree Processes (bPTP), and a genetic distance method, the Automatic Barcode Gap Discovery (ABGD), were applied. Both GMYC and bPTP delimited the same operational taxonomic units (OTUs), revealing a higher diversity for the genus in the region than previously recognised, whereas the ABGD failed to delimit the same candidate species. All methods delimited two species groups, and these are supported based on colouration patterning and morphology; the Nannocharax multifasciatus and the Nannocharax macropterus species groups and the delimited OTUs were assigned to each. Two putative new species were identified, Nannocharax cf. lineostriatus "Okavango" from the Okavango River in Angola and N. cf. lineostriatus "Kwanza" from the Kwanza River system in Angola. The distribution of Nannocharax dageti was confirmed for the Upper Zambezi and extended to the Okavango system, and an identification key for the southern Africa Nannocharax species is provided.
Collapse
Affiliation(s)
- Pedro H N Braganca
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
| | - Timothy G Smith
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
| | - Emmanuel J W M N Vreven
- Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Tervuren, Belgium
- KU Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Leuven, Belgium
| | - Albert Chakona
- NRF-South African Institute for Aquatic Biodiversity, Makhanda (Grahamstown), South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda (Grahamstown), South Africa
| |
Collapse
|
15
|
Arroyave J, Denton JSS, Stiassny MLJ. Pattern and timing of diversification in the African freshwater fish genus Distichodus (Characiformes: Distichodontidae). BMC Evol Biol 2020; 20:48. [PMID: 32336263 PMCID: PMC7184684 DOI: 10.1186/s12862-020-01615-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Distichodus is a clade of tropical freshwater fishes currently comprising 25 named species distributed continent-wide throughout the Nilo-Sudan and most Sub-Saharan drainages. This study investigates the phylogenetic relationships, timing of diversification, and biogeographic history of the genus from a taxonomically comprehensive mutilocus dataset analyzed using Maximum Likelihood and Bayesian methods of phylogenetic inference, coalescence-based species-tree estimation, divergence time estimation, and inference of geographic range evolution. RESULTS Analyses of comparative DNA sequence data in a phylogenetic context reveal the existence of two major clades of similar species-level diversity and provide support for the monophyletic status of most sampled species. Biogeographic reconstruction on a time-scaled phylogeny suggest that the origins of the genus date back to the late Oligocene and that current geographic distributions are the result of a Congo Basin origin followed by dispersal and range expansion into adjacent ichthyofaunal provinces at different times during the evolutionary history of the group. CONCLUSIONS We present the most comprehensive phylogenetic, chronological, and biogeographic treatment yet conducted for the genus. The few instances of species paraphyly (D. teugelsi, D. fasciolatus) revealed by the resulting phylogenies are likely a consequence of post-divergence introgressive hybridization and/or incomplete lineage sorting due to recent speciation. Historical biogeographic findings are both in agreement and conflict with previous studies of other continent-wide African freshwater fish genera, suggesting a complex scenario for the assemblage of Africa's continental ichthyofaunal communities.
Collapse
Affiliation(s)
- Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Zona Deportiva 53, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, Mexico
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| | - John S. S. Denton
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
- Florida Museum of Natural History, University of Florida, Dickinson Hall, 1659 Museum Road, Gainesville, FL 32611 USA
| | - Melanie L. J. Stiassny
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 USA
| |
Collapse
|
16
|
Lujan NK, Armbruster JW, Werneke DC, Teixeira TF, Lovejoy NR. Phylogeny and biogeography of the Brazilian–Guiana Shield endemic Corymbophanes clade of armoured catfishes (Loricariidae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zlz090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Numerous rivers, interrupted by large waterfalls and extensive rapids, drain the geologically ancient Guiana Shield Highlands. We describe a new armoured catfish genus and two new species endemic to the upper Ireng and Kuribrong rivers, respective tributaries of the Amazon and Essequibo basins in western Guiana. Corymbophanes ameliae sp. nov. is distinguished by having vermiculations on the abdomen, bands on the caudal fin, the anal fin i,5 and narrow caudal peduncle. Yaluwak primus gen. & sp. nov. is distinguished by having evertible cheek odontodes, a plated snout, a tall caudal peduncle and absence of adipose fin and iris operculum. We present a new molecular phylogenetic analysis inclusive of these and several related genera that suggests that the Corymbophanes clade (Araichthys, Corymbophanes, Cryptancistrus, Guianancistrus, Hopliancistrus and Yaluwak) originated in the Guiana Shield with secondary dispersal to the Brazilian Shield. Within the Guiana Shield, relationships among Corymbophanes and Yaluwak are consistent with geodispersal between drainages via headwater capture, although an uplift-mediated relictual distribution cannot be ruled out. ND2 haplotype structure among C. ameliae populations suggests that ichthyofaunal diversity on the Guiana Shield escarpment is shaped not only by inter-, but also intrafluvial barriers to gene flow.
Collapse
Affiliation(s)
- Nathan K Lujan
- Department of Ichthyology, American Museum of Natural History, New York, NY USA
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - David C Werneke
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Túlio Franco Teixeira
- Programa de Pós-graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Museu de Zoologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Abstract
Abstract
The Afrotropics house a diverse freshwater ichthyofauna with > 3000 species, almost all of which are endemic. Recent progress in dated phylogenetics and palaeontology of several groups of Afrotropical freshwater fishes (AFFs) has allowed the testing of palaeoecology- and palaeogeography-based hypotheses explaining their early presence in Africa. Seven hypotheses were tested for 37 most-inclusive monophyletic groups of AFFs. Results indicated that ten lineages originated from direct, but asynchronous, marine-to-freshwater shifts. These lineages contribute < 2% to the current AFF species richness. Eleven lineages colonized the Afrotropics from the Orient after the Afro-Arabian plate collided with Eurasia in the early Oligocene. These lineages contribute ~20% to the total diversity. There are seven sister relationships between Afrotropical and Neotropical taxa. For only three of them (4% of the species diversity), the continental drift vicariance hypothesis was not rejected. Distributions of the other four younger trans-Atlantic lineages are better explained by post-drifting long-distance dispersal. In those cases, I discuss the possibility of dispersal through the Northern Hemisphere as an alternative to direct trans-Atlantic dispersal. The origins of ten AFF lineages, including the most species-rich Pseudocrenilabrinae (> 1100 species), are not yet established with confidence.
Collapse
Affiliation(s)
- Sébastien Lavoué
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
18
|
Betancur-R R, Arcila D, Vari RP, Hughes LC, Oliveira C, Sabaj MH, Ortí G. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes. Evolution 2018; 73:329-345. [PMID: 30426469 DOI: 10.1111/evo.13649] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
Abstract
Phylogenomic studies using genome-wide datasets are quickly becoming the state of the art for systematics and comparative studies, but in many cases, they result in strongly supported incongruent results. The extent to which this conflict is real depends on different sources of error potentially affecting big datasets (assembly, stochastic, and systematic error). Here, we apply a recently developed methodology (GGI or gene genealogy interrogation) and data curation to new and published datasets with more than 1000 exons, 500 ultraconserved element (UCE) loci, and transcriptomic sequences that support incongruent hypotheses. The contentious non-monophyly of the order Characiformes proposed by two studies is shown to be a spurious outcome induced by sample contamination in the transcriptomic dataset and an ambiguous result due to poor taxonomic sampling in the UCE dataset. By exploring the effects of number of taxa and loci used for analysis, we show that the power of GGI to discriminate among competing hypotheses is diminished by limited taxonomic sampling, but not equally sensitive to gene sampling. Taken together, our results reinforce the notion that merely increasing the number of genetic loci for a few representative taxa is not a robust strategy to advance phylogenetic knowledge of recalcitrant groups. We leverage the expanded exon capture dataset generated here for Characiformes (206 species in 23 out of 24 families) to produce a comprehensive phylogeny and a revised classification of the order.
Collapse
Affiliation(s)
- Ricardo Betancur-R
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico, 00931.,Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019.,Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013
| | - Dahiana Arcila
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019.,Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, 73019
| | - Richard P Vari
- Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma, 73019
| | - Lily C Hughes
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Department of Biological Sciences, The George Washington University, Washington, DC, 20052
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Mark H Sabaj
- Department of Ichthyology, The Academy of Natural Sciences of Drexel University, Philadelphia, Pennsylvania, 19103
| | - Guillermo Ortí
- Department of Vertebrate Zoology, National Museum of Natural History Smithsonian Institution, Washington, DC, 20013.,Department of Biological Sciences, The George Washington University, Washington, DC, 20052
| |
Collapse
|
19
|
Lujan NK, Armbruster JW, Lovejoy NR. Multilocus phylogeny, diagnosis and generic revision of the Guiana Shield endemic suckermouth armoured catfish tribe Lithoxini (Loricariidae: Hypostominae). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Nathan K Lujan
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, Canada
| | | | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Chakrabarty P, Faircloth BC, Alda F, Ludt WB, Mcmahan CD, Near TJ, Dornburg A, Albert JS, Arroyave J, Stiassny MLJ, Sorenson L, Alfaro ME. Phylogenomic Systematics of Ostariophysan Fishes: Ultraconserved Elements Support the Surprising Non-Monophyly of Characiformes. Syst Biol 2018; 66:881-895. [PMID: 28334176 DOI: 10.1093/sysbio/syx038] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Ostariophysi is a superorder of bony fishes including more than 10,300 species in 1100 genera and 70 families. This superorder is traditionally divided into five major groups (orders): Gonorynchiformes (milkfishes and sandfishes), Cypriniformes (carps and minnows), Characiformes (tetras and their allies), Siluriformes (catfishes), and Gymnotiformes (electric knifefishes). Unambiguous resolution of the relationships among these lineages remains elusive, with previous molecular and morphological analyses failing to produce a consensus phylogeny. In this study, we use over 350 ultraconserved element (UCEs) loci comprising 5 million base pairs collected across 35 representative ostariophysan species to compile one of the most data-rich phylogenies of fishes to date. We use these data to infer higher level (interordinal) relationships among ostariophysan fishes, focusing on the monophyly of the Characiformes-one of the most contentiously debated groups in fish systematics. As with most previous molecular studies, we recover a non-monophyletic Characiformes with the two monophyletic suborders, Citharinoidei and Characoidei, more closely related to other ostariophysan clades than to each other. We also explore incongruence between results from different UCE data sets, issues of orthology, and the use of morphological characters in combination with our molecular data. [Conserved sequence; ichthyology; massively parallel sequencing; morphology; next-generation sequencing; UCEs.].
Collapse
Affiliation(s)
- Prosanta Chakrabarty
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Fernando Alda
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - William B Ludt
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA
| | - Caleb D Mcmahan
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA.,The Field Museum of Natural History, 1400 S Lake Shore Dr, Chicago, IL 60605, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, LA 70504, USA
| | - Jairo Arroyave
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Melanie L J Stiassny
- Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Laurie Sorenson
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803, USA.,Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Yound Drive South, Los Angeles, CA 90095, USA
| | - Michael E Alfaro
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 610 Yound Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Carvalho PC, de Oliveira EA, Bertollo LAC, Yano CF, Oliveira C, Decru E, Jegede OI, Hatanaka T, Liehr T, Al-Rikabi ABH, Cioffi MDB. First Chromosomal Analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into Relationship between African and Neotropical Fish Groups. Front Genet 2017; 8:203. [PMID: 29312435 PMCID: PMC5733008 DOI: 10.3389/fgene.2017.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/22/2017] [Indexed: 01/27/2023] Open
Abstract
Hepsetidae is a small fish family with only the genus Hepsetus, with six described species distributed throughout the South, Central and Western regions of Africa, showing a close relationship with the Alestidae and some Neotropical fish families. However, no cytogenetic information is available for both Hepsetidae and Alestidae species, thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing new cytogenetic data for Hepsetus odoe, including the standard karyotype, C-banding, repetitive DNAs mapping, comparative genomic hybridization (CGH) and whole chromosome painting (WCP), providing chromosomal patterns and subsidies for comparative cytogenetics with other characiform families. Both males and females H. odoe have 2n = 58 chromosomes (10m + 28sm + 20st/a), with most of the C-band positive heterochromatin localized in the centromeric and subtelomeric regions. Only one pair of chromosomes bears proximal 5S rDNA sites in the short arms, contrasting with the 18S rDNA sequences which are located in the terminal regions of four chromosome pairs. Clear interstitial hybridization signals are evidenced for the U1 and U2 snDNA probes, but in only one and two chromosome pairs, respectively. Microsatellite motifs are widely distributed in the karyotype, with exception for the (CGG)10, (GAA)10 and (GAG)10 probes, which highlight conspicuous interstitial signals on an unique pair of chromosomes. Comparative data from conventional and molecular cytogenetics, including CGH and WCP experiments, indicate that H. odoe and some Erythrinidae species, particularly Erythrinus erythrinus, share similar chromosomal sequences suggesting some relatedness among them, although bearing genomic specificities in view of their divergent evolutionary histories.
Collapse
Affiliation(s)
- Pedro C Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Ezequiel A de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.,Secretaria de Estado de Educação de Mato Grosso (Seduc-MT), Cuiabá, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Cassia F Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, Brazil
| | - Eva Decru
- Section Vertebrates, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Oladele I Jegede
- Department of Fisheries and Aquaculture, Adamawa State University, Mubi, Nigeria
| | - Terumi Hatanaka
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | | | - Marcelo de B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
22
|
Dagosta FCP, Pinna MD. Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units. NEOTROPICAL ICHTHYOLOGY 2017. [DOI: 10.1590/1982-0224-20170034] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT Biogeography of Amazonian fishes (2,500 species in vastly disjunct lineages) is complex and has so far been approached only partially. Here, we tackle the problem on the basis of the largest database yet on geographical distribution and phylogenetic relationships of Amazonian fishes, including all information available. Distributions of 4,095 species (both Amazonian and outgroups) and 84 phylogenetic hypotheses (comprising 549 phylogenetically-informative nodes) were compiled, qualified and plotted onto 46 areas (29 Amazonian and 17 non-Amazonian). The database was analyzed with PAE, CADE, BPA and BPA0, yielding largely congruent results and indicating that biogeographic signal is detectable on multiple dimensions of fish distribution, from single species ranges to cladistic congruence. Agreement is especially pronounced in deeper components, such as Trans-Andean, Cis-Andean, Western Amazon and Orinoco basins. Results show that all major Amazonian tributaries, as well as the Amazon basin itself, are non-monophyletic and constitute hybrid sets of heterogeneous biotic partitions. Amazonian drainages should not be assumed a priori as historically cohesive areas, contrary to widespread practice. Our hypothesis allows re-evaluation of broader issues in historical biogeography, such as the predictive power of biogeographic hypotheses, the vicariant/dispersal duality, the significance of widely distributed taxa, and the need for temporal dimension in biogeographic patterns.
Collapse
|
23
|
Melo BF, Sidlauskas BL, Hoekzema K, Frable BW, Vari RP, Oliveira C. Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes). Mol Phylogenet Evol 2016; 102:189-201. [PMID: 27262428 DOI: 10.1016/j.ympev.2016.05.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/14/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
Migratory detritivores of the characiform family Prochilodontidae occur throughout the freshwaters of much of South America. Prochilodontids often form massive populations and many species achieve substantial body sizes; a combination that makes them one of the most commercially important fish groups on the continent. Their economic significance notwithstanding, prochilodontids have never been the subject of a comprehensive molecular phylogenetic analysis. Using three mitochondrial and three nuclear loci spanning all prochilodontid species, we generated a novel phylogenetic hypothesis for the family. Our results strongly support monophyly of the family and the three included genera. A novel, highly supported placement of Ichthyoelephas sister to the clade containing Prochilodus and Semaprochilodus diverges from a previous morphological hypothesis. Most previously hypothesized interspecific relationships are corroborated and some longstanding polytomies within Prochilodus and Semaprochilodus are resolved. The morphologically similar P. brevis, P. lacustris, P. nigricans and P. rubrotaeniatus are embedded within what is herein designated as the P. nigricans group. Species limits and distributions of these species are problematic and the group clearly merits taxonomic revision.
Collapse
Affiliation(s)
- Bruno F Melo
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - Brian L Sidlauskas
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA; Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Kendra Hoekzema
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Benjamin W Frable
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Richard P Vari
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
24
|
Improved resolution and a novel phylogeny for the Neotropical triplefin blennies (Teleostei: Tripterygiidae). Mol Phylogenet Evol 2016; 96:70-78. [DOI: 10.1016/j.ympev.2015.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 11/22/2022]
|
25
|
Dillman CB, Sidlauskas BL, Vari RP. A morphological supermatrix‐based phylogeny for the Neotropical fish superfamily Anostomoidea (Ostariophysi: Characiformes): phylogeny, missing data and homoplasy. Cladistics 2015; 32:276-296. [DOI: 10.1111/cla.12127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Casey B. Dillman
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution PO Box 37012 MRC‐159 Washington DC 20013‐7012 USA
| | - Brian L. Sidlauskas
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution PO Box 37012 MRC‐159 Washington DC 20013‐7012 USA
- Department of Fisheries and Wildlife Oregon State University 104 Nash Hall Corvallis OR 97331‐3803 USA
- National Evolutionary Synthesis Center 2024 W. Main St. A200 Durham NC 27705 USA
| | - Richard P. Vari
- Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution PO Box 37012 MRC‐159 Washington DC 20013‐7012 USA
| |
Collapse
|
26
|
Csiki-Sava Z, Buffetaut E, Ősi A, Pereda-Suberbiola X, Brusatte SL. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. Zookeys 2015; 469:1-161. [PMID: 25610343 PMCID: PMC4296572 DOI: 10.3897/zookeys.469.8439] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022] Open
Abstract
The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic 'core' supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact.
Collapse
Affiliation(s)
- Zoltán Csiki-Sava
- Department of Geology, Faculty of Geology and Geophysics, University of Bucharest, 1 N. Bălcescu Blvd, 010041 Bucharest, Romania
| | - Eric Buffetaut
- Centre National de la Recherche Scientifique, UMR 8538, Laboratoire de Géologie de l’Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - Attila Ősi
- MTA-ELTE Lendület Dinosaur Research Group, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary
| | - Xabier Pereda-Suberbiola
- Universidad del País Vasco/Euskal Herriko Unibertsitatea, Facultad de Ciencia y Tecnología, Departamento de Estratigrafía y Paleontología, Apartado 644, 48080 Bilbao, Spain
| | - Stephen L. Brusatte
- School of GeoSciences, University of Edinburgh, Grant Institute, King’s Buildings, West Mains Road, Edinburgh EH9 3JW, UK
| |
Collapse
|
27
|
Arroyave J, Stiassny MLJ. DNA barcoding reveals novel insights into pterygophagy and prey selection in distichodontid fishes (Characiformes: Distichodontidae). Ecol Evol 2014; 4:4534-42. [PMID: 25512849 PMCID: PMC4264902 DOI: 10.1002/ece3.1321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/26/2022] Open
Abstract
DNA barcoding was used to investigate dietary habits and prey selection in members of the African-endemic family Distichodontidae noteworthy for displaying highly specialized ectoparasitic fin-eating behaviors (pterygophagy). Fin fragments recovered from the stomachs of representatives of three putatively pterygophagous distichodontid genera (Phago, Eugnathichthys, and Ichthyborus) were sequenced for the mitochondrial gene co1. DNA barcodes (co1 sequences) were then used to identify prey items in order to determine whether pterygophagous distichodontids are opportunistic generalists or strict specialists with regard to prey selection and, whether as previously proposed, aggressive mimicry is used as a strategy for successful pterygophagy. Our findings do not support the hypothesis of aggressive mimicry suggesting instead that, despite the possession of highly specialized trophic anatomies, fin-eating distichodontids are opportunistic generalists, preying on fishes from a wide phylogenetic spectrum and to the extent of engaging in cannibalism. This study demonstrates how DNA barcoding can be used to shed light on evolutionary and ecological aspects of highly specialized ectoparasitic fin-eating behaviors by enabling the identification of prey species from small pieces of fins found in fish stomachs.
Collapse
Affiliation(s)
- Jairo Arroyave
- Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History Central Park West at 79th St., New York, New York, 10024
| | - Melanie L J Stiassny
- Division of Vertebrate Zoology, Department of Ichthyology, American Museum of Natural History Central Park West at 79th St., New York, New York, 10024
| |
Collapse
|
28
|
Abe KT, Mariguela TC, Avelino GS, Foresti F, Oliveira C. Systematic and historical biogeography of the Bryconidae (Ostariophysi: Characiformes) suggesting a new rearrangement of its genera and an old origin of Mesoamerican ichthyofauna. BMC Evol Biol 2014; 14:152. [PMID: 25005252 PMCID: PMC4109779 DOI: 10.1186/1471-2148-14-152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/30/2014] [Indexed: 01/25/2023] Open
Abstract
Background Recent molecular hypotheses suggest that some traditional suprageneric taxa of Characiformes require revision, as they may not constitute monophyletic groups. This is the case for the Bryconidae. Various studies have proposed that this family (considered a subfamily by some authors) may be composed of different genera. However, until now, no phylogenetic study of all putative genera has been conducted. Results In the present study, we analyzed 27 species (46 specimens) of all currently recognized genera of the Bryconidae (ingroup) and 208 species representing all other families and most genera of the Characiformes (outgroup). Five genes were sequenced: 16SrRNA, Cytochrome b, recombination activating gene 1 and 2 and myosin heavy chain 6 cardiac muscle. The final matrix contained 4699 bp and was analyzed by maximum likelihood, maximum parsimony and Bayesian analyses. The results show that the Bryconidae, composed of Brycon, Chilobrycon, Henochilus and Salminus, is monophyletic and is the sister group of Gasteropelecidae + Triportheidae. However, the genus Brycon is polyphyletic. Fossil studies suggest that the family originated approximately 47 million years ago (Ma) and that one of the two main lineages persisted only in trans-Andean rivers, including Central American rivers, suggesting a much older origin of Mesoamerican ichthyofauna than previously accepted. Conclusion Bryconidae is composed by five main clades, including the genera Brycon, Chilobrycon, Henochilus and Salminus, but a taxonomic review of these groups is needed. Our results point to a possible ancient invasion of Central America, dating about 20.3 ± 5.0 Ma (late Oligocene - early Miocene), to explain the occurrence of Brycon in Central America.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Oliveira
- Departamento Morfologia, Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.
| |
Collapse
|
29
|
Weiss FE, Malabarba MC, Malabarba LR. A new stem fossil characid (Teleostei: Ostariophysi) from the Eocene-Oligocene of southeastern Brazil. NEOTROPICAL ICHTHYOLOGY 2014. [DOI: 10.1590/1982-0224-20140072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new characiform is herein described from the Eocene-Oligocene sediments exposed in the Aiuruoca basin, in southern Minas Gerais State, Brazil. Recently, two other characid species were described for this same fossil level: †Paleotetra aiuruoca and †Paleotetra entrecorregos. The holotype of this new characiform is represented by an articulated specimen preserved as part and counterpart, in which the most anterior part of the head is missing, including the jaws. Despite the lack of the diagnostic characters from the snout, a unique combination of characters allows its differentiation from other Neotropical characiforms, raising a new genus and species: †Bryconetes enigmaticus. Among these characters are: the presence of a supraorbital, dentary with inflated pentacuspidate teeth arranged in a single row, infraorbital 3 expanded and ornamented with punctuations and grooves, a large anal fin with iii+22-23 rays, and the caudal fin with 11 ventral procurrent rays of which the anteriormost are fused in laminar bones. A phylogenetic analysis using morphological data was performed and recovered †Bryconetes enigmaticus as a stem group to characiforms lacking a supraorbital. Based on the results of this analysis, a discussion of the potential relationships of the new taxon with other characiforms is presented.
Collapse
Affiliation(s)
| | - Maria Claudia Malabarba
- Programa de Pós-Graduação em Biologia Animal; Universidade Federal do Rio Grande do Sul, Brazil
| | - Luiz R. Malabarba
- Programa de Pós-Graduação em Biologia Animal; Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|